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Background
Substance use disorders (SUDs) are heritable psychiatric condi-
tions characterized by an impaired ability to control substance use 
despite detrimental consequences, including physiological depen-
dence and tolerance (1). Both environmental and genetic factors 
influence the development of SUDs. Twin and family studies have 
estimated the heritability (h2) of SUDs to be around 50%, meaning 
that around half of variation in SUD risk is due to genetic factors 
(2), with the remaining variability due to environmental factors. 
Genome-wide association studies (GWAS) are a hypothesis-free 
method aimed at identifying the genetic variants (e.g., single 
nucleotide polymorphisms [SNPs]) that account for the variabil-
ity in risk among populations. Over the past two decades, many 
GWAS of SUDs have been conducted, successfully identifying 
multiple genetic variants associated with a variety of substance 
use traits (Tables 1, 2, 3, and 4). These studies have established 
that SUDs are complex, polygenic traits, with genetic risk attrib-
utable to potentially thousands of genetic variants (3). SNP heri-
tability (h2

SNP), a measure of the proportion of phenotypic variance 
explained by the common genetic variants measured in GWAS (4), 
ranges from 1% to 28% for substance use traits, falling short of the 
estimates produced by twin and family studies (Tables 1–4). This 

is likely due to some of the current GWAS being underpowered, 
meaning that not all genetic variants with effects are detected 
accurately, and due to the contribution of other genetic variants 
that are not measured in a GWAS (e.g., rare variants or copy num-
ber variants). Even if all associated variants are known, for poly-
genic phenotypes such as SUDs the proportion of phenotypic vari-
ance explained by any single variant is very small, meaning that 
individual variants are ineffective as biomarkers or predictors of 
disease. Therefore, methods to aggregate the effects of common 
genetic variants into a single measure that denotes genetic risk for 
a disease/trait have been developed.

Polygenic scores (PGSs; also known as genetic scores or poly-
genic risk scores) summarize an individual’s genetic liability for 
a trait by aggregating the effect sizes of many genetic variants 
into a single score (5). PGSs are receiving increasing attention 
as potential biomarkers in a variety of contexts (6). Recently, 
the FDA approved a genetic risk algorithm comprising 15 candi-
date genetic variants to predict opioid use disorder (OUD) risk, 
prompting debate on whether this and other genetic scores (e.g., 
PGSs) for SUDs are ready for clinical use (7). Such debate stems 
from the competing potential benefits and pitfalls of using PGSs 
in the prevention and treatment of SUDs and point to a need to 
establish guidelines on when PGSs for SUDs should be used in 
clinical care. For example, PGSs generated from currently avail-
able GWAS typically explain only a small proportion of trait vari-
ation (usually 2%–10%), which may not translate to clinically sig-
nificant effects. Furthermore, heritability estimates impose an 
upper boundary on the ability of genetic risk factors to account 
for variation in SUDs, presenting a challenge for translating 
genetic research into clinical practice. However, PGSs capture a 
larger proportion of genetic liability than single or small groups 
of variants alone and have been used successfully for medical 
conditions to identify individuals with disease risk equivalent 
to monogenic mutations (i.e., those of large effect; ref. 8), pre-
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due to the nonindependence of variants that are close to one anoth-
er, PGS methods commonly involve either performing clumping 
to create a set of independent variants or modeling the correlated 
structure and using this information to adjust the weight of vari-
ants. Third, the PGS is calculated in an independent target sample 
as the sum of the number of variants an individual has, weight-
ed by their effect size, to create a single score for each individual 
that reflects their genetic liability for that trait. The strength of the 
association of the PGS with traits can then be evaluated.

Factors that influence PGS accuracy and utility
Several factors influence the strength of the association of a PGS 
with a trait. These include the heritability of the trait, the sample 

dict mortality (9), identify cases with earlier disease onset (10), 
and provide evidence for cross-trait associations that underlie 
clinical comorbidities (11). In this Review, we detail current PGS 
research for substance use traits and explore their potential to 
enhance the clinical care of individuals with SUDs as well as the 
challenges and controversies surrounding their use. Finally, we 
provide suggestions for when, where, and how PGSs should be 
used in the treatment and prevention of SUDs.

Calculating PGS
A variety of methods, which differ in their complexity and assump-
tions, are used to calculate PGSs (12, 13). First, variant effect sizes 
are estimated in a discovery sample via GWAS of the trait. Second, 

Table 1. Large GWAS of alcohol-related traits

Phenotype Trait Sex (female) Ancestry Participants Significant lociA h2
SNP Ref.

Alcohol use Alcohol consumption 51.4% EAS 175,672 9 4.4%–7.7% Koyanagi et al., 2024 (70)

AUDIT-C 8.5% META 409,630 19 – Kember et al., 2023 (69)

7.1% EA 296,989 14 5.4%–6.6%

13.2% AA 80,764 2 8.1%–12.2%

8.9% HA 31,877 1 –

Maximum alcohol intake 7.3% META 247,755 15 – Deak et al., 2022 (71)

– EUR MTAG 353,981 31 –

6.6% EUR 218,623 10 6.7%

12.6% AA 29,132 2 3.4%

Drinks per week – META 2,965,643 496 – Saunders et al., 2022 (19)

– EUR 2,428,851 410 4.0%

– AMR 274,707 5 3.2%

– EAS 160,775 5 6.1%

– AFR 95,343 1 4.9%

AUDIT-C 8.4% META 272,842 13 – Kranzler et al., 2019 (80)

7.2% EA 200,680 13 6.8%

12.8% AA 56,495 2 6.2%

8.3% LA 14,112 1 –

– EAA 1,366 1 –

– SAA 189 0 –

Alcohol abuse/ 
dependence

Problematic alcohol use 29.4% META 1,079,947 90 – Zhou et al., 2023 (20)

32.1% EUR 903,147 75 6.6%–12.7%

16.0% AFR 122,571 2 12.0%–16.2%

9.6% LA 38,962 1 9.1%–12.4%

22.4% EAS 13,551 2 –

35.1% SAS 1,716 1 –

Alcohol use disorder 8.5% META 409,630 21 – Kember et al., 2023 (69)

7.1% EA 296,989 14 5.2%–6.1%

13.2% AA 80,764 3 8.1%–9.9%

8.9% HA 31,877 1 –

Alcohol use disorder 8.4% META 274,391 10 – Kranzler et al., 2019 (80)

ASignificant loci were genome-wide significant, meaning that they were associated with the trait at a P value threshold < 5 × 10–8. AUDIT-C, Alcohol Use 
Disorders Identification Test – Consumption items; AA, African American; AFR, African; AMR, Admixed American; EA, European American; EAA, East 
Asian American; EAS, East Asian; EUR, European; HA, Hispanic American; LA, Latin American; SAA, South Asian American; SAS, South Asian; META, 
Cross-ancestry meta analysis; MTAG, Multitrait analysis of GWAS. “–” indicates that information was not calculated or provided in a manuscript.
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(e.g., alcohol, tobacco, and, to a lesser extent, cannabis), recruiting 
users of illicit substances has been more challenging, resulting in 
underpowered GWAS for these substances. Power is also impacted 
by the prevalence of the trait in the general population, the discov-
ery cohort, and the target cohort. Another important consideration 
is the ancestry and sex of the participants of the discovery GWAS 
and the target cohort. The lack of diversity among GWAS partici-
pants remains a major obstacle to the clinical utility of PGS (Figure 
1). Variations in genetic architecture and disease prevalence across 

size, sex, and genetically inferred ancestral composition of the dis-
covery and target cohorts, the accuracy and depth of phenotyping 
of the discovery GWAS, and the prevalence of the trait (13).

The genetic architecture of SUDs affects how well GWAS are 
able to assess them and therefore how well PGSs perform. SUDs are 
extremely polygenic in nature, which necessitates very large GWAS 
sample sizes (upward of ~1 million participants) to acquire enough 
statistical power to identify SNPs reaching genome-wide signif-
icance. While this has been feasible for substances that are legal 

Table 2. Large GWAS of cannabis- and tobacco-related traits

Phenotype Trait Sex (female) Ancestry Participants Significant lociA h2
SNP Ref.

Cannabis use Lifetime cannabis use 55.9% EUR 184,765 6 11.0% Pasman et al., 2018 (73)

Cannabis abuse/
dependence

Cannabis use disorder – META 1,054,365 5 – Levey et al., 2023 (79)

– EUR 886,025 22 6.7%

– EUR MTAG 200,762 26 –

– AFR 123,208 2 8.1%

– AMR 38,289 1 18%

– EAS  6,843 2 –

Cannabis use disorder – META 384,925 2 – Johnson et al., 2020 (72)

– EUR 374,287 2 6.7%–12.1%

– AFR 9,745 0 –

Tobacco/ 
nicotine use

Smoking initiation – META 3,382,012 1,346 – Saunders et al., 2022 (19)

– EUR 2,669,029 1,277 8.0%

– EAS 296,395 7 5.2%

– AMR 286,026 23 8.1%

– AFR 119,589 0 10.0%

Age of smoking initiation – META 728,455 33 –

– EUR 618,541 26 4.7%

– EAS 63,353 0 2.9%

– AMR 33,914 0 4.4%

– AFR 17,508 0 0.6%

Cigarettes per day – META 783,784 140 –

– EUR 618,489 108 8.0%

– EAS 108,275 4 5.3%

– AMR 35,129 1 5.6%

– AFR 20,157 0 6.9%

Smoking cessation – META 1,400,535 128 –

– EUR 1,147,272 97 4.1%

– EAS 160,775 3 2.2%

– AMR 90,525 0 4.8%

– AFR 34,970 0 6.4%

Tobacco/
nicotine abuse/
dependence

Tobacco use disorder 17.0% META 653,790 88 – Toikumo et al., 2024 (22)

17.0% EUR 739,895 63 9.3%–11.7%

19.6% AA 114,420 2 11.1%

9.2% LA 44,365 0 8.1%

Nicotine dependence 51.9% META 58,000 5 – Quach et al., 2020 (81)

ASignificant loci were genome-wide significant, meaning that they were associated with the trait at a P value threshold < 5 × 10–8. AA, African American; 
AFR, African; AMR, Admixed American; EAS, East Asian; EUR, European; LA, Latin American; SAS, South Asian; META, Cross-ancestry meta analysis; 
MTAG, Multitrait analysis of GWAS. “–” indicates that information was not calculated or provided in a manuscript.
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health domains and provide a more realistic scenario for evaluating 
precision medicine approaches than highly controlled settings. It is 
therefore essential that investigators carefully consider their case/con-
trol definitions and the strengths and weaknesses of their approach. 
Because the specificity and power of PGSs depend in part on the phe-
notype selected (17, 18), it is recommended that one consider how the 
GWAS phenotype matches the target cohort when generating PGSs.

Current PGS studies
Despite challenges, PGSs show promise as research tools for sub-
stance use traits. Many of the published GWAS listed in Tables 1–4 
have been used to calculate PGSs to demonstrate replicability in 
an independent dataset, accounting for relatively modest propor-
tions of variance. Drinks per week PGS explained 1.2% of the vari-
ance in individuals with European ancestry (EUR), translating to 
a potentially clinically relevant difference of around 3 drinks per 
week between the bottom and top PGS deciles (19). Alcohol use 
disorder (AUD) PGS explained 3.3% of the variance in scores on 
the problem scale of the Alcohol Use Disorders Identification Test 
(20). Similarly, OUD PGS explained 2.4%–3.8% of the variance 
in OUD diagnosis (21). The variance explained by tobacco-relat-
ed PGS has been larger than that of alcohol and opioid PGS. For 

different ancestral backgrounds all limit the portability of PGSs 
across populations (14, 15), although the development of transan-
cestry PGS methods has led to improvements in this area (16). 
Although the past few years have seen substantial increases in the 
size and ancestral diversity of samples in SUD GWAS (Tables 1–4), 
this is an area that still requires much improvement. Furthermore, 
the majority of these studies comprise male individuals, leading to 
a limited ability to detect sex-specific effects.

One must also consider the ways in which SUDs are defined 
across cohorts. Recent SUD GWAS efforts have been facilitated by 
consortia comprising smaller studies performing meta-analyses, such 
as the Psychiatric Genomics Consortium, and by the use of large elec-
tronic health record–based cohorts, such as the United Kingdom Bio-
bank, All of Us, and the Million Veteran Program. Although electronic 
health record databases have drastically increased the sample sizes 
and diversity of SUD GWAS, this comes with benefits and trade-offs 
in the phenotypic information collected, which is generally extracted 
via International Classification of Diseases billing codes. Electronic 
health records can be incomplete, contain information from different 
types of patient interactions/contexts, and may include assessments 
by clinicians without psychiatric training. However, they also provide 
benefits for phenotyping, as they gather information across many 

Table 3. Large GWAS of opioid-related traits

Phenotype Trait Sex (female) Ancestry Participants Significant lociA h2 SNP Ref.
Opioid use Opioid use – META 41,176 1 – Polimanti et al., 2020 (74)

– EUR 31,585 1 28%

– AFR 9,591 1 –

Opioid abuse/
dependence

Opioid use disorder 9.4% META 425,944 11 – Kember et al., 2022 (24)

8.0% EA 302,585 1 12.0%–15.0%

13.8% AA 88,498 1 11.0%–20.0%

9.7% HA 34,861 1 –

Opioid use disorder – META 639,063 1 – Deak et al., 2022 (21)

– EUR 554,186 2 12.8%

– EUR MTAG 128,748 18 –

– AFR 84,877 0 –

Opioid dependence 89.3% META 503,783 0 – Gaddis et al., 2022 (82)

89.9% EUR 487,724 1 11%–18%

70.1% AA 160,59 0 –

Problematic prescription opioid use 64.8% EUR 132,113 2 4% Sanchez-Roige et al., 2021 (83)

Time to opioid dependence 36.1% META 8,831 0 – Sherva et al., 2021 (84)

37.0% EUR 6,052 0 –

34.2% AA 2,779 2 –

Opioid dependence – META 41,176 1 – Polimanti et al., 2020 (74)

– EUR 31,585 1 28%

– AFR 9,591 1 –

Opioid dependence × sex 43.6% META 8,387 0 – Yang et al., 2019 (85)

45.2% AA 4,944 1 –

41.2% EA 3,443 0 –
ASignificant loci were genome-wide significant, meaning that they were associated with the trait at a P value threshold < 5 × 10–8. AA, African American; 
AFR, African; EA, European American; EUR, European; HA, Hispanic American; META, Cross-ancestry meta analysis; MTAG, Multitrait analysis of GWAS. 
“–” indicates that information was not calculated or provided in a manuscript. “Opioid × sex” refers to gene-by-sex interaction.
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PGSs have also been used to explore additional phenotypes 
associated with genetic liability for the trait or disorder. For 
instance, PGSs for a substance-related trait (e.g., an exposure 
measure such as smoking initiation) can also be associated with 
the disorder (e.g., tobacco dependence) (23). Alternately, PGSs 
for SUDs have cross-trait associations with common comorbidi-
ties, including SUDs other than the primary trait (e.g., association 

example, tobacco use disorder (TUD) PGS explained 7.3% of vari-
ance in TUD in EUR individuals (22), and smoking initiation PGS 
was significantly associated with smoking initiation in all ances-
tral groups, with variance explained ranging from 1% to 9.6% (19). 
In EUR individuals, 25% of smokers were in the lowest PGS decile 
compared with 75% in the highest decile, providing meaningful 
clinical information for those at the ends of the PGS distribution.

Table 4. Large multivariate GWAS of substance-related traits

Phenotype Traits Sex (female) Ancestry Participants Significant lociA h2
SNP Ref.

Multisubstance Cannabis/alcohol use disorder,  
lifetime cannabis use, drinks per week, 

lifetime smoking initiation,  
smoking trajectory, nicotine dependence

– EUR MTAG 34,746 292 – Xu et al., 2023 (86)

– AFR MTAG 15,183 6 –

Addiction factor – META 1,118,180 19 – Hatoum et al., 2023 (87)

– EUR 1,025,550 17 –

– AFR 92,630 1 –

Externalizing factor – EUR 1,492,085 579 5.3%–23.5% Karlsson Linnér et al., 2021 (88)

Alcohol use disorder, opioid dependence, 
methamphetamine dependence

17.9% EAS 10,013 3 16.9%–22.1% Sun et al., 2019 (89)

ASignificant loci were genome-wide significant, meaning that they were associated with the trait at a P value threshold < 5 × 10–8. AFR, African; EAS, East 
Asian; EUR, European; META, Cross-ancestry meta analysis; MTAG, Multitrait analysis of GWAS. “–” indicates that information was not calculated or 
provided in a manuscript.

Figure 1. Sample size and ancestry composition of the largest and/or most diverse GWAS of substance use/abuse phenotypes to date. From left to right, 
bars represent Kember et al., 2023 (69); Zhou et al., 2023 (20); Saunders et al., 2022 (19); Koyanagi et al., 2024 (70); Kember et al., 2023 (69); Deak et al., 2022 
(71); Johnson et al., 2020 (72); Pasman et al., 2018 (73); Kember et al., 2022 (24); Polimanti et al., 2020 (74); Toikumo et al., 2024 (22); Saunders et al., 2022 
(19); Saunders et al., 2022 (19); Saunders et al., 2022 (19); and Saunders et al., 2022 (19). AUD, alcohol use disorder; AUDIT-C, Alcohol Use Disorders Identifi-
cation Test–Consumption; CUD, cannabis use disorder; OUD, opioid use disorder; TUD, tobacco use disorder. EUR, European; EA, European American; AFR, 
African; AA, African American; AMR, admixed American; LA, Latin American; HA, Hispanic American; EAS, East Asian; SAS, South Asian.
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between a problematic alcohol use [PAU] PGS and TUD, ref. 20). 
Similarly, a TUD PGS was associated with alcohol-related disor-
ders (22), an OUD PGS was associated with TUD (24), and var-
ious SUD PGSs have been associated with psychiatric disorders 
(11, 20–22). SUD PGSs also show associations with somatic traits, 
implying a shared genetic liability between SUDs and medical 
disorders. These findings can help elucidate the genetic underpin-
nings of common SUD comorbidities.

Clinical utility of PGS
Disorder development and progression. PGSs are rapidly being inte-
grated into clinical practice in cardiology, oncology, and other 
medical diseases because of their potential to enhance precision 
medicine (25). PGSs show promise for evaluating the risk of dis-
ease incidence and progression in several medical conditions, 
including breast cancer (26), rheumatoid arthritis (27), prostate 
cancer (28), and coronary disease (29).

PGSs for substance use traits have been evaluated as pre-
dictors of the development or clinical progression of both sub-
stance use and SUDs in clinically ascertained populations to 
identify high-risk individuals who might benefit from targeted 
prevention and intervention efforts. For instance, PGSs for mul-
tiple SUDs have shown associations with DSM diagnoses and 
diagnostic criteria in a sample ascertained for SUDs (23). This 
sample was also used to explore the association of AUD, OUD, 
and smoking trajectory PGSs with substance use milestones 
(i.e., age of onset of use, regular use, problems, and depen-
dence diagnosis) and with progression from regular use to first 
problems and dependence diagnosis (30). Among EUR indi-
viduals, higher AUD, OUD, and smoking trajectory PGSs were 
associated with earlier onset of their respective substance use 
milestones but explained only between 0.3% and 2.7% of the 
variance in outcomes. Among individuals with African ancestry 
(AFR), the AUD PGS was associated only with the age of onset of 
regular alcohol use, dependence, and progression from regular 
use to dependence, and the smoking trajectory PGS predicted 
only earlier age of initiation. In a different sample, a PGS for age 
of onset of alcohol dependence explained a statistically signif-
icant but modest proportion of the variance (0.03%–0.16%) in 
alcohol-related measures, including age of onset of intoxication, 
maximum drinks consumed, and symptom counts (31). Notably, 
many of these studies have shown modest associations, some of 
which are not clinically significant.

Despite the small amount of variation explained, PGSs may 
have clinical utility for individuals at high and low ends of the 
PGS spectrum. Many current PGS studies for SUDs have report-
ed variance explained only. However, assessing individuals at the 
extremes of PGSs may provide more information and be a better 
predictor of risk (32). A PGS for alcohol dependence was associat-
ed with a more rapid progression from regular drinking to depen-
dence, an effect that was independent of the age at onset of regular 
drinking (33). Although only 18.6% of cases had PGS that were at 
least 1 standard deviation above the sample mean, this may be in 
part due to ceiling effects, as the sample was enriched for alcohol 
dependence (34), suggesting that many of these individuals have 
greater genetic risk than the general population even if their risk is 
average within this ascertainment sample.

Given that much of the work evaluating the association between 
PGSs and substance-related milestones has involved samples 
enriched for these disorders, it is important to evaluate the extent to 
which the type of cohort and the match between the discovery and 
target cohorts influences findings. To test this, Savage et al. (2018) 
used PGS to compare genetic risk prediction of a DSM-IV alcohol 
dependence criterion count between two population samples and 
two clinically ascertained samples (35). Within the population sam-
ples, PGS generated from one sample were significantly associated 
with criterion count in the second sample. When the analysis was 
performed across the sample types (population as discovery and 
clinical as target, and vice versa), there were no significant asso-
ciations between the PGS and alcohol problems. Thus, similarity 
between the discovery and target samples may increase power.

Meta-analyzing across samples of varying compositions 
may help resolve these issues. Using summary statistics from a 
GWAS meta-analysis of ascertainment and population-based 
cohorts (36), Bray and colleagues (37) calculated PGSs in a pop-
ulation-based cohort and a cohort selected to reflect high levels 
of nicotine dependence. Among the EUR participants in the pop-
ulation-based sample, the PGSs for having ever smoked, early age 
of initiation, heavier smoking, and cessation were all significantly 
associated with those traits. Furthermore, in each case the PGS 
increased the variance accounted for by demographic variables. 
Similar findings were obtained in the cohort of individuals who 
smoke, wherein the PGS was significantly associated with nicotine 
dependence, early age of smoking initiation, heavier smoking, and 
smoking cessation and also augmented the variance accounted for 
by demographic measures.

In studies of the general population, greater variation in genet-
ic liability can be leveraged to distinguish levels of genetic risk 
even when the PGS itself has lower power. For example, in a rep-
resentative birth cohort in New Zealand, a PGS comprising just 6 
genome-wide significant SNPs from a GWAS of smoking quantity 
(38–40) was examined as a predictor of smoking phenotypes (41). 
Despite the small number of SNPs and the small discovery data-
set, higher PGSs were significantly associated with onset of dai-
ly smoking, progression to heavy smoking, persistence of heavy 
smoking, onset of nicotine dependence, and a failed attempt at 
smoking cessation. The PGS also predicted smoking risk above 
and beyond a family history of smoking.

An additional avenue for increasing study power is by focus-
ing on endophenotypes — heritable traits that can clarify the 
relationship between genetic variations and complex disorders 
like SUDs. One endophenotype for SUDs is drug metabolism, 
which is significantly influenced by variation in genes that encode 
drug-metabolizing enzymes (2) and serves as an intermediate trait 
between genetic variation and clinical outcomes. Findings from 
two GWAS meta-analyses of nicotine metabolism (42, 43) were 
used as discovery samples for creating PGSs in four independent 
samples (44). Based on evidence of an association between the nic-
otine-metabolite ratio — a measure of nicotine metabolism and a 
proxy for CYP2A6 enzyme activity — and smoking behaviors (45), 
they used 37 significant SNPs identified in the GWAS meta-anal-
yses to calculate PGS in three community-based, cross-sectional 
samples and one smoking cessation clinical trial. Although the 
PGS was significantly associated with nicotine metabolism in the 

https://doi.org/10.1172/JCI172882


The Journal of Clinical Investigation      R E V I E W  S E R I E S :  S U B S T A N C E  U S E  D I S O R D E R S

7J Clin Invest. 2024;134(20):e172882  https://doi.org/10.1172/JCI172882

target sample, accounting for as much as 16% of the variance in 
that measure, the PGS did not significantly account for variance 
in either smoking quantity or the likelihood of smoking cessa-
tion. The larger proportion of variance in nicotine metabolism 
explained by the PGS aligns with the reduced genetic complexity 
of endophenotypes, which can help to elucidate genetic mecha-
nisms. However, the failure of these scores to predict clinical out-
comes suggests that further investigation is needed for endophe-
notypes to boost the clinical power of PGSs.

Intervention response and remission. SUDs are chronic, relaps-
ing conditions, with an annual remission rate of between 6.8% 
and 9.1% (46). Research is beginning to explore how differences 
in genetic liability influence SUD treatment response, offering 
potential pathways to more effective, personalized interven-
tions that may improve remission rates. However, efforts to 
apply SUD PGSs for precision medicine are limited by the fact 
that available GWAS are not of treatment outcomes but rather 
presence or absence of the disorder or a related trait, and exist-
ing randomized treatment trials often lack the power to detect 
pharmacogenetic effects.

Of the various SUDs, TUD is the one for which PGSs may best 
predict treatment response. Across two randomized controlled 
trials of EUR individuals attempting to quit smoking, research-
ers examined the ability of five smoking-related PGSs (i.e., ever 
smoking, age of smoking initiation, cigarettes per day, smoking 
persistence, and a combined average of these) to predict outcomes 
(47). Higher PGSs for a later age of smoking initiation were asso-
ciated with an increased likelihood of abstinence. Individuals with 
the highest PGSs had a 45.1% chance of a successful quit attempt, 
while those with the lowest scores had a 32.8% chance. The com-
bined PGSs (where higher scores indicated greater risk) were asso-
ciated with lower odds of a successful quit attempt, corresponding 
to a 15.5% difference in rates of abstinence for those with the high-
est and lowest PGSs.

The utility of PGSs for predicting remission is more limited for 
AUD and OUD. For example, researchers sought to predict AUD 
remission in over 1,300 AFR and EUR individuals using machine 
learning (48). Remission was defined as no longer meeting DSM-
5 criteria for AUD at a follow-up assessment conducted approx-
imately 5 years after the initial assessment. A model including 
three alcohol-related PGSs (AUD, Alcohol Use Disorders Identi-
fication Test – Consumption scores, and maximum alcohol con-
sumption) demonstrated low accuracy at predicting remission 
(58.6%). A PGS derived using findings from a GWAS meta-anal-
ysis of time until relapse following pharmacological treatment for 
AUD (49) accounted for a small proportion of variance (1.3%) in 
treatment outcomes in a holdout sample. Similarly, genetic vari-
ants associated with several OUD outcomes (e.g., continued use, 
relapse, methadone dose, and overdose) accounted for a very 
small amount of the variance in methadone dose (3.45 × 10–3%) in 
an independent sample (50).

Although research is lacking on the utility of PGS for predict-
ing cannabis use disorder (CUD) treatment outcomes, a longitu-
dinal preventive intervention study of over 600 youth investigat-
ed whether a smoking cessation PGS interacted with a classroom 
behavior management intervention to influence time to cannabis 
initiation (51). There was a significant PGS-by-intervention inter-

action, such that children with a high PGS (i.e., greater likelihood 
of smoking cessation) benefited the most and had the lowest 
cannabis initiation rates by age 18. Although not an intervention 
for CUD specifically, this study highlights the potential utility of 
SUD-related PGSs for predicting cannabis intervention responses.

Do PGSs provide added clinical utility? To be of clinical util-
ity, PGSs should demonstrate incremental predictive value for 
SUD-related outcomes beyond known relevant environmental risk 
factors. Although genotyping costs have decreased substantially, 
the cost and complexity of PGSs may not be warranted if pheno-
typic characteristics sufficiently capture SUD-related risk. Studies 
have shown that such characteristics can help to predict SUDs. 
For example, in over 600 adolescents assessed from ages 16 to 25 
years, a transmissible liability index comprising both phenotypic 
features that distinguish children of SUD-affected and SUD-un-
affected parents and measures of substance use predicted OUD at 
age 25 with 86% accuracy (52). PGSs that augment that predictive 
ability would justify their inclusion in a predictive model.

Several studies have examined the contribution of PGSs 
to SUD-related outcomes after considering other risk factors. 
Four longitudinal cohorts were leveraged to examine whether 
a clinical/environmental risk index and PGS predicted alcohol, 
nicotine, or any substance dependence in young adulthood (53). 
The environmental index included measures of socioeconomic 
status (SES), family history of SUDs, childhood internalizing/
externalizing symptoms, trauma exposure, and adolescent per-
sonal and peer substance use. Adding six PGSs for substance use 
and related phenotypes (i.e., externalizing problems, depres-
sion, PAU, drinks per week, cigarettes per day, and schizophre-
nia) explained minimal variance in outcomes. Although PGSs 
remained significant predictors, most of the explanatory power 
was due to the environmental index. Similarly, in tobacco cessa-
tion trials, adding PGSs for smoking behaviors to a model with 
clinical predictors significantly increased the area under the 
curve (AUC), but the magnitude of the change was small (AUC 
= 0.01), whereas basic clinical predictors (e.g., cigarettes per day 
and treatment type) had a greater effect on model performance 
(AUC = 0.05). Assessing phenotypes that index those captured 
by PGSs (e.g., asking about adolescent alcohol use rather than 
calculating a PGS for alcohol consumption) may provide a better 
estimate of an individual’s risk.

Other studies argue that the fact that PGSs remain signifi-
cant predictors after inclusion of clinical risk factors highlights 
the unique information these scores provide, even if the variance 
explained by them is low. For example, a longitudinal study of a 
sample enriched for parental AUD (54) found that a PAU PGS sig-
nificantly predicted alcohol-related problems in young adulthood 
after accounting for demographics, parental history of AUD, and 
adolescent alcohol use and problems. The significance of the PGS 
in the adjusted model suggests that it captures information dis-
tinct from family and personal histories of substance use.

Within-family analyses may provide greater insight into 
these associations by accounting for indirect genetic effects, 
which include the influence of an individual’s genes on their 
environment (and in turn their behaviors) as well as the effects of 
parents’ genotypes on the family environment and child’s pheno-
type, even when the specific genes are not inherited by the child. 
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or unique to development (59). Although the sample was small, 
there was preliminary evidence that an age-specific PGSs better 
predicted adult alcohol use frequency than a PGS of genetic influ-
ences across development. A study applying time-varying effects 
models further supported age-specific genetic effects, as a PGS 
for alcohol consumption was associated with alcohol use in young 
adulthood but not adolescence (60). Another study found that an 
externalizing PGS (comprising antisocial behavior, attention defi-
cit hyperactivity disorder, cannabis use, and alcohol dependence) 
did not predict externalizing or internalizing behaviors in older 
adults (61), suggesting that other genetic or environmental risk 
factors may become more important for understanding liability 
for psychopathology as individuals age. This variability in perfor-
mance across development could pose limitations for the clinical 
applications of PGSs. Longitudinal, developmental datasets, like 
the Adolescent Brain Cognitive Development study, present an 
opportunity to address these questions in the future as the cohort 
ages into substance use.

The next consideration for the clinician is which PGS to use. 
GWAS have been conducted for SUDs, but also for exposure to 
substances, and for broader phenotypes that may denote general 
risk such as externalizing behaviors. Many current PGSs are not 
specific for the disorder or outcome of interest, meaning that high 
scores could be indicative of any number of outcomes. Reflecting 
their shared etiology, PGSs for multiple SUDs are associated with 
lifetime opioid misuse (62), with little specificity to the substance 
for which they were derived. Even non-SUD PGSs (i.e., those for 
schizophrenia, bipolar disorder, and major depression) show con-
siderable overlap with SUDs (63). Depending on the use case for 
the PGS, this may be a concern. For instance, if the PGS is used to 
discriminate between diagnoses, specificity is required. However, 
if the PGS is used to predict a single outcome, then the main con-
cern will be the strength of the association with that phenotype, 
regardless of others. Enhancing PGS specificity using deeper, 
symptom-level phenotyping and techniques like genomic struc-
tural equation modeling, which can distinguish shared and disor-
der-specific effects, may help develop more clinically useful PGSs. 
Another current limitation of PGSs is that they can lack stability in 
an individual across different discovery GWAS for the same phe-
notype. While PGSs for the same trait were found to be highly cor-
related at the population level, PGSs for different discovery GWAS 
have only modest correlation at the individual level, with overlap 
for patients in the top quantiles based on different GWAS for the 
same trait being as low as 20% (64).

Finally, the clinician must decide whether the PGS pro-
vides information that is useful for the patient. If receiving PGS 
results does not change behavior or if results are misunderstood 
or negatively perceived by patients, they may have no or limited 
clinical utility. To evaluate this, several studies have provided 
genetic risk results for tobacco-related diseases to individu-
als who smoke (65–67). Across these studies, individuals who 
smoke expressed interest in receiving personalized risk scores, 
had high recall for the information provided, and often reduced 
smoking following the intervention. Research for other SUDs is 
more limited, but in one study receipt of a high hypothetical PGS 
for AUD was associated with greater psychological distress (68), 
though participants reported that they would be more likely to 

Twin studies, by comparing siblings who share varying degrees 
of genetic similarity, help to disentangle indirect from direct 
genetic influences. In a longitudinal twin study that included 
six PGSs for alcohol, nicotine, and cannabis use and use disor-
der, the PGSs almost always remained significant predictors of 
future substance use after controlling for comorbid SUDs and 
family history (55). However, in dizygotic cotwin comparisons, 
which more fully account for familial factors, many PGS effects 
were not significant. This underscores the complex etiology of 
SUDs and indicates that genetic predisposition (as assessed by 
between-family PGS) reflects a combination of direct and indi-
rect genetic effects.

PGSs may provide distinct information in prediction models 
by examining gene-environment interplay. For example, gene-en-
vironment interactions help identify who is most vulnerable to 
environmental risk factors, and gene-environment correlations 
indicate how genetic predispositions shape environmental expo-
sures. Among Dutch twins and their family members, an alcohol 
consumption PGS interacted with SES, such that the PGS was 
associated with higher levels of alcohol use only among those with 
higher SES (56). Other research using Australian twins found a 
gene-environment correlation with a similar direction of effect, 
such that a higher educational attainment PGS was correlated 
with an increased likelihood of adolescent alcohol use (57). Thus, 
not only are genetic and environmental factors independently 
associated with substance use and use disorders, but their inter-
play may also provide unique insights.

Barriers and considerations for implementation. Although there 
is potential for PGSs to enhance health care, several barriers 
warrant consideration before PGS can be incorporated into the 
standard clinical care of individuals with SUDs. There is also the 
added complication that unlike physical diseases, for which PGSs 
currently show utility, SUD diagnoses are stigmatized (58). Thus, 
the implementation of PGSs for SUDs in clinical settings necessi-
tates an evaluation of their utility and a consideration of factors, 
including ethical concerns, that could hinder their use. These fac-
tors impact when and where to use PGSs, which PGSs to use, and 
whether the PGS provides useful information.

First, the clinician must consider the cohort in which they are 
applying PGSs. If applying in a general population with average 
risk of developing disorder, then the PGS will identify those at 
higher risk of developing the disorder in their lifetime. These 
individuals could be encouraged to reduce their exposure to sub-
stances or other environmental factors in order to reduce their 
overall risk. If applying in a set of individuals with symptoms of 
the disorder, the PGS could help identify individuals who are at 
higher likelihood of an increase in symptoms. In a set of indi-
viduals with the disorder, the PGS could identify those who may 
best respond to particular types of treatment.

One advantage of PGSs compared with environmental risk 
factors is that they can be measured prior to the development of 
any symptoms. However, most GWAS are cross-sectional, making 
it difficult to evaluate potential differences in the effects of genet-
ic liability across development. Before applying PGSs clinically, 
it is important to understand how such differences might affect 
their performance. For example, one study evaluated the extent to 
which genetic influences on alcohol use frequency were common 
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individual’s unique risk for an SUD. While the fact that PGSs are 
derived from DNA can be advantageous for clinical purposes (as 
PGSs can be ascertained at any time from a saliva or blood sam-
ple), the static nature of PGSs means that the contexts in which 
these variants act (e.g., point in time, cell type) are unknown. This 
is compounded by the cross-sectional nature of GWAS, which 
means that the PGSs derived from them do not indicate at which 
time point these variants are biologically impactful and when 
intervention would be most beneficial. An active area of research 
that addresses these concerns aims to develop methods for “path-
way” PGSs, which assign variants to biological pathways and cal-
culate a pathway-specific PGS. This approach could provide a 
more granular assessment of disease risk by partitioning individ-
uals into groups based on similar biological profiles, potentially 
allowing the identification of medications that may be particular-
ly beneficial for certain patient groups.

Conclusions
Identifying biomarkers that are effective predictors of SUD 
development, progression, and treatment response would 
advance precision medicine by improving diagnosis and treat-
ment. PGSs are one such tool that may help to realize this 
goal, but prior to implementation, improvements in PGSs are 
needed to ensure that the information provided to patients is 
accurate, equitable, reliable, and useful. The value of PGSs lies 
not in replacing existing behavioral and clinical predictors but 
in complementing them. PGSs may be particularly useful in 
cases in which phenotypic data are incomplete, unavailable, 

talk to a health care provider about their risk and reduce their 
alcohol use as scores increased. Studies of PGSs for tobacco use 
contradict these findings, finding that participants appreciated 
receiving the genetic results and did not show increased anx-
iety or depression after receiving high risk results (66). While 
the potential for increased distress alongside the potential for 
positive health change needs to be carefully weighed by patients 
and providers prior to SUD-related genetic testing, findings for 
tobacco use are promising.

Future directions
While PGSs have more predictive utility than single genetic vari-
ants, the variance and heritability explained by these scores for 
highly polygenic disorders are typically low compared with fam-
ily-study–based estimates (Figure 2). The “missing heritability” 
that is currently not captured by variant-based PGS is likely is 
due in part to the complex genetic architecture of polygenic dis-
orders and epistatic (i.e., gene × gene interactions) effects. The 
overwhelming majority of GWAS interrogate associations of dis-
ease with common variant (minor allele frequency >1%) via array 
genotyping. This does not account for other types of common and 
rare variation (for example, copy number variants, chromosomal 
translations, and insertions and deletions), which may contribute 
to SUD risk. As sequencing technologies improve and the cost of 
whole-genome sequencing decreases, it will become increasing-
ly common to augment PGSs with additional types of variation 
to assess risk across the diverse genetic architecture of SUDs. 
PGSs also do not provide insights into the biology underlying an 

Figure 2. Family-based and SNP-based heritability estimates and variance explained by polygenic scores for substance use disorders. Absence of bars 
indicates that these data are not available for the corresponding ancestry group. Heritability estimates are on the liability scale. Family-based (h2) esti-
mates are derived, from left to right, from Verhulst, Neale, and Kendler, 2015 (75); Verweij et al., 2010 (76); Tsuang et al., 1998 (77); and Do et al., 2015 (78). 
SNP-based (h2SNP) estimates are derived, from left to right, from Zhou et al., 2023 (20); Zhou et al., 2023 (20); Zhou et al., 2023 (20); Levey et al., 2023 
(79); Levey, et al., 2023 (79); Levey et al., 2023 (79); Deak et al., 2022 (21); Kember et al., 2022 (24); Toikumo et al., 2024 (22); Toikumo et al., 2024 (22); and 
Toikumo et al., 2024 (22). PRS polygenic scores (R2) estimates are derived, from left to right, from Zhou et al., 2023 (20); Johnson et al., 2020 (72); Deak et 
al., 2022 (21); and Toikumo et al., 2024 (22). AUD, alcohol use disorder; CUD, cannabis use disorder; OUD, opioid use disorder; TUD, tobacco use disorder; 
EUR, European; EA, European American; AFR, African; AA, African American; AMR, Admixed American; LA, Latin American; HA, Hispanic American.
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or ambiguous, with diminishing returns when more extensive 
behavioral and clinical data are available. It is important to 
evaluate PGSs alongside other risk factors in a holistic manner, 
considering the strengths and limitations of each.
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