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Introduction
Substance use disorders (SUD) cause substantial economic and 
public health challenges globally. In the United States, over 46.3 
million Americans aged 12 years or older were affected by SUDs 
in 2021. SUDs are chronic relapsing multifactorial disorders char-
acterized by a range of structural and functional changes in the 
brain, as revealed by preclinical and human neuroimaging studies 
(1). The heuristic framework for SUD outlines a three-stage recur-
ring cycle of binge/intoxication, withdrawal/negative affect, and 
preoccupation/anticipation that is governed by three functional 
domains (incentive salience, negative emotional states, and exec-
utive functions) (2). Engagement of the mesocorticolimbic system, 
consisting of the ventral tegmental area (VTA), striatum, prefron-
tal cortex, amygdala, and hippocampus, in the binge/intoxication 
stage heightens the incentive saliency of misused drugs, forms 
conditioned responses to drug-related cues, and facilitates mal-
adaptive habit formation/compulsive drug behaviors (2). Dis-
continuing substance use produces symptoms of withdrawal and 
negative effects, which are mediated by brain regions involved in 
stress response and emotional regulation (i.e., the amygdala) (2). 
Reconciling memories of previous drug use (amygdala and hippo-
campus), craving (prefrontal cortex and striatum), and decreasing 
executive control (prefrontal cortex) in the preoccupation/antic-
ipation stage subsequently leads to relapse and perpetuates SUD 
(3). These functional and structural neuroadaptations may be 
attributable to neuroinflammation following prolonged substance 
use that increases neurotoxicity and promotes neurodegeneration 
in individuals with SUD (4).

Inflammation is a biological process triggered by a variety of 
harmful insults, such as infection, ischemia, stress, and trauma (5, 
6). In the CNS, a key element of neuroinflammation is the acti-
vation of immune-specific cells (i.e., microglia and astrocytes) 
that synthesize inflammatory mediators and promote leukocyte 
recruitment. Activation of the TLRs on microglia by pathogen- 
associated or internal damage-associated molecular patterns 
initiates the immune response. The activated TLRs promote the 
recruitment of NF-κB, resulting in the production of different 
mediators, such as proinflammatory cytokines (e.g., IL-6, IL-1, 
and TNF-α), type I interferon (IFN-β), chemokines (CCL5), and 
cyclooxygenase-2 (COX-2) (7, 8).

Studies on postmortem markers of inflammation revealed 
increased markers of microglia in the cingulate cortex, VTA, amyg-
dala, and midbrain of individuals with alcohol use disorder (AUD) 
compared with those of nondependent controls (9, 10). They also 
showed higher expression of TLRs and downstream signaling cas-
cade NF-κB in the orbital frontal cortex and higher concentration 
of proinflammatory cytokines (i.e., monocyte chemoattractant pro-
tein-1) in the VTA, hippocampus, and amygdala (10–12). Similarly, 
chronic opioid exposure has been associated with upregulation of 
glial activation and immune response pathways (13). While the ini-
tial stage of neuroinflammation may be beneficial and protective, 
overactivation of TLRs in prolonged inflammation promotes cyto-
toxic changes, including the development of brain edema, gliosis, 
blood-brain barrier disruption, astrocyte proliferation, oxidative 
stress, and changes in cell survival transcription factors (14). 
Neuroinflammation was associated with neurodegeneration in 
neuropsychiatric disorders (7, 15) and may mediate structural and 
functional deficits that contribute to SUD.

The present Review focuses on the link between SUD and 
neuroinflammation based on human neuroimaging studies using 
PET and MRI (Figure 1). We will discuss findings that pertain to 
common substances of misuse, including alcohol, nicotine, opi-
oids, cannabis, and stimulants.

Increasing evidence suggests a role of neuroinflammation in substance use disorders (SUDs). This Review presents findings 
from neuroimaging studies assessing brain markers of inflammation in vivo in individuals with SUDs. Most studies 
investigated the translocator protein 18 kDa (TSPO) using PET; neuroimmune markers myo-inositol, choline-containing 
compounds, and N-acetyl aspartate using magnetic resonance spectroscopy; and fractional anisotropy using MRI. Study 
findings have contributed to a greater understanding of neuroimmune function in the pathophysiology of SUDs, including its 
temporal dynamics (i.e., acute versus chronic substance use) and new targets for SUD treatment.
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finity genotype and AUD had lower [11C]PBR28 VT than controls 
in the whole brain, gray matter, white matter, hippocampus, and 
thalamus. Although the study did not match for smoking status 
(10 of 19 smokers in the AUD group and no smokers in the con-
trol group), additional analyses showed no effects of smoking 
status on TSPO binding within the AUD group.

Despite the directionally consistent findings, they should be 
interpreted with the following considerations. Laurell et al. (22) 
reanalyzed data collected by Hillmer et al. (20) and separated total 
VT into ligand-specific distribution volume (VS) and non-displace-
able-binding distribution volume (VND). AUD compared with healthy 
controls demonstrated significantly lower VND but no differences 
in VS (22), raising the possibility that differences in [11C]PBR28 VT 
between patients and controls may be attributable to non-displace-
able- instead of ligand-specific binding. Second, participants’ blood 
cholesterol and triglyceride levels correlated inversely with [11C]
PBR28 (21, 23), as cholesterol binds to TSPO for transport during ste-
roid synthesis (24). Dyslipidemia is evidenced in AUD (25), and the 
lower [11C]PBR28 binding reported by PET studies may reflect great-
er competition from cholesterol for binding to TSPO in AUD. Third, 
rs6971 TSPO genotype (high-affinity binders, low-affinity binders, 
and mixed-affinity binders) has been shown to alter the affinity of 
[11C]PBR28 for TSPO (22) and lipid levels (25) and may have implica-
tions for influencing the relationship between TSPO and AUD status 
(21). Thus, more work is needed to conclusively identify the mecha-
nisms underlying lower TSPO in AUD.

A study that evaluated the effects of an acute oral alcohol 
challenge (adjusted to achieve a blood alcohol level of 80 mg/
dL) in healthy volunteers found that alcohol increased [11C]
PBR28 VT by an average of 12% (26). Alcohol-induced increases 
in [11C]PBR28 VT correlated negatively with the subjective effects 
of alcohol (26). This is in line with findings from a previous study 
in baboons that also found higher [18F]DPA-714 VT (58%–138%) 
in animals exposed to an acute intravenous alcohol infusion of 
0.7–1 g/L compared with alcohol-naive animals (27). Although 
TSPO levels were reduced 7–12 months after the alcohol infusion 
in the alcohol-exposed animals, levels remained higher than 
those in alcohol-naive animals. The mechanisms underlying 
the differential effects of acute versus chronic alcohol adminis-

PET imaging: TSPO
Studies using PET to examine neuroinflammation have main-
ly focused on measures of translocator protein 18 kDa (TSPO) 
expression and binding. TSPO is a transmembrane protein local-
ized in the outer mitochondrial membrane that mediates essen-
tial mitochondrial functions, such as regulating cholesterol trans-
port steroid hormone synthesis, apoptosis, and cell proliferation 
(16). Within the CNS, TSPO is primarily expressed in microglia 
and reactive astrocytes, which are immune cells integral to the 
brain, and serves as a marker for immune system activation (4, 
17). Several PET radiotracers have been developed to detect 
TSPO, including [11C]PK11195, [11C]PBR28, [11C]DAA1106, and 
[18F]FEPPA (4, 17). A summary of studies measuring TSPO in 
participants with SUD compared with nondependent controls is 
provided in Table 1.

Alcohol. Thus far, three studies have compared TSPO bind-
ing in AUD, and all found, contrary to their hypothesis, lower 
[11C]PBR28 volumes of distribution (VT) in individuals with AUD 
compared with that in healthy, nondependent control groups 
(meta-analyzed in ref. 18). Kalk et al. were the first to report 
lower hippocampal [11C]PBR28 VT in individuals with AUD com-
pared with individuals acting as controls and nonsignificant 
trends for lower [11C]PBR28 VT in the midbrain, thalamus, cer-
ebellum, and anterior cingulate cortex (ACC) (19). However, the 
recruited individuals with AUD were more likely to be smokers 
(8 of 9) than the people in the control group (5 of 20), and dif-
ferences in smoking status may had confounding effects on the 
study results. The findings are concordant with those of another 
study that reported lower [11C]PBR28 VT in individuals with AUD 
than in controls matched for smoking status. Post hoc analyses 
examining regional differences in [11C]PBR28 VT revealed a sig-
nificant effect of AUD in the cerebellum and trends for the fron-
tal cortex, striatum, and hippocampus. Additional exploratory 
analysis indicated that [11C]PBR28 VT negatively correlated with 
alcohol dependence severity and number of drinks per day in the 
past month (20). Kim et al. (21) found no significant group dif-
ferences in whole-brain [11C]PBR28 binding between individuals 
with AUD and controls, but when separated by TSPO genotype 
(medium vs. high-affinity binding), those with the medium-af-

Figure 1. Imaging markers of neuroinflammation. (A) PET image of TSPO radiotracer [11C]PBR28 (image reproduced with permission from Kim et al., 2018, 
ref. 21). (B) Representative image of 1H-MRS voxel placement in the dorsal anterior cingulate cortex and 1H-MRS spectra of inflammation markers, NAA, 
cho, and mI (spectra image reproduced with permission from Blüml, 2013, ref. 130). (C) DTI fractional anisotropy (FA) color map. Cho, choline-containing 
compounds; Cr, creatine; DTI, diffusion tensor imaging; 1H-MRS, magnetic resonance spectroscopy; mI, myo-inositol; NAA, N-acetyl-aspartate; TSPO, 
translocator protein 18 kDa.
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potential) in individuals with a history of methamphetamine use 
disorder (MUD; abstinent 0.5–4 years) than healthy volunteers 
in the midbrain, striatum, thalamus, orbitofrontal cortex, and 
insular cortex (32). (R)-PK11195 binding potential was negatively 
correlated with the duration of abstinence in the midbrain, stri-
atum, and thalamus, suggesting that dysregulation in neuronal 
immune response may normalize with prolonged abstinence 
(32). A later study by London et al., quantifying TSPO binding 
with SUV and newer generation of TSPO PET radiotracers, [11C]
DAA1106, found no differences between individuals with MUD 
in early abstinence (<6 months) and healthy controls in whole-
brain TSPO levels or any of the examined VOIs (33). Similarly, 
Rathitharan et al. (34) measured [18C]FEPPA VT and did not 
demonstrate significant group differences in TSPO binding. The 
inconsistent findings may be attributable to the high nonspecif-
ic binding of [11C] (R)-PK11195 compared with the newer TSPO 
PET tracers, PET quantification methods, or study differences in 
participant characteristics (e.g., early vs. prolonged abstinence or 
MUD severity) and additional studies are warranted.

A study of cocaine use disorder (CUD) found no signifi-
cant differences in [11C]PBR28 VT between recently abstinent 
cocaine-dependent individuals and nondependent controls in the 
midbrain, striatum, cerebral cortex, ACC, medial temporal lobe, 
or cerebellum (35).

Cannabis. In the only clinical study examining the effects 
of cannabis on TSPO, long-term cannabis users (use >4 times/
week for the past 12 months) had higher brain [18F]FEPPA VT 
than controls in total and across the dorsolateral prefrontal cor-
tex (dlPFC), medial prefrontal cortex, temporal cortex, ACC, 
cerebellum, and gray matter as a whole. More prominent effects 
were observed in a subset of individuals who met the diagnostic 
criteria for cannabis use disorder. Exploratory analysis in canna-
bis users demonstrated that [18F]FEPPA VT negatively correlated 
with lifetime cannabis use, which remained trending but no lon-
ger significant after controlling for sex, but not cannabis craving 
and dependence severity (36).

Opioids. To the best of our knowledge, no human studies have 
been published on the effect of opioids on brain TSPO binding.

tration on brain TSPO levels require further elucidation. It has 
been postulated that chronic microglial activation in response to 
chronic alcohol use diminishes TSPO levels and the subsequent 
reduced immune response in AUD contributes to an enhanced 
susceptibility to diseases (20). In line with this, individuals with 
AUD showed lower peripheral cytokine response to stimulation 
with LPS than controls (20).

Tobacco. One study in nicotine users showed 16.8% lower 
whole-brain [11C]DAA1106 binding (measured as standard uptake 
values [SUVs]) in smokers during smoking satiety (i.e., having 
smoked ~15 minutes prior to scanning procedures) compared with 
nonsmokers on all volumes of interest (VOIs): amygdala, cau-
date, accumbens, hippocampus, putamen, and thalamus (28). A 
subsequent study showed that [11C]DAA1106 SUVs in smokers 
remained low, even following overnight (~12 hours) abstinence in 
the same VOIs as the previous study (29). Higher levels of cigarette 
exposure, as indicated by the depth of inhalation (29) or cigarettes 
per day (28), were associated with lower [11C]DAA1106 binding, 
which was interpreted as reduced TPSO levels. The type of ciga-
rette also altered TSPO levels, as three-way comparisons showed 
that SUV was highest in nonsmokers, in the middle in nonmenthol 
cigarette smokers, and lowest in menthol cigarette smokers (28, 
29). In contrast, another study found no significant differences 
in [11C]PBR28 binding (measured as VT) between smokers (absti-
nent for 2–14 hours before the scan) and nonsmokers in whole 
brain or any of the VOIs (30). The inconsistent study findings 
may be attributable to differences in radioligands ([11C]PBR28 vs. 
[11C]DAA1106) or quantification methods (SUV vs. VT). VT is the 
gold-standard quantification method that, unlike SUV, accounts 
for plasma radioligand concentration and potential differences in 
radioligand delivery to the brain (31). Yoder et al., retrospective-
ly compared SUVs and VT from [11C]PBR28 PET scans acquired 
in baboons at baseline and at varying time points following LPS 
injections. Although regional SUV and VT were highly correlated, 
the slope of their relationships varied across individuals and ROIs, 
suggesting discrepancies between SUV and VT (31).

Stimulants. An early study using the TSPO tracer [11C](R)- 
PK11195 demonstrated higher binding (measured as binding 

Table 1. PET studies of TSPO levels in individuals with SUDs

Authors (yr) (ref.)  Study population Substance studied Length since last use Tracer Group differences 
Kalk et al. (2017) (19) 9 AUD, 20 controls Alcohol <1 month of medically assisted withdrawal [11C]PBR28 ↓
Hillmer et al. (2017) (20) 15 AUD, 15 controls Alcohol 1–24 days [11C]PBR28 ↓
Kim et al. (2018) (21) 19 AUD, 17 controls Alcohol 0–7 days [11C]PBR28 ↓A

Brody et al. (2017) (28) 30 smokers, 15 controls Tobacco Satiated [11C]DAA1106 ↓
Brody et al. (2018) (29) 22 smokers, 18 controls Tobacco Overnight abstinence [11C]DAA1106 ↓
Hillmer et al. (2020) (30) 20 smokers, 20 controls Tobacco 2–14 hours [11C]PBR28 ←→
Narendran et al. (2014) (35) 15 CUD, 17 controls Cocaine 14 days [11C]PBR28 ←→
Sekine et al. (2008) (32) 12 MA use, 12 controls Methamphetamine 0.5–4 years [11C](R)-PK11195 ↑
London et al. (2020) (33) 11 MA use, 12 controls Methamphetamine ≥4 days to <6 months [11C]DAA1106 ←→
Rathitharan et al. (2021) (34)  11 MA use, 26 controls Methamphetamine 14.3–110 hours [18F]FEPPA ←→
Da Silva et al. (2019) (36) 24 cannabis users, 27 controls Cannabis ≥12 hours [18F]FEPPA ↑

Arrows in the group differences column indicate whether there was higher tracer binding/uptake in the SUD population than in controls (↑), lower tracer 
binding/uptake in the SUD population than in controls (↓), or no difference between groups (←→). AOnly in individuals with medium-affinity binding TSPO 
genotypes. AUD, alcohol use disorder; CUD, cocaine use disorder; MA, methamphetamine.
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who smoke intermittently (1–4 cigarettes on at least 1 day per week) 
(51). Another study showed a positive correlation between lifetime 
tobacco exposure (pack-years) and ACC Cho levels (52).

Cigarette smoking often occurs concomitantly with heavy alco-
hol consumption and may exacerbate impairments in neural func-
tioning in individuals with AUD. In comparison with nonsmoking 
individuals with AUD, those who smoked tobacco demonstrated 
lower NAA and Cho levels (53). Brain metabolite levels normalized 
with abstinence from alcohol in nonsmoking individuals with AUD 
but remained significantly reduced at 1 month in those who smoked 
(54). Abstinence-associated changes in Cho and mI levels correlat-
ed with improvements in visuospatial memory (54). Therefore, 
reductions in brain metabolites in smoking individuals with AUD 
may adversely affect their neural recovery (54).

Stimulants. Studies in individuals with MUD generally demon-
strated lower NAA levels in frontal regions, including the ACC, 
but results for Cho and mI have been inconclusive (Table 3). Low 
NAA/Cre and Cho/Cre levels in the dlPFC and ACC correlated 
with neurocognitive impairments in individuals with MUD (55, 
56). Greater duration of methamphetamine use was associated 
with greater reductions in NAA and mI (57). Prolonged abstinence 
may normalize brain metabolite levels. Thus, short-term absti-
nence from methamphetamine (1–6 months) resulted in lower 
NAA/Cre and higher mI/Cre compared with controls, but no dif-
ferences were observed during longer-term abstinence (1–5 years) 
(58). Furthermore, the duration of abstinence was positively cor-
related with ACC NAA/Cre levels (58). Recovery may be slow, as 
one study demonstrated a persistent reduction in dlPFC NAA/Cre 
in individuals following approximately 5 weeks of abstinence (57).

An acute intravenous dose of cocaine (0.2 and 0.4 mg/kg) in 
occasional cocaine users increased NAA and Cho levels as com-
pared with intravenous placebo (59). However, a comparison of 
individuals with CUD and healthy controls yielded no differences 
in 1H-MRS makers of neuroinflammation (Table 3).

Cannabis. Administration of cannabis (300 μg/kg of Δ-9-tet-
rahydrocannabinol [THC]) versus placebo to occasional and 
heavy cannabis users increased mI/Cre in the striatum and ACC 
and NAA/Cre in the ACC, but only in the occasional users and 
not in the heavy users, suggesting cannabis tolerance in the latter 
group (60). Studies comparing cannabis users and controls gener-
ally indicated a decrease in mI (except for Muetzel et al., ref. 61, 
who found higher mI in female users compared with female non-
users but no differences between male users and nonusers) and no 
group differences in NAA and Cho levels (Table 3). Low mI levels 
significantly correlated with higher problematic drug use behav-
ior and cannabis dependence (62), but no significant correlations 
were observed between brain metabolite levels and marijuana 
exposure (i.e., age of onset and total lifetime use) (63, 64). Canna-
bis-associated changes in brain metabolites may adversely affect 
neuropsychological performance. As such, thalamic mI/Cre levels 
were associated with greater cognitive impulsivity (64).

Opioids. Most 1H-MRS studies in individuals with opioid 
use disorder (OUD) demonstrated low brain levels of NAA 
(Table 3). Methadone-treated individuals with OUD showed 
lower mI in the ACC than those maintained on buprenorphine, 
and the dose of methadone correlated negatively with mI and 
positively with NAA (65).

MRI: magnetic resonance spectroscopy
Proton magnetic resonance spectroscopy (1H-MRS) is a noninvasive 
neuroimaging technique that uses the MRI scanner to measure local 
concentrations of neuroinflammatory biomarkers: (a) myo-inosi-
tol (mI), an organic molecule present in glial cells that serves as a 
marker for glial cell activation and neuroinflammation; (b) N-ace-
tyl aspartate (NAA), a neuronal marker, decreasing levels of which 
are indicative of neuronal dysfunction; (c) choline-containing 
compounds (Cho), which reflect membrane turnover; and (d) glu-
tathione (GSH), which is involved in the cellular defense against 
oxidative stress and provides information on cellular inflammato-
ry processes. Levels of brain metabolites are commonly expressed 
relative to creatine (Cre) or water, but absolute measures are also 
reported (37, 38). A summary of 1H-MRS studies that included these 
inflammatory markers in individuals with SUDs compared with 
nondependent controls is provided in Tables 2 and 3.

Alcohol. A meta-analysis of 43 1H-MRS studies in individuals 
with AUD showed lower levels of NAA and Cho but no differences 
in mI compared with nondependent healthy volunteers (39). Spe-
cifically, lower levels of NAA and Cho were recorded in the frontal 
cortex, cerebellum, hippocampus, and frontal and parietal white 
matter. Lower Cho was also observed in the temporal cortex and 
thalamus, and NAA in the ACC (39). The concentrations of brain 
metabolites in individuals with AUD depend upon several factors, 
including individual drinking habits and duration of abstinence. 
For example, in individuals with AUD, the number of heavy drink-
ing days in the 14 days prior to the MRI scan was inversely associ-
ated with dorsal ACC NAA/water (40), and more recent drinking 
correlated with lower NAA and Cho levels in frontal and thalamic 
regions (41). Lower hippocampal NAA (42) and greater thalamic 
mI levels (43) were observed in recently detoxified individuals 
with AUD though these measures recovered with abstinence.

Acute alcohol administration (0.65 g/kg in female users and 
0.75 g/kg in male users) in healthy volunteers decreased Cho and 
mI in the frontal cortex and cerebellum 1.5 hours after ingestion 
compared with baseline but rebounded by 12 hours (44). Another 
study in which alcohol was infused intravenously to a target breath 
alcohol concentration of 60 mg/dL showed a similar reduction in 
Cho in the occipital cortex within an hour of administration but, in 
contrast to the previous study, found a trend for increasing mI as 
well as a decrease in NAA (45). Measurement of brain metabolites 
in the descending limb of the blood alcohol curve, approximately 
4–5 hours following alcohol administration, demonstrated signif-
icant elevation in Cho/Cre and glutathione/Cre (GSH/Cre) in the 
thalamus but no effects on mI/Cre or NAA/Cre (46). The inconsis-
tent findings of these studies raises questions about the temporal 
(i.e., ascending vs. descending limb) and regional (i.e., differing 
brain regions) effects of alcohol on brain metabolites.

Tobacco. Findings in individuals who smoke tobacco showed 
lower levels or no group differences in NAA, Cho, and mI levels com-
pared with healthy controls (47). Low NAA levels, in particular, have 
been associated with poorer decision-making and higher impul-
sivity in smokers (47). Studies examining the role of abstinence 
and smoking severity on neuroinflammatory markers have yielded 
mixed results. Some reported no differences in neural metabolites 
between nicotine-deprived (24–72 h) and satiated states (48–50) or 
between individuals who smoke daily (>5 cigarettes/day) and those 
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Table 2. 1H-MRS studies of brain inflammatory markers in alcohol and tobacco
Authors (year) (ref.)  Study population Substance studied Length since last use Brain regions MRS marker Group differences
Schweinsburg et al. (2000) (43) 4 recently detoxified AUD,  

5 long-term abstinent AUD,  
5 controls

Alcohol Recently detoxified: 27–44 days,  
long-term abstinent: 5–16 years

Thalamus NAA
Cho
mI

←→
←→

↑A

O’Neill et al. (2001) (131) 12 AUD, 13 controls Alcohol Mean 103 ± 72 weeks (range 3–209 weeks) Prefrontal WM/GM,  
posterior parietal WM/GM

NAA
Cho

↓ (All GM)
←→ 

Schweinsburg et al. (2001) (132) 37 AUD, 13 controls Alcohol Recently detoxified, mean 27.9 ± 11.0 days Frontal WM, parietal WM NAA
Cho
mI

↓ (Frontal WM)
←→

↑ (Average of ROIs)
Bendszus et al. (2001) (133) 21 inpatient AUD, 12 controls Alcohol 1–3 and 36–39 days Frontal lobe, Cb NAA/Cre

Cho/Cre
↓A

↓A (Cb)
Parks et al. (2002) (134) 31 inpatient AUD, 12 controls Alcohol 3–5 days, 3 weeks, and 3 months Frontal lobe, Cb NAA

Cho
mI

↓ (Cb)
↓ (Cb)
←→ 

Bloomer et al. (2004) (135) 12 heavy drinkers, 10 light drinkers Alcohol Current drinkers Midbrain/pons NAA/Cre
Cho/Cre

↓
↓

Durazzo et al. (2004) (53, 136) 24 outpatient AUD, 26 controls Alcohol Mean 6 ± 3 and 34 ± 10 days Frontal WM/GM, parietal WM/GM,  
temporal WM/GM, occipital WM, thalamus, 

caudate, midbrain, Cb

NAA
Cho
mI

↓B

↓C 

Meyerhoff et al. (2004) (137)  46 heavy drinkers, 52 light drinkers Alcohol Current drinkers Frontal WM/GM, parietal WM/GM,  
brain stem, thalamus

NAA
Cho
mI

↓ (Frontal WM)
↓ (Parietal GM)

←→
Ende et al. (2005) (138) 33 inpatient AUD, 30 controls Alcohol  4–27 days, 3 months, and 6 months Cb, dlPFC, dentate nucleus, frontal WM,  

superior frontal gyrus
NAA
Cho

↓A (Frontal WM)
↓A (Cb/frontal WM)

Mason et al. (2006) (139) 12 inpatient AUD, 8 controls Alcohol 1 week and 1 month Occipital cortex NAA
Cho

←→
←→ 

Lee et al. (2007) (140) 13 inpatient AUD, 18 controls Alcohol ≥2 weeks, average 15 days ACC, insula NAA
Cho
mI

←→
↓ (ACC)
←→

Thoma et al. (2011) (141) 10 active AUD, 7 abstinent AUD,  
23 controls

Alcohol Active: active drinkers, abstinent: >1 year Medial frontal/cingulate cortex NAA
Cho
mI

←→
←→
←→

Modi et al. (2011) (142) 9 AUD, 13 controls Alcohol 1 week Occipital lobe NAA/Cre
Cho/Cre

←→
↓

Mon et al. (2012) (143) 44 outpatient AUD, 16 controls Alcohol 1 and 5 weeks ACC, dlPFC, parieto-occipital cortex NAA
Cho
mI

↓A (ACC)
←→
←→

Hermann et al. (2012) (144) 47 inpatient AUD, 57 controls Alcohol 1 and 14 days ACC NAA
Cho
mI

↓A

←→
←→

Xia et al. (2012) (145) 49 AUD, 45 controls Alcohol Current drinkers Prefrontal WM/GM, parietal WM/GM, Cb NAA/Cre ↓ (Prefrontal WM/GM)
Yeo et al. (2013) (146) 213 AUD, 66 controls Alcohol ≥24 hours Medial frontal cortex NAA

Cho
mI

←→
←→
←→

Ende et al. (2013) (147) 23 heavy drinkers, 9 light drinkers Alcohol Current drinkers Frontal WM NAA
Cho
mI

←→
↑

←→
Abé et al. (2013) (148) 40 AUD, 16 controls Alcohol 1 month ACC, dlPFC, parieto-occipital cortex NAA

Cho
mI

←→
←→
←→

Bauer et al. (2013) (149) 29 inpatient AUD, 31 controls Alcohol ≥24 hours of termination of medication for 
withdrawal symptoms but <10 days

ACC, Nac NAA, Cho, mI
Cho
mI

←→
←→
←→

Silveri et al. (2014) (150) 21 binge drinkers, 27 light drinkers Alcohol Active drinkers ACC, parieto-occipital cortex NAA ↓(ACC)
Bagga et al. (2014) (151) 35 AUD, 35 controls Alcohol >2 weeks, mean 17.5 days Primary visual cortex NAA/Cre

Cho/Cre
mI/Cre

↑
↑
↓

Zahr et al. (2016) (41) 20 AUD, 15 controls Alcohol Mean 20 ± 13 days Frontal WM, Thalamus NAA
Cho

←→
←→

Frischknecht et al. (2017) (42) 39 inpatient AUD, 34 controls Alcohol 1 day and 2 weeks Hippocampus NAA ↓B

de Souza et al. (2018) (152) 22 outpatient AUD, 23 controls Alcohol ≥15 days, mean 45 ± 37 days Left and right PFC Cho/Cre ↓ (LPF)
Prisciandaro et al. (2019) (153) 20 NTS AUD, 20 controls Alcohol 1–5 days ACC NAA/water

Cho/water
mI/water

←→
←→
←→

Grecco et al. (2021) (154) 16 AUD, 14 controls Alcohol >12 hours ACC NAA/Cre
Cho/Cre
mI/Cre

←→
←→
←→

Gallinat et al. (2007) (52) 13 smokers, 13 nonsmokers Tobacco Current smokers Hippocampus, ACC NAA
Cho

↓ (Hippocampus)
←→

Mennecke et al. (2014) (50) 12 smokers, 12 nonsmokers Tobacco Before and day 3 of withdrawal Hippocampus, ACC NAA/Cre
Cho/Cre
mI/Cre

←→
↓ (Left ACC)

←→
Durazzo et al. (2016) (47) 35 smokers, 30 nonsmokers Tobacco Current smokers ACC, dlPFC NAA

Cho
mI

↓ (dlPFC)
←→

↓ (dlPFC)
Schulte et al. (2017) (155) 30 smokers, 61 nonsmokers Tobacco Current smokers ACC NAA ←→
Faulkner et al. (2020) (51) 44 smokers, 42 nonsmokers Tobacco Current smokers Right mPFC NAA

Cho
mI

↓
←→

↓
Steinegger et al. (2021) (156) 29 smokers, 25 nonsmokers Tobacco Satiated, >30 minutes, and >24 hours Nac NAA

Cho
mI + glycine

←→
←→

↓
Bagga et al. (2021) (157) 20 smokers, 20 nonsmokers Tobacco Current smokers, abstain >1 hour before scan PFC NAA/Cre

Cho/Cre
mI/Cre

←→
↓

←→
Arrows in the group differences column indicate whether there was a higher level of metabolites in the SUD population than in controls (↑), a lower level of metabolites in the SUD population than in controls (↓), or no difference 
between groups (←→). AOnly during early withdrawal/abstinence. BFrontal white matter/gray matter during short abstinence and parietal white matter during 1-month abstinence. CFrontal white matter/gray matter, parietal 
white matter, and thalamus during short abstinence, but only parietal white matter and thalamus during 1-month abstinence. ACC, anterior cingulate cortex; AUD, alcohol use disorder; BG, basal ganglia; Cb, cerebellum; 
Cre, creatine; Cho, choline; dlPFC, dorsolateral prefrontal cortex; GM, gray matter; mI, myo-inositol; mPFC, medial prefrontal cortex; Nac, nucleus accumbens; NAA, N-acetyl aspartate; PFC, prefrontal cortex; WM, white matter.
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Table 3. 1H-MRS studies of brain inflammatory markers in other SUDs
Authors (year) (ref.) Study population Substance studied Length since last use Brain regions MRS marker Group differences
O’Neill et al. (2001) (131) 8 CUD, 13 controls Cocaine Mean 9 ± 12 weeks  

(range 5–34 weeks)
Prefrontal WM/GM,  

posterior parietal WM/GM
NAA
Cho

←→
←→

Ke et al. (2004) (158) 35 CUD, 20 controls Cocaine Not specified Left PFC NAA
Cho

←→
←→

Yang et al. (2009) (159) 14 CUD, 14 controls Cocaine Current users ACC NAA/Cre
Cho/Cre
mI/Cre

←→
←→
←→

Martinez et al. (2014) (160) 15 CUD, 14 controls Cocaine Current users Striatum NAA/water
Cho/water

←→
←→

Hulka et al. (2014) (161) 13 CUD, 18 controls Cocaine >3 days, mean 8 ± 7 days ACC, dlPFC NAA/Cre
Cho/Cre
mI/Cre

←→
↑

←→

Crocker et al. (2017) (162) 21 abstinent CUD, 30 controls Cocaine >7 days, average 187 ± 251 days  
(range 15–1,432 days)

PFC NAA
Cho

↓
←→

Ernst et al. (2000) (163) 26 MUD, 24 controls Methamphetamine >2 weeks, mean 4 months  
(range 0.5–21 months)

Frontal GM, right frontal WM, right BG NAA
Cho
mI

↓ (BG and frontal WM)
↑ (Frontal GM)
↑ (Frontal GM)

Nordahl et al. (2002) (164) 9 MUD, 9 controls Methamphetamine 4–13 weeks ACC, ventrolateral prefrontal WM,  
dorsolateral prefrontal WM,  

primary visual cortex

NAA/Cre
Cho/Cre

↓(ACC)
←→ 

Chang et al. (2005) (165) 36 MUD/HIV–, 24 MUD/HIV+,  
44 HIV+, 39 controls

Methamphetamine >1 weeks, HIV–: mean 5 ± 6 months,  
HIV+: mean 6 ± 8 months

Frontal WM/GM, BG NAA
Cho
mI

↓ (BG and frontal WM)
↑ (Frontal GW)
↑ (Frontal GW)

Sung et al. (2007) (166) 30 MUD, 20 controls Methamphetamine >4 weeks, mean 783 ± 1,322 days Midfrontal GM, left frontal WM NAA
Cho
mI

←→
←→

↑ (Frontal WM)

Salo et al. (2007) (56) 36 MUD, 16 controls Methamphetamine >3 weeks ACC, primary visual cortex NAA/Cre
Cho/Cre

↓ (ACC)
←→

Salo et al. (2011) (58) 30 MUD short-term abstinence,  
17 MUD long-term abstinence,  

24 controls

Methamphetamine Short-term abstinence: 1–6 months,  
long-term abstinence: 1–5 years

ACC, primary visual cortex NAA/Cre
Cho/Cre

↓B (ACC)
←→

Salo et al. (2011) (167) 32 MUD, 13 controls Methamphetamine >3 weeks, mean 20 ± 5 months ACC, primary visual cortex NAA/Cre
Cho/Cre

↓(ACC)
←→

Sung et al. (2013) (168) 9 MUD, 10 controls Methamphetamine Not specified Midfrontal lobe NAA/Cre
Cho/Cre
mI/Cre

←→
←→
←→

Howell et al. (2014) (169) 16 MUD, 10 methamphetamine-induced 
psychosis, 19 controls

Methamphetamine MUD: mean 56 ± 60 days  
(range 1–240 days),  

psychosis: mean 60 ± 52 days  
(range 1–108 days)

ACC, frontal WM, dlPFC NAA/Cre
Cho/Cre
mI/Cre

↓ (Right ACC)
←→
←→

Crocker et al. (2014) (170) 29 MUD, 45 controls Methamphetamine >1 weeks, median 370 days mPFC NAA
Cho

↓
←→

Lin et al. (2015) (171) 18 MUD, 22 controls Methamphetamine Current user BG, visual cortex NAA/Cre
Cho/Cre
mI/Cre

←→
←→
←→

Burger et al. (2018) (57) 31 MUD acute abstinence,  
22 MUD short-term abstinence,  

22 controls

Methamphetamine Acute: mean 1.5 ± 0.6 weeks,  
short-term: mean 5 ± 1 weeks

ACC, dlPFC, frontal WM NAA/Cre
Cho/Cre
mI/Cre

↓ (Left DLPFC)
↓ (Left frontal WM)

↑A (Right ACC)

Su et al. (2020) (172) 50 MUD, 20 controls Methamphetamine Not specified dlPFC NAA
Cho
mI

GSH

↓
↓
↓
↑

Bakhshinezhad et al. (2022) (55) 30 MUD, 20 controls Methamphetamine Current user ACC, dlPFC, BG NAA/Cre
Cho/Cre

↓
↑

Verdejo-García et al. (2013) (65) 10 OUD on methadone,  
14 OUD on buprenorphine,  

24 controls

Opioids Methadone: 8–124 months,  
buprenorphine: 3–64 months

ACC NAA
Cho
mI

↓
←→

↑C (Right ACC) 

Liu et al. (2017) (173) 20 OUD, 20 controls Opioids Not specified Nac NAA
Cho
mI

←→
←→
←→ 

Chang et al. (2006) (174) 21 HIV+ cannabis users,  
24 HIV– cannabis users,  

21 HIV+ individuals,  
30 controls

Cannabis HIV–: mean 52 ± 17 months  
(range 0–240 months),  

HIV+: mean 22 ± 9 months  
(range 0–132 months)

BG mI ↓

Silveri et al. (2011) (175) 15 cannabis dependence,  
11 controls

Cannabis Current user BG, thalamus, temporal and  
parietal lobes, occipital WM/GM

NAA/Cre
Cho/Cre
mI/Cre

←→
←→

↓ 

Prescot et al. (2011) (63) 17 adolescent cannabis users,  
17 controls

Cannabis Not specified ACC NAA/water
Cho/water
mI/water

↓
←→

↑

Muetzel et al. (2013) (61) 27 cannabis users, 26 controls Cannabis Current user BG mI ↑ In female users only

Mashhoon et al. (2013) (64) 13 cannabis users, 10 controls Cannabis Current user Thalamus mI ↓

Arrows in the group differences column indicate whether there was a higher level of metabolites in the SUD population than in controls (↑), a lower level of metabolites in the SUD population than in 
controls (↓), or no difference between groups (←→). AOnly during early withdrawal/abstinence. BFrontal white matter/gray matter during short abstinence and parietal white matter during 1-month 
abstinence. COnly in OUD individuals maintained on buprenorphine. ACC, anterior cingulate cortex; BG, basal ganglia; Cb, cerebellum; Cre, creatine; Cho, Choline; dlPFC, dorsolateral prefrontal cortex; 
CUD, cocaine use disorder; GM, gray matter; GSH, glutathione; mI, myo-inositol; mPFC, medial prefrontal cortex; MUD, methamphetamine use disorder; Nac, nucleus accumbens; NAA, N-acetyl 
aspartate; OUD, opioid use disorder; PFC, prefrontal cortex; WM, white matter.
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MRI: diffusion tensor imaging
Diffusion-tension imaging (DTI) is an MRI technique that mea-
sures the motion and diffusion of water molecules within tissues 
and assesses white matter microstructures. Fractional anisotro-
py (FA) is calculated from DTI and indexes the nonuniformity of 
water diffusion. High FA reflects selective diffusion along specific 
directions due to the presence of impermeable or semipermeable 
walls in the white matter (66). Although FA is not a direct marker 
of neuroinflammation, low FA may be indicative of demyelination, 
axonal loss, and blood-brain barrier permeability in neuroinflam-
matory conditions (66, 67).

Alcohol. An analysis of 25,378 participants from the UK Bio-
bank reported a negative correlation between weekly alcohol 
intake and FA in the corpus callosum and fornix (68, 69). Fur-
thermore, case-control studies consistently show lower FA in 
individuals with AUD compared with healthy controls, suggestive 
of aberrations in brain white matter microstructure and neuroin-
flammation with chronic alcohol consumption (Table 3). During 
early abstinence (2–3 weeks) FA was further diminished (70), but 
longer-term abstinence tended to increase FA, especially in the 
right cingulum and hippocampus (71, 72). In contrast, Fortier et 
al. (73) found widespread reductions in FA, including in frontal, 
temporal, parietal, and cerebellar white matter in individuals with 
AUD with an average of 25 years of misuse compared with controls 
following 5 years of alcohol abstinence (Table 4).

Low FA may have neuropsychological consequences that 
impact AUD treatment outcomes. Monnig et al. (74) associated 
lower FA with greater conditioned brain response to alcohol cues 
in the frontoparietal and corticothalamic networks, as measured 
by functional MRI. Lower FA in the corpus callosum and coro-
na radiata has also been associated with greater impulsivity and 
poorer decision-making in individuals with AUD (75, 76). Finally, 
FA measurements have been shown to predict relapse in individ-
uals with AUD: those who relapsed 1 (77) or 6 months (78) after 
treatment had lower baseline FA in the corpus callosum (77), fron-
tal white matter tract (78), and stria terminalis (77) than those who 
successfully abstained from alcohol.

Tobacco. Studies comparing FA between smokers and non-
smokers have shown inconsistent results (Table 5). One study 
reported increased FA in the prefrontal white matter, cingulum, 
and corpus callosum (79), while another found lower FA in the cin-
gulum of smokers compared with nonsmokers (80). Interestingly, 
both studies found a negative association between FA and tobacco 
exposure in these distinct regions (79, 80). One possible explana-
tion that reconciles these inconsistencies is that tobacco smoking 
increases FA in early adulthood, which then declines with contin-
ual smoking in later life (81).

Stimulants. A meta-analysis in individuals with stimulant 
use disorder (i.e., CUD and MUD) showed lower FA compared 
with controls in the corpus callosum, particularly the genu, and 
the frontal white matter, all with small-to-moderate effects (82). 
Studies examining FA in individuals with MUD are listed in Table 
5 and generally reported either lower FA compared with con-
trols or no group differences. Low FA was found to contribute 
to impaired performance on neurocognitive tasks (e.g., perfor-
mance on the Stroop Attention Test or Wisconsin Card Sorting 
Test) in individuals with MUD (83, 84).

A meta-analysis showed lower FA in CUD than control indi-
viduals in the corpus callosum with small-to-moderate effect 
size, and in the anterior thalamic projections and striatum at the 
level of a trend (85). Several studies associated lower FA with 
higher impulsivity (86, 87) and altered reward signaling (88), 
which have been thought to contribute to poorer CUD treatment 
outcomes. In treatment-seeking individuals with CUD, higher 
baseline FA prior to treatment initiation was positively associat-
ed with a longer duration of abstinence (89). He et al. (90) found 
low FA in the frontal cortical tracts (e.g., corpus callosum, supe-
rior longitudinal fasciculus, and inferior frontal-occipital fascic-
ulus) and the frontal white matter in individuals with current but 
not past CUD, suggesting that abstinence may restore FA levels.

Opioids. Multiple studies found lower FA in individuals with 
OUD compared with healthy controls (Table 5), except for Sun 
et al. (91) who reported higher FA. Specifically, a meta-analysis 
of extant literature reported low FA in the frontal subgyral area, 
including the cingulum and superior longitudinal fasciculus in 
individuals with OUD compared with controls (92). Exposure to 
methadone contributed to, but did not fully account for low FA 
(93), as individuals with OUD who were not maintained on med-
ications for treating OUD (methadone and buprenorphine) also 
showed low FA (94). In a comparison of individuals with fewer 
than 10 years or 10–20 years of heroin use, a longer duration of 
opioid exposure was associated with more widespread reductions 
in FA, particularly in the corpus callosum, thalamic radiation, and 
parietal, frontal, and temporal tracts (95). Cessation of opioid use 
partially restored FA measures (96, 97).

Several studies associated lower FA with impaired deci-
sion-making and impulsivity on the Iowa Gambling Task (95, 
98). Furthermore, another study reported a negative relationship 
between FA in the frontostriatal tract and opioid craving in indi-
viduals with OUD (96). The role of FA in these neuropsychological 
domains could have implications for treatment outcomes. In indi-
viduals undergoing methadone treatment, those who relapsed after 
6 months demonstrated lower FA in the internal and external cap-
sules and the corona radiata than those who were abstinent (99).

MRI: linking peripheral inflammatory markers 
and brain function
Chronic inflammation contributes to neurodegeneration in nor-
mal aging and neurodegenerative diseases, including Alzheimer’s 
and Parkinson’s disease (100–102). Peripheral inflammatory 
markers (i.e., white blood cells, high-sensitivity C-reactive protein, 
and fibrinogen) were found to associate with brain signatures of 
aging, including reduced total brain and gray matter volume (103). 
Similarly, several studies, as summarized below, have shown that 
inflammatory markers mediate the neurobiological consequences 
of substance misuse.

Alcohol. Increased intestinal permeability due to alcohol con-
sumption may lead to the leakage of proinflammatory LPS into the 
systemic circulation, triggering an inflammatory cascade. In com-
parison with healthy controls, individuals with AUD showed intes-
tinal hyperpermeability, higher plasma LPS concentrations, and 
higher levels of the proinflammatory cytokines TNF-α and IL-8 
(104), which correlated positively with alcohol craving, suggesting 
a gut-brain interaction in individuals with AUD (104). TLR4 is a 
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matter volume, such that greater alcohol severity was associated 
with lower precuneus and inferior parietal gray volumes in indi-
viduals with low (but not high) methylation (105).

pattern recognition receptor that identifies pathogens and triggers 
inflammatory responses. Methylation of the TLR4 gene moder-
ated the relationship between alcohol use severity and brain gray 

Table 4. MRI studies of fractional anisotropy in alcohol and tobacco

Authors (year) (ref.)  Study population Substance studied Length since last use Change in FA
Pfefferbaum & Sullivan (2002) (176) 27 AUD, 41 controls Alcohol Female: median 677 days (range 49–2,384 days),  

male: median 332 days (range 25–5,110 days)
↓

Pfefferbaum et al. (2006) (177, 178) 57 AUD, 74 controls Alcohol Male: mean 98 ± 118 days, female: mean 76 ± 93 days ↓
De Bellis et al. (2008) (179) 32 AUD, 28 controls Alcohol Mean 63.7 ± 88.2 days ↑
Chanraud et al. (2008) (180) 20 outpatient AUD, 24 controls Alcohol >3 weeks, mean 29 ± 34 weeks ←→
Yeh et al. (2009) (181) 11 outpatient AUD, 10 controls Alcohol Mean 6 ± 3 days ↓
Gazdzinski et al. (2010) (54) 36 outpatient AUD, 22 controls Alcohol Mean 6 ± 3 and 32 ± 9 days ←→
Konrad et al. (2012) (182) 24 inpatient AUD, 23 controls Alcohol 6–20 days after withdrawal pharmacotherapy ↓
Alhassoon et al. (2012) (71) 15 AUD, 15 controls Alcohol 2 weeks and 1 year ↓
Zorlu et al. (2013) (183) 17 inpatient AUD, 16 controls Alcohol > 2 weeks ↓
Bagga et al. (2014) (184) 35 AUD, 30 controls Alcohol Mean 17 ± 4 days ↓
Zorlu et al. (2014) (185) 12 AUD, 13 controls Alcohol >6 months, mean 28 months ←→
Fortier et al. (2014) (73) 31 AUD, 20 controls Alcohol >1 month, mean 5 ± 8 years ↓
Wang et al. (2016) (75) 20 AUD, 20 controls Alcohol Mean 42 ± 11 days ↓
Zou et al. (2017) (72) 20 short abstinent AUD,  

52 long abstinent AUD, 20 controls
Alcohol Short abstinent: 1 week, long abstinent: 1 month ↓

Chumin et al. (2018) (186) 38 NTS AUD, 19 controls Alcohol Current use ↓
Sawyer et al. (2018) (187) 49 AUD, 41 controls Alcohol Women: mean 9 ± 10 years, men: mean 5 ± 8 years ↓(males) ↑(females)
Pandey et al. (2018) (188) 30 AUD, 30 controls Alcohol >5 days, mean 673 ± 845 days ↓AWM regions

↑ Thalamus
De Santis et al. (2019) (70) 91 inpatient AUD, 36 controls Alcohol 1 week ↓
Crespi et al. (2020) (76) 22 inpatient AUD, 18 controls Alcohol >10 days of detoxification, ceasing benzodiazepine  

for at least 8 days
↓

Wiers et al. (2020) (189) 15 AUD, 14 controls Alcohol Mean 3.5 days (range 1–7 days) ↓ Thalamus
←→ ACC

Bracht et al. (2021) (190) 39 inpatient AUD, 18 controls Alcohol >4 weeks, mean 30 ± 15 days ↓
Lee et al. (2021) (191) 23 inpatient AUD, 22 controls Alcohol 13 ± 17 months ↓
Kisner et al. (2021) (192) 100 inpatient AUD, 98 controls Alcohol 6–44 days ↓
Yoder et al. (2023) (193) 13 NTS AUD, 30 controls Alcohol Not specified ↓
Wu et al. (2023) (194) 51 AUD, 27 controls Alcohol 2–4 weeks ↓
Paul et al. (2008) (195) 10 smokers, 10 nonsmokers Tobacco Current smoker ↑
Zhang et al. (2011) (196) 48 smokers, 48 nonsmokers Tobacco Current smoker, abstain for >2 hours before the scan ←→ (Whole brain)

↓ (PFC)
Liao et al. (2011) (197) 44 smokers, 44 nonsmokers Tobacco Current smoker, abstain for >12 hours before the scan ↑
Hudkins et al. (2012) (79) 18 smokers, 18 nonsmokers Tobacco Current smoker ↑
Lin et al. (2013) (198) 34 smokers, 34 nonsmokers Tobacco Current smoker ↓
Umene-Nakano et al. (2014) (199) 19 smokers, 18 nonsmokers Tobacco Current smoker ↓
Savjani et al. (2014) (200) 30 smokers, 32 nonsmokers Tobacco Current smoker, abstain for > 24 hours before the scan ↓
Yu et al. (2016) (201) 23 smokers, 22 nonsmokers Tobacco Current smoker ↑
Baeza-Loya et al. (2016) (80) 31 smokers, 39 nonsmokers Tobacco Current smoker, abstain for >12 hours before the scan ↓
Li et al. (2017) (202) 31 smokers, 30 nonsmokers Tobacco Current smoker, smoked <1 hours before the scan ↑
Wang et al. (2017) (203) 19 smokers, 23 nonsmokers Tobacco Current smoker, abstain for >2 hours before the scan ↑
Bi et al. (2017) (204) 35 smokers, 26 nonsmokers Tobacco Current smoker, smoked ~1 hours before the scan ↑
Yuan et al. (2018) (205) 36 smokers, 35 nonsmokers Tobacco Current smoker, smoked ~1 hours before the scan ↓ 
Bagga et al. (2018) (206) 28 smokers, 28 nonsmokers Tobacco Current smoker, smoked >0.5 hours before the scan ↑
Kangiser et al. (2020) (207) 18 smokers, 35 nonsmokers Tobacco Current smoker ↓
Hunag et al. (2020) (208) 156 smokers, 81 nonsmokers Tobacco Current smoker ↓
Wang et al. (2020) (209) 58 smokers, 34 controls Tobacco Current smoker ↓↑A

Zhou et al. (2022) (210) 37 smokers, 29 controls Tobacco Current smoker ↓↑A

Arrows in the group differences column indicate whether there was higher FA in the SUD population than in controls (↑), lower FA in the SUD population 
than in controls (↓), or no difference between groups (←→). AVoxel-wise analyses showed ↓↑ in different brain regions. AUD, alcohol use disorder; NTS, 
nontreatment seeking.
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Opioids. In individuals with OUD, 12 weeks of methadone 
treatment significantly decreased plasma cytokine levels and 
improved behavioral performance on a memory task (107). 
These changes in inflammatory markers and memory capacity 
were strongly correlated: the concentration of TNF-α correlat-

Stimulants. Higher levels of IL-6 but not IL-1β or IL-10 were 
found in individuals with MUD compared with healthy controls 
(106), which, in individuals with MUD, was associated with dis-
ruptions in striatal-limbic and cortico-striatal resting-state func-
tional connectivity (106).

Table 5. MRI studies of fractional anisotropy in other SUDs

Authors (year) (ref.) Study population Substance studied Length since last use Change in FA
Lim et al. (2002) (211) 12 CUD, 13 controls Cocaine Current user ↓
Moeller et al. (2004) (87) 18 CUD, 18 controls Cocaine Current user ↓
Lim et al. (2008) (212) 18 CUD, 18 controls Cocaine > 4 days ↓
Ma et al. (2010) (213) 19 CUD, 18 controls Cocaine Current user ↓↑A

Romero et al. (2010) (86) 32 outpatient CUD, 33 controls Cocaine >72 hours ↓↑A

Lane et al. (2010) (214) 15 CUD, 18 controls Cocaine Not specified ↓
Bell et al. (2011) (215) 43 abstinent inpatient or outpatient CUD, 

43 controls
Cocaine Short-term abstinent: 0.7–5.1 weeks, midterm abstinent: 

10–40.3 weeks, long-term abstinent: 44–102 weeks
↓↑A

Ma et al. (2015) (98) 12 CUD, 12 controls Cocaine Not specified ↓
Vaquero et al. (2017) (88) 30 detoxified inpatient CUD, 30 controls Cocaine Not specified ↓↑A

Ma et al. (2017) (216) 11 treatment seeking CUD, 11 control Cocaine Baseline and 10 weeks of a treatment study ←→
He et al. (2020) (90) 12 current CUD, 20 abstinent CUD, 7 controls Cocaine Abstinent: 1–5 years, 6–10 years, or 11+ years ↓ (Current CUD only)
Tondo et al. (2021) (217) 75 inpatient CUD, 58 controls Cocaine Not specified ↓
Meade et al. (2021) (218) 35 CUD, 37 controls Cocaine Current user ↓
Ottino-González et al. (2022) (219) 154 CUD, 333 controls Cocaine <1 year ↓
Gaudreault et al. (2023) (220) 28 current CUD, 32 abstinent CUD,  

58 controls
Cocaine Abstinent: mean 18 months ↓

Hodges et al. (2023) (221) 25 CUD, 21 controls Cocaine Current user ↓
Chung et al. (2007) (222) 32 MUD, 30 controls Methamphetamine > 4 weeks, mean 24 ± 38 months ↓
Salo et al. (2009) (84) 37 MUD, 17 controls Methamphetamine >3 weeks, mean 21 ± 32 months (range 3 weeks to 10 years) ←→
Kim et al. (2009) (83) 11 MUD, 13 controls Methamphetamine Mean 18 ± 7 ↓
Alicata et al. (2009) (223) 30 MUD, 30 controls Methamphetamine Mean 140 ± 400 days (range 0–1,798 days) ↓
Tobias et al. (2010) (224) 23 MUD, 18 controls Methamphetamine 7–13 days ↓
Daumann et al. (2011) (225) 20 experienced users,  

42 low-exposure users, 16 controls
Methamphetamine Experienced: mean 142 ± 484 days, low-exposure: mean 393 ± 

808 days
←→

Lederer et al. (2015) (226)  
and Uhlmann et al. (2016) (227)

40 MUD, 40 controls Methamphetamine Median 21 (range 1–240 days) ←→

Andres et al. (2016) (228) 32 past users, 27 current users, 35 controls Methamphetamine Past: >30 days, current: <30 days ↑ (Past users)
Li et al. (2017) (229, 230) 28 MUD, 28 controls Methamphetamine Not specified ↓
Ottino-González et al. (2022) (219) 132 MUD, 333 controls Methamphetamine Not specified ↓
Zhou et al. (2023) (231) 69 MUD, 47 controls Methamphetamine Mean 62 ± 40 days ←→
Liu et al. (2009) (232) 16 OUD, 16 controls Opioids Received methadone maintenance treatment for mean 4 ± 1 day ↓
Bora et al. (2010) (233) 24 OUD, 29 controls Opioids Weekly opioid use in the previous 3 months ↓
Wang et al. (2011) (93) 13 methadone-treated OUD,  

11 abstinent OUD, 15 controls
Opioids Methadone: received treatment for at least 3–9 months,  

mean 5 ± 1 month; abstinent: 5–8 months, mean 7 ± 1 month
↓ (Methadone-treated 

only)
Wang et al. (2011) (234) 20 OUD, 20 controls Opioids 3 days and 1 month ↓B

Shen et al. (2012) (97) 18 short-term abstinent OUD, 17 long-term 
abstinent OUD, 17 controls

Opioids Short-term: mean 1 ± 0.3 months;  
long-term: mean: 14 ± 2 months

↓

Qiu et al. (2013) (95) 18 short-term OUD, 18 long-term OUD,  
16 controls

Opioids Not specified ↓

Li et al. (2013) (94) 17 OUD, 15 controls Opioids Mean 8 ± 2 days ↓
Ma et al. (2015) (235) 14 OUD, 14 controls Opioids Not specified ↓
Sun et al. (2015) (91) 76 OUD, 78 controls Opioids 1 month to 1 year ↑
Lu et al. (2022) (96) 53 OUD, 39 controls Opioids Mean 60 ± 69 and 306 ± 99 days ↓
Gaudreault et al. (2023) (220) 30 OUD, 58 controls Opioids Mean 199 ± 265 days ↓
Lu et al. (2023) (236) 42 OUD, 39 controls Opioids Mean 53 ± 67 and 308 ± 119 days ↓B

Arrows in the group differences column indicate whether there was higher FA in the SUD population than in controls (↑), lower FA in the SUD population 
than in controls (↓), or no difference between groups (←→). AVoxel-wise analyses showed ↓↑ in different brain regions. BOnly in early withdrawal/abstinence. 
CUD, cocaine use disorder; MUD, methamphetamine use disorder; OUD, opioid use disorder.
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hol craving and consumption in preclinical and clinical studies 
(116–118). Preclinical studies also found that ibudilast treat-
ment attenuated cocaine and methamphetamine self-admin-
istration in rodents (119, 120). Among non-treatment-seeking 
individuals with OUD, ibudilast attenuated subjective liking 
for oxycodone and reduced oxycodone self-administration 
(121). However, in treatment-seeking individuals with MUD, 
the effects on methamphetamine abstinence did not differ 
between those of ibudilast and placebo (122). Further elucida-
tion of the clinical and neurobiological implications of treat-
ing SUD with ibudilast is warranted. Findings that apremilast 
decreases excessive drinking in individuals with AUD require 
replication (117). It should be noted that, in addition to modu-
lating inflammatory pathways, PDE/cAMP signaling also regu-
lates dopamine transmission (123), which may have contribut-
ed to ibudilast or apremilast’s effects on SUD. In a preclinical 
study, administration of PDE4 inhibitor rolipram mitigated 
cocaine-induced disruption in the balance between dopami-
nergic excitation/inhibition in the VTA and attenuated behav-
ioral responses to cocaine (124). Therefore, future studies are 
warranted to better delineate the mechanisms underlying 
the actions of PDE inhibitors in SUD. The radioligand 18F-PF-
06445974 was recently developed to quantify PDE isozyme 4B 
(PDE4B) (125), and it may be ideal for evaluating the effects 
of apremilast and ibudilast in individuals with SUD. Further-
more, N-acetyl cysteine (NAC), an antioxidant that has antiin-
flammatory properties and modulates glutaminergic signaling, 
is also being studied for the treatment of SUD (126). Preclinical 
studies have shown NAC to be effective in reducing drug-seek-
ing behaviors (127), but clinical findings have been inconclu-
sive. In a clinical trial conducted in individuals with AUD, NAC 
did not significantly differ from placebo in reducing alcohol 
consumption (128), whereas in a larger sample of individuals 
with cannabis use disorder, NAC administration was associat-
ed with increased odds of weekly alcohol abstinence and fewer 
drinking days in comparison to placebo (129). Future PET and 
MRI clinical treatment trials in individuals with SUDs that cap-
ture both the clinical and neuroimaging effects of antiinflam-
matory drug treatments are warranted.
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ed negatively with visual memory capacity, and concentration 
of IL-6 correlated negatively with verbal memory and decayed 
recall indices (107). A follow-up study also associated higher 
IL-6 levels during methadone treatment with poorer medica-
tion compliance and drop-out (108), reflecting adverse effects 
of neuroinflammation on real-life behaviors. In concert, find-
ings from these studies highlight the role of inflammation in 
neural functioning and its potential implications for OUD treat-
ment outcomes.

Discussion and future directions
Here, we reviewed the human literature on PET and MRI mark-
ers of neuroinflammation in SUDs. PET studies with tracers 
that bind to TSPO, a marker of microglial activation, demon-
strated consistent upregulation in response to neuroimmune 
challenges (109) and to acute alcohol administration (26). 
However, differential effects have been reported in SUDs. 
Chronic alcohol exposure in individuals with AUD is consis-
tently associated with lower TSPO than in nondependent con-
trols (meta-analyzed in ref. 18), suggesting temporal dynamics 
of acute inflammatory insults versus downregulation of TSPO 
in response to chronic alcohol exposure. Tobacco smoking was 
also associated with low brain TSPO levels in two of three stud-
ies, whereas cocaine, methamphetamine, and cannabis users 
were found either to have higher brain TSPO levels than con-
trols or to show no significant differences. Current PET studies 
in SUD are limited by TSPO nondisplaceable binding and com-
petition from metabolites involved in essential mitochondrial 
functions (e.g., cholesterol transport). Future research with 
longitudinal designs or new promising PET radiotracers could 
elucidate the effects of SUD on neuroimmune signaling. For 
example, newer PET tracers that target COX-1 and COX-2 or 
inducible nitric oxide synthase (iNOS) were found to be sen-
sitive to neuroinflammation in individuals with Alzheimer’s 
disease (110), Parkinson’s disease (111), and lung inflammation 
in electronic cigarette users (112). These tracers may be prom-
ising for detecting neuroinflammation in SUDs. Furthermore, 
MRI research on inflammation consistently showed increased 
levels of mI in brain, measured using 1H-MRS (e.g., meta-an-
alyzed in 39), and lower FA in drug users compared with con-
trols. However, these MRI measures do not directly assess neu-
roinflammation markers but rather downstream consequences 
(e.g., neuronal dysfunction, membrane turnover, and white 
matter microstructure). Future studies that combine PET and 
MRI modalities and associate them with peripheral markers of 
inflammation will help to clarify the role of neuroinflammation 
in modulating drug reward and the neuroadaptations resulting 
from acute drug administration, chronic drug exposure, and 
treatment for SUDs.

Several antiinflammatory medications have shown prom-
ise as treatment options for SUD. These include medications 
that target phosphodiesterases (PDEs), which comprise a large 
family of enzymes that regulate intracellular levels of second-
ary messengers, cAMPs, which are subsequently involved in 
the initiation and progression of inflammatory pathways. Inhi-
bition of PDEs with the medications apremilast and ibudilast 
decreased markers of inflammation (113–115) as well as alco-
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