

Supplementary Figure 1. Effects of simultaneously altered extracellular Ca^{2+} and Mg^{2+} concentrations on forskolin-induced I_{sc} in T84 cells. (A) Short-circuit current (I_{sc}) traces in T84 cells showing forskolin concentration response and CFTR_{inh}-172 (10 µM) inhibition following 20 min pretreatment with indicated concentrations of MgCl₂ and CaCl₂ *(left)*. Summary of changes in I_{sc} (ΔI_{sc}) from experiments *(right)*. (B) ΔI_{sc} induced by forskolin in the presence of different Mg²⁺ and Ca²⁺ concentrations. (C) ΔI_{sc} induced by CFTR_{inh}-172 at in the presence of different Mg²⁺ and Ca²⁺ concentrations. Mean \pm S.E.M., n=3-5 per group, one-way ANOVA with Newman-Keuls multiple comparisons test, *p<0.05, **p<0.01, ns: not significant.

Supplementary Figure 2. Magnesium citrate and magnesium sulfate inhibit forskolininduced I_{sc} in T84 cells. (A) Short-circuit current (I_{sc}) traces showing responses to maximal forskolin (10 μ M) and CFTR_{inh}-172 (10 μ M) inhibition following 20 min pretreatment with indicated concentrations of magnesium citrate (MgC₆H₆O₇). (B) Summary of I_{sc} changes (Δ I_{sc}) induced by forskolin (*left*) and CFTR_{inh}-172 (right) at different concentrations of MgC₆H₆O₇. Δ I_{SC} induced by CFTRinh-172 at different concentrations of MgC₆H₆O₇ (*right*). (C) Short-circuit current (I_{sc}) traces showing responses to maximal forskolin (10 μ M) and CFTR_{inh}-172 (10 μ M) inhibition following 20 min pretreatment with indicated concentrations of magnesium sulfate (MgSO₄). (D) Summary of I_{sc} changes (Δ I_{sc}) induced by forskolin (*left*) and CFTR_{inh}-172 (right) at different concentrations of MgSO₄. Mean ± S.E.M., n=3-7 per group, one-way ANOVA with Newman-Keuls multiple comparisons test, *p<0.05, **p<0.01, ***p<0.001, ns: not significant.

Supplementary Figure 3. Effects of solution osmolality on forskolin-induced I_{sc} in T84 cells. (*left*) Short-circuit current (I_{sc}) traces showing responses to maximal forskolin (10 μ M) and CFTR_{inh}-172 (10 μ M) inhibition following 20 min pretreatment with indicated concentrations of mannitol. Summary of I_{sc} changes (Δ I_{sc}) induced by forskolin (*center*) and CFTR_{inh}-172 (*right*) at different concentrations of mannitol. In some experiments, cells were treated with 10 mM MgCl₂ in the absence of mannitol. Mean ± S.E.M., n=8-9 per group, one-way ANOVA with Newman-Keuls multiple comparisons test, *p<0.05, ***p<0.001, ns: not significant.

Supplementary Figure 4. Effects of Ca^{2+} and Mg^{2+} concentrations on barrier permeability in T84 cells. Transepithelial electrical resistance (TEER) measurements in T84 cells after 60 min bathing in Ringer solution with indicated concentrations of $CaCl_2$ and $MgCl_2$. Mean \pm S.E.M., n=4 per group, one-way ANOVA with Newman-Keuls multiple comparisons test, ns: not significant.

Supplementary Figure 5. Extracellular Mg^{2+} concentration does not affect carbacholinduced secretory currents in T84 cells. (*left*) Short-circuit current (I_{sc}) traces showing responses to carbachol (100 µM) following 20 min pretreatment with indicated concentrations of MgCl₂. (*right*) Summary of I_{sc} changes (Δ I_{sc}) induced by carbachol. Mean \pm S.E.M., n=5-6 per group, Student's t-test, ns: not significant.