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Introduction
Prostate cancer is the most common cancer malignancy in men in 
Western countries, and its incidence is increasing rapidly in China 
(1, 2). Therapy resistance is inevitable due to accumulated muta-
tions and the heterogeneous nature of advanced prostate cancer (3). 
Mortality from prostate cancer has declined only mildly, even after 
the approval of abiraterone and enzalutamide (4, 5). Considering 
the limited number of cancer cells and the infrequency of muta-
tions at early disease stages, identification of patients potentially at 
risk for aggressive prostate cancer and development of related ther-
apeutic or even preventive methods prior to androgen deprivation 
therapy (ADT) might benefit patients more substantially.

A deleterious androgenic environment accelerates the onset 
and early development of aggressive prostate cancer, which has 
been well substantiated by human genetics and ADT efficacy (6, 
7). Identifying features of such a deleterious androgenic environ-

ment would facilitate patient stratification and drug development. 
Recently, we have traced steroidogenesis ex vivo in 524 fresh pros-
tatic biopsy specimens collected from 241 patients and found that 
dehydroepiandrosterone (DHEA) is an important androgen pre-
cursor for the prostate gland physiologically (8). Enhanced DHEA 
metabolism has been reported to sustain the progression of cas-
tration-resistant prostate cancer (9). However, the clinical signif-
icance of prostatic DHEA metabolism at early disease stages has 
not been investigated.

The enzyme 3β-hydroxysteroid dehydrogenase type 1 (3βHSD1) 
catalyzes the rate-limiting step for the conversion of DHEA to dihy-
drotestosterone (DHT) (10, 11). Patients with homozygous HSD3B1 
(1245C) alleles, encoding 3βHSD1 (367T) isoform with persistent 
activity, had worse response to ADT, abiraterone, and enzalutamide 
treatment (12–15). Although the correlation of 3βHSD1 with tumor 
aggressiveness has not been investigated at early disease stages, 
these findings support a potential correlation of DHEA metabo-
lism with the onset and development of aggressive prostate cancer. 
Recent advances regarding 3βHSD1 inhibitors support the promis-
ing potential of 3βHSD1 as a therapeutic target in the clinic (16, 17). 
DHEA metabolism–based patient stratification would benefit both 
diagnosis and disease therapy.

Unfortunately, the 3βHSD1 genotype fails to predict tumor 
aggressiveness in East Asian populations because of its low fre-
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Finasteride and dutasteride, inhibitors of steroid 5α-reductase 
(SRD5A), have been reported to reduce the incidence of prostate 
cancer (21, 22). Twenty-eight biopsies were collected from 14 fin-
asteride-treated patients and 52 biopsies from 27 patients treated 
with α-receptor blockers for benign prostatic hyperplasia. Among 
α-receptor blocker–treated patients, enhanced DHEA utilization 
was also observed in biopsies from metastatic patients (Figure 
1G and Supplemental Table 3). Biopsies from finasteride-treated 
patients obtained suppressed DHEA utilization compared with 
biopsies from α-receptor blocker–treated patients (Figure 1G). 
Finasteride had a long half-life in patients (23). To exclude the 
existence of residual finasteride in biopsies, the percentage of 
androstenedione (AD), which should be accumulated with the 
existence of residual finasteride, was analyzed. Biopsies from fin-
asteride-treated patients generated a similar amount of AD com-
pared with the other 2 groups, indicating no residual finasteride 
in biopsies (Supplemental Figure 1A). Finasteride and dutasteride 
also failed to directly regulate DHEA utilization in LNCaP cells 
and biopsy samples (Supplemental Figure 1, B and C). The sup-
pressed prostatic DHEA utilization and 3βHSD1 activity might 
explain the low incidence of prostate cancer in finasteride-treat-
ed patients. Together, these data indicate the association of active 
prostatic DHEA utilization with tumor occurrence.

Genomic signature reflecting prostatic DHEA utilization. Tracing 
prostatic steroidogenesis ex vivo to evaluate tumor aggressiveness is 
labor-intensive and time-consuming. To develop clinically feasible 
approaches, whole-exome sequencing and transcriptome sequenc-
ing were performed with blood and biopsy samples from patients 
with distinct DHEA metabolism features. Considering that about 
10% of prostate cancer will develop into aggressive prostate cancer, 
31 biopsies from 25 patients (prostatic 3βHSD1 activity showing the 
top 10% in our cohort) showing enhanced prostatic DHEA utiliza-
tion and 29 biopsies from 22 patients (prostatic 3βHSD1 activity 
showing the bottom 10% in our cohort) showing limited DHEA uti-
lization were selected for further analysis (Figure 2A).

Germline genetic disparity associated with prostatic DHEA 
utilization was first assessed. Different polygenic risk scores 
(PRSs) have been developed to describe genetic predisposition 
of prostate cancer risk, including UK Biobank (UKBB)–PRS and 
PRACTICAL-PRS (24). In our cohorts, higher UKBB-PRS and 
PRACTICAL-PRS were observed in patients with enhanced pros-
tatic DHEA utilization, indicating a higher risk of prostate cancer 
incidence in these patients (Figure 2B). To generate a genome-
wide association (GWAS) signature reflecting prostatic DHEA 
utilization features across different populations, single-nucleotide 
polymorphisms (SNPs) identified in our cohort were crossed with 
prostate cancer–associated sites from UKBB and GWAS cata-
logs (Figure 2C) (25). Variants were further tested based on their 
relationship with prostatic metabolic features. A total of 28 SNPs 
associated with prostate cancer incidence and enhanced prostatic 
DHEA utilization were selected to generate a DHEA GWAS sig-
nature (Figure 2, C and D). The frequencies of these SNPs were 
comparable in different populations, making it a candidate set for 
assessing genetic risk of tumor aggressiveness in different ethnic 
groups (Figure 3A). The predictive capability of the DHEA GWAS 
signature, composed of 28 SNPs, was further validated in a cohort 
of the Chinese Prostate Cancer Genome and Epigenome Atlas 

quency, indicating racial heterogeneity of prostate cancer (17, 
18). 3βHSD1 activity is not solely determined by its genotype (16, 
19). Clinically accessible approaches, suitable for different genet-
ic backgrounds, to comprehensively evaluate prostatic DHEA 
metabolism and 3βHSD1 activity could improve patient stratifica-
tion and shed light on disease early intervention.

To find clues for early treatment of prostate cancer, we here ret-
rospectively analyzed patient prostatic steroidogenesis in different 
clinical scenarios to discover potential metabolic features associ-
ated with aggressive prostate cancer. The genomic and transcrip-
tional disparities associated with the metabolic features were fur-
ther investigated to facilitate patient stratification across different 
genetic backgrounds. The mechanisms underlying patient meta-
bolic heterogeneity were determined, and 3βHSD1 inhibitors were 
screened to treat patients with active prostatic DHEA utilization.

Results
Prostatic metabolic features associated with tumor aggressiveness. 
To determine the prostatic metabolic features associated with 
tumor aggressiveness, fresh prostatic biopsy samples were tran-
siently cultured ex vivo and treated with [3H]-DHEA (8). Andro-
gen metabolites were separated and analyzed by HPLC–β-RAM 
system at different time points (20). DHEA was observed to be 
actively converted to potent androgens (including androstenedi-
one, testosterone, DHT, and 5α-androstanedione) as well as oxi-
dized DHEA (including 7α-OH DHEA, 7β-OH DHEA, and 7-keto 
DHEA) in biopsy specimens (Figure 1A) (8, 10). Because oxidized 
DHEA could not activate androgen receptor (AR) signaling, the 
potency of DHEA utilization was evaluated based on the gener-
ation of potent androgens. Enzyme activity in biopsies was eval-
uated by calculation of the ratio between different metabolites. 
For example, prostatic 3βHSD1 activity was assessed as (concen-
tration of potent androgens)/(concentration of DHEA + potent 
androgens). Although the potency of DHEA utilization diverged 
across individuals, it was highly concordant within individuals 
and did not decline by age (Figure 1, B and C) (8). Previously, we 
showed that steroidogenesis in different biopsies from the same 
patient is not markedly affected by factors such as cancer cell con-
tent, cell types, Gleason score, and anatomic structures (8). Thus, 
it is feasible to evaluate patient prostatic DHEA utilization with 1 
or 2 prostatic biopsies from the same individual.

The clinical significance of prostatic DHEA utilization was then 
retrospectively analyzed in different clinical scenarios. Results of 
159 prostatic biopsy samples from 85 patients who had elevated 
prostate-specific antigen (PSA) and were naive to treatment demon-
strated that enhanced DHEA utilization was more frequently found 
in biopsies from patients with metastatic prostate cancer, as indi-
cated by the generation of potent androgens and prostatic 3βHSD1 
activities (Figure 1D and Supplemental Table 1; supplemental 
material available online with this article; https://doi.org/10.1172/
JCI171199DS1). Biopsies were collected from 23 patients at the base-
line of ADT, and the metabolic results showed that patients with 
enhanced prostatic DHEA utilization exhibited a shorter treatment 
duration (Figure 1E and Supplemental Table 2). In contrast, baseline 
PSA failed to predict the response to ADT in these 23 patients (Figure 
1F). Together, these data demonstrate the association of prostatic 
DHEA utilization with tumor aggressiveness.
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Figure 1. Correlations of prostatic DHEA utilization with tumor aggressiveness. (A) Schema of steroidogenesis in patient prostatic biopsies. (B) Intra- 
and interpatient heterogeneity in prostatic DHEA utilization. Multiple biopsies were collected from 239 patients for steroidogenesis tracing; x axis shows 
individual patients. Boxes show the interquartile range, and whiskers represent the minimum and maximum value. (C) Correlations of prostatic DHEA uti-
lization activity with age. (D) Enhanced prostatic DHEA utilization in metastatic patients. All patients were naive to treatment. Prostatic 3βHSD1 activity 
is calculated as potent androgens/(DHEA + potent androgens) × 100%. Bars, median; lines, interquartile range. Two-tailed Student’s t test. (E) Association 
of prostatic DHEA utilization with duration of response to ADT. Biopsies were collected prior to ADT. Log-rank test. (F) Baseline PSA could not predict ADT 
response. Log-rank test. (G) Suppressed prostatic DHEA utilization in finasteride-treated patients. Two-way ANOVA. *P < 0.05; **P < 0.01.
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cessfully identified patients at risk after prostatectomy in a TCGA 
cohort of prostate cancer (Figure 3D). Consistently, this gene sig-
nature could also be used for patient stratification in CPGEA, sup-
porting the clinical relevance of the DHEA GWAS signature (Fig-
ure 3E). HSD3B1 (1245C) allele, with a low frequency in East Asian 
populations, was also checked in our cohort. Seven patients with 
heterozygous HSD3B1 (1245C) were found in our cohort, but none 
were homozygous HSD3B1 (1245C). Of these 7 patients, 6 showed 
enhanced prostate DHEA utilization, and 1 showed suppressed 
prostate DHEA utilization (Figure 3F). Furthermore, correlations 
of GWAS signature variants with HSD3B1 genotype were found in 
the UKBB database. Patients with heterozygous and homozygous 
HSD3B1 (1245C) had enriched GWAS risk variants but less pro-
tective variants than patients with homozygous HSD3B1 (1245A) 
(Supplemental Figure 2B). To find uncommon variants like 
HSD3B1 (1245C) in our cohort, variants found in our cohort that 
are rare in the general population according to gnomAD allele fre-

(CPGEA), a comprehensive Chinese prostate cancer genomic 
database with over 1,200 genomic data sets from more than 200 
pairs of primary prostate cancers and matched normal tissues 
(26). Twenty-seven DHEA GWAS variants were confirmed in 
CPGEA and then used for patient stratification. Individuals with 
high scores of the DHEA GWAS signature also showed higher 
UKBB-PRS and PRACTICAL-PRS, suggesting a shared genet-
ic component of prostatic DHEA utilization and prostate cancer 
risk (Figure 3B). Furthermore, patients with higher DHEA GWAS 
signature scores were more resistant to ADT (Figure 3C). Howev-
er, only 4 variants could be found in The Cancer Genome Atlas 
(TCGA) database. Thus, we investigated potential genes regulated 
by DHEA GWAS variants through linking with expression quan-
titative trait loci (eQTLs) identified in Genotype-Tissue Expres-
sion (GTEx) prostate tissues and variant effect predictor (VEP) 
functional annotation (Supplemental Figure 2A) (27, 28). A gene 
expression signature with a combination of these 13 genes suc-

Figure 2. Generation of GWAS signature associated with prostatic DHEA utilization. (A) Sixty biopsies from 47 patients with distinct DHEA metabolic 
features were selected for sequencing. Somatic genomic DNA and RNA were extracted from 60 biopsies. Germline DNA was extracted from 47 patients with 
blood samples. (B) UKBB-PRS and PRACTICAL-PRS in patients with enhanced and suppressed prostatic DHEA utilization, respectively. Two-tailed Student’s t 
test. (C) Flowchart for screening prostatic DHEA utilization–associated variants. WES, whole-exome sequencing. (D) List of variants associated with prostatic 
DHEA utilization features. Risk variants are shown in red and protective variants in black. Ref, reference allele; alt, alternative allele. *P < 0.05; **P < 0.01.
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his biopsy samples, and the percentage of carriers was calculated 
in patients at different disease stages. Notably, somatic mutations 
in benign samples are of low alternative allele fraction (typically 
<0.05), representing sporadic clonal expansions in prostate glands 
(Supplemental Figure 3B). However, patients with different met-
abolic features might have different gene mutations enriched. 
For example, MSH6 and B2M were more frequently mutated in 
patients with enhanced DHEA utilization, while USP6 and ZFHX3 
were more frequently mutated in patients with suppressed DHEA 
utilization (Figure 4F). Similar strategies were applied to analyze 
gene amplification and deletion. Still, the genomic alteration was 
dramatically lower in benign patients than in patients with pros-
tate cancer (Supplemental Figure 3, C and D). The region around 
3p21 was more frequently amplified and the region around 1q21 
was more frequently deleted in patients with low metabolic activ-
ity (Figure 4, G and H). PTEN deletion was more frequently found 
in patients with low metabolic activity (Figure 4H). Interestingly, 
PDE4DIP was exclusively amplified in patients with high meta-
bolic activity but deleted in patients with low metabolic activity; 
ZNF331 showed an almost contrary distribution, with detailed 
mechanisms to be further investigated (Figure 4, G and H). These 
results indicate that patients with low metabolic activity have dis-
tinct genomic alterations, presumably to increase tumor cell sur-
vival independent of androgens.

quency were tested for their correlation with gene expression and 
prostatic DHEA utilization (Figure 2B) (29). Nine genes enriched 
with uncommon variants were identified, which showed markedly 
different distributions in biopsies with distinct metabolic features 
(Figure 3G and Supplemental Table 4). Together, these data reveal 
germline alleles associated with prostatic DHEA utilization to 
indicate tumor onset and aggressiveness.

We next analyzed somatic mutations associated with pros-
tatic DHEA utilization. Substantial genomic alterations were 
observed in the genome of biopsy samples (Figure 4A). Howev-
er, the copy number variation burdens were mainly associated 
with disease stages but not with prostatic DHEA metabolic fea-
tures (Figure 4B). Biopsies from benign patients showed limited 
genomic alterations, while biopsies from patients with prostate 
cancer exhibited more alterations (Figure 4C and Supplemental 
Figure 3A). However, we still found that biopsies with suppressed 
DHEA utilization obtained higher mutation load and gene dele-
tion frequency, but lower gene amplification frequency, indi-
cating a potential correlation between genomic alterations and 
androgenic environment (Figure 4, D and E).

To find DHEA utilization–related pretumorous somatic muta-
tions that might give rise to malignant clones in later stages, a 
patient would be identified as a mutation carrier when a mutation 
was detected (regardless of its alternative allele fraction) in any of 

Figure 3. Characterization of GWAS signature associated with prostatic DHEA utilization. (A) Frequency of DHEA GWAS variants in Chinese and Euro-
pean populations. Minor allele frequency of variants was determined with 1000 Genomes and ChinaMAP databases. (B and C) Validation of DHEA GWAS 
signature in CPGEA. Prostate cancer risk and treatment duration were different in patients with distinct scores of DHEA GWAS signature. One-tailed 
Student’s t test for B; log-rank test for C. (D and E) Genes associated with DHEA GWAS signature for patient stratification in TCGA and CPGEA. Genes 
associated with variants were determined using GTEx and functional annotation. (F) Frequency of HSD3B1 variants in our cohort. (G) Uncommon variants 
and related genes showing different distributions in patients with distinct prostatic DHEA utilization features. H, high–metabolic activity tissues; L, low–
metabolic activity tissues. Burden test was applied for significance calculation. *P < 0.05.
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Transcriptomic signature reflecting prostatic DHEA utiliza-
tion. Transcriptome sequencing was also performed with these 
biopsies. Biopsies with higher metabolic activity showed distinct 
transcriptomic features compared with those with lower meta-
bolic activity (Figure 5A). Differentially expressed genes associ-
ated with prostatic DHEA utilization were identified (Figure 5B 
and Supplemental Figure 4A). Consistent with previous reports, 
biopsies with high metabolic activity showed activated AR and 
glucocorticoid receptor signaling but suppressed neuroendocrine 
prostate cancer signature (Figure 5C and Supplemental Figure 
4B) (30, 31). Tumor aggressiveness associated with Gleason score 
grade signature was also enriched in biopsies with high metabolic 
activity (Figure 5C and Supplemental Figure 4B) (32). To gener-
ate a gene expression signature reflecting the association between 
prostatic DHEA utilization and tumor aggressiveness in differ-
ent ethnicities, differentially expressed genes in our cohort were 
compared with prostate cancer risk genes identified in the UKBB 
cohort and GWAS catalogs. A latent variable hierarchical model 
was used to train a transcriptomic signature using the TCGA data-
base, with a hidden variable layer representing prostatic metabol-
ic status (Figure 5D). A total of 17 genes were selected as DHEA 
transcriptomic signature. These genes showed different expres-
sion in biopsies of different metabolic features and correlated with 
prostate cancer risk (Figure 5, E and F). Moreover, the DHEA tran-
scriptomic signature successfully stratified patients with different 
treatment durations or diseases stages and correlated with tumor 
stage, Gleason score, and lymph node metastasis in TCGA (Figure 
5G and Supplemental Figure 5). A positive correlation of DHEA 
transcriptomic signature and AR pathway was observed in the 
UKBB and GTEx databases (Figure 5H). The predictive capability 
of the DHEA transcriptomic signature was further validated. The 
robustness of the correlations of DHEA transcriptomic signature 
with prostatic DHEA utilization was validated by random group-
ing. Fourteen biopsies with high metabolic activity and 10 biop-
sies with low metabolic activity were randomly selected over 200 
times from the 60 sequenced biopsies. DHEA transcriptomic sig-
nature and individual genes clearly distinguished the high-activity 
biopsies from those with low activity (Figure 5I and Supplemental 
Figure 6). Consistently, we observed that patients with high DHEA 
transcriptomic signature scores had shorter treatment durations 
in the validation cohort of CPGEA (Figure 5J). The correlation 
between DHEA transcriptomic signature and DHEA GWAS signa-

ture was also analyzed. Patients with higher DHEA transcriptom-
ic signature scores also displayed a high DHEA GWAS signature 
score in both our cohort and CPGEA (Figure 5, K and L). Consis-
tent patterns were also observed between inferred DHEA status 
and genetic predisposition of prostate cancer, and patients with 
higher DHEA transcriptomic signature score in CPGEA also had 
higher PRACTICAL-PRS and UKBB-PRS (Figure 5M). Together, 
these data indicate that DHEA transcriptomic signature reflects 
prostatic metabolic features and predicts tumor aggressiveness.

UBE3D-mediated 3βHSD1 ubiquitylation and metabolic het-
erogeneity. To further reveal the mechanisms underlying patient 
heterogeneity with respect to prostatic metabolic features, dif-
ferentially expressed genes in biopsies with different metabolic 
features were cross-analyzed with 3βHSD1 interactome. LNCaP 
cells stably expressing FLAG-3βHSD1 (LNCaP-FLAG-3βHSD1) 
were used for immunoprecipitation–mass spectrometry (IP-MS) 
to find proteins interacting with 3βHSD1 (Figure 6A). Five ubiqui-
tin ligases were identified to potentially bind to 3βHSD1. UBE3D 
was the only gene showing lower expression in biopsies with 
enhanced DHEA utilization (Figure 6B and Supplemental Figure 
7A). Consistently, patients with lower UBE3D expression showed 
shorter treatment duration in the TCGA database, while the 
other 4 ligases exhibited no significant correlation with disease 
progression (Figure 6C and Supplemental Figure 7B). Notably, 
UBE3D deletion was frequently present in different cohorts, indi-
cating that the correlation of UBE3D with prostate cancer is not 
limited to East Asians but involves different ethnicities (Figure 
6D) (33). In our patient cohort, UBE3D expression negatively cor-
related with DHEA transcriptomic signature and DHEA GWAS 
signature (Figure 6E). Patients with low UBE3D expression had 
higher UKBB-PRS and PRACTICAL-PRS (Figure 6, F and G). 
Furthermore, 3βHSD1 abundance increased only when UBE3D 
or AMFR was knocked down in LNCaP cells (Supplemental Fig-
ure 7C). These results together indicate the negative correlation 
of UBE3D with prostatic 3βHSD1 activity.

The interaction between UBE3D and 3βHSD1 was further 
confirmed by co-IP assays (Figure 6H). Multiple domains of 
UBE3D, including HECT domain, interacted with 3βHSD1 (Fig-
ure 6I). UBE3D directly interacted with 3βHSD1 in vitro (Figure 
6J). Because of poor antibody quality, the endogenous IP was per-
formed in LNCaP-FLAG-3βHSD1 cells, and FLAG-3βHSD1 was 
observed to be bound to endogenous UBE3D (Figure 6K). These 
results support the interaction of UBE3D with 3βHSD1.

The regulatory mechanisms of UBE3D on 3βHSD1 were then 
further investigated. UBE3D overexpression reduced 3βHSD1 
abundance in HEK293T cells, which was rescued by protea-
some inhibitors (Figure 7A and Supplemental Figure 8A). UBE3D 
knockdown resulted in an accumulation of endogenous 3βHSD1 
in LNCaP and VCaP cells (Figure 7B). UBE3D knockdown pro-
longed the half-life of 3βHSD1 in LNCaP and VCaP cells (Figure 
7C and Supplemental Figure 8B). UBE3D enhanced 3βHSD1 ubiq-
uitylation substantially in the reconstituted ubiquitylation system 
in vitro (Figure 7D). In 293T cells, UBE3D overexpression also 
promoted 3βHSD1 ubiquitylation in a dose-dependent manner, 
and HECT domain was essential for UBE3D-mediated 3βHSD1 
ubiquitylation (Figure 7E and Supplemental Figure 8C). K27-
linked ubiquitin chains were linked to 3βHSD1 by UBE3D (Figure 

Figure 4. Somatic mutations associated with prostatic 3βHSD1 activity. 
(A) Genomic regions with marked recurrent somatic copy number varia-
tions (CNVs). Genomic DNA from biopsies was used for somatic muta-
tion detection. (B and C) Heatmaps of somatic CNV burdens in biopsies. 
Results of all biopsies are shown in B, and separately displayed as benign 
patients and cancer patients in C. (D) Mutation burdens in biopsies with 
different metabolic features. (E) CNV in biopsies with different metabolic 
features. (F) Most frequent mutated genes in patients with different met-
abolic features at different disease stages. A patient would be identified 
as a carrier when a mutation was detected (regardless of its alternative 
allele fraction) in any of his biopsy samples, and the percentage of carriers 
was calculated in patients at different disease stages. (G) Most amplified 
genes in patients with different metabolic features at different disease 
stages. (H) Most deleted genes in patients with different metabolic fea-
tures at different disease stages.
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related tumor aggressiveness. Although several 3βHSD1 inhibitors 
have been identified, a systematic 3βHSD1 inhibitor screening 
platform has yet to be established (16, 17). A virtual screening plat-
form was established with 3βHSD1 structure predicted by Alpha-
Fold2 and optimized with previously reported 3βHSD1 inhibitors, 
including biochanin A (BCA) (34, 35). An NAD+-based biochem-
ical screening platform with purified 3βHSD1 proteins was used 
for large-scale inhibitor screening. With more than 10,000 com-
pounds for virtual screening and 5,225 extra compounds for bio-
chemical screening, a total of 176 potential hits were identified 
(Figure 9A). These compounds were then used to treat LNCaP 
cells together with [3H]-DHEA for validation, and equilin was dis-
covered as the most potent 3βHSD1 inhibitor (Figure 9B). Equilin 
inhibited 3βHSD1 activity better than BCA in different prostate 
cancer cells, with an IC50 around 2.8 nM in VCaP cells (Figure 9C 
and Supplemental Figure 10, A–C). Equilin also directly inhibited 
the activity of purified 3βHSD1 (Figure 9D). The direct binding 
of equilin to 3βHSD1 proteins was determined by surface plas-
mon resonance. Equilin showed a higher affinity to 3βHSD1 than 
BCA did (Figure 9E). The docking model with AlphaFold2-pre-
dicted 3βHSD1 structure also supports a higher affinity of equi-
lin to 3βHSD1, compared with BCA (Supplemental Figure 11). 
Thus, equilin potently suppressed the expression of AR target 
genes in C4-2 and VCaP cells after DHEA treatment (Figure 9, F 
and G). Furthermore, equilin at a dose of 2.5 μM also suppressed 
DHEA-induced but not DHT-induced cell proliferation in C4-2 
cells (Figure 9H). Knockout of endogenous UBE3D facilitated 
cell proliferation, and a higher dose of equilin (5 μM) was used to 
antagonize cell growth (Figure 9I). To determine whether 3βHSD1 
is essential for the antitumor activity of equilin, C4-2 stable cell 
lines with 3βHSD1 knocked down were established. Equilin failed 
to suppress the expression of AR target genes and cell proliferation 
in 3βHSD1-depleted stable cell lines (Supplemental Figure 12). 
The antitumor activity of equilin was further tested in a mouse 
model. Xenografts with UBE3D knocked out showed increased 
aggressiveness and grew more rapidly. Equilin successfully antag-
onized tumor aggressiveness by suppressing tumor growth (Figure 
9J). The inhibitory effect of equilin was also confirmed by tumor 
weights (Figure 9K). These data together demonstrate that equilin 
antagonizes tumor aggressiveness.

Discussion
Limited efforts have been put into precision medicine for pros-
tate cancer at early disease stages. Distinguishing patients at risk 
for aggressive prostate cancer before prostatectomy and ADT, 
or even before prostate cancer occurs, and developing related 
therapeutic, or even preventive, methods could fundamentally 
improve the clinical management of prostate cancer. Here we 
found that prostatic 3βHSD1 activity is essential for a deleteri-
ous androgenic environment to accelerate DHEA utilization and 
trigger the onset and early development of aggressive prostate 
cancer. UBE3D-mediated 3βHSD1 ubiquitylation was a clinically 
relevant mechanism for explaining patient heterogeneity of pros-
tatic DHEA utilization. Equilin antagonizes aggressive prostate 
cancer as a 3βHSD1 inhibitor.

Considering the increased mutations as well as the fact that 
advanced prostate cancer is a highly heterogeneous disease, treat-

7F). The ubiquitylation sites on 3βHSD1 were further determined 
by IP-MS, and 3 potential sites (K37, K55, and K274) were identi-
fied (Figure 7G and Supplemental Figure 8D). Mutations on K55 
diminished UBE3D-mediated 3βHSD1 ubiquitylation and abol-
ished 3βHSD1 degradation, indicating that K55 is the main ubiq-
uitylation site for UBE3D on 3βHSD1 (Figure 7, H and I, and Sup-
plemental Figure 8E). The effect of UBE3D on different isoforms 
of 3βHSD1 was also determined. UBE3D degraded both 3βHSD1 
(367T) and 3βHSD1 (367N) isoforms (Supplemental Figure 8F). 
Collectively, these results demonstrate that UBE3D ubiquitinates 
and degrades 3βHSD1.

To investigate the biological effects of UBE3D on tumor 
aggressiveness, endogenous UBE3D was knocked down in LNCaP 
and VCaP cells. The conversion of DHEA to AD was accelerated 
after UBE3D knockdown (Figure 8A). Consistently, the expres-
sion of AR target genes in LNCaP and VCaP cells was upregulat-
ed after UBE3D knockdown (Figure 8, B and C). Stable cell lines 
with UBE3D knockout or doxycycline-induced (Dox-induced) 
UBE3D overexpression were also generated in LNCaP and C4-2 
cells (Supplemental Figure 9). UBE3D overexpression suppressed 
DHEA-induced cell proliferation markedly in both cell lines (Fig-
ure 8D). Stable cell lines with UBE3D knocked out grew faster after 
DHEA treatment (Figure 8E). The effect of UBE3D on DHEA-me-
diated tumor growth was then further tested in vivo. C4-2 cells 
with Dox-induced UBE3D expression were injected subcutane-
ously in castrated mice with or without sustained-release DHEA 
pellets implanted to mimic the endocrine environment of patients. 
The addition of Dox suppressed DHEA-induced growth substan-
tially in mice (Figure 8F). Tumors with UBE3D overexpressed 
shrank as indicated by tumor weight (Figure 8G). Together, these 
data demonstrate that UBE3D regulates 3βHSD1 homeostasis and 
consequently affects DHEA utilization and tumor aggressiveness.

Equilin as 3βHSD1 inhibitor for disease intervention. Inhibitors 
targeting 3βHSD1 are intrinsic solutions for DHEA metabolism–

Figure 5. Transcriptomic signature reflecting prostatic DHEA utilization. 
(A) Principal component analysis on biopsy transcriptome. Red, biopsies 
with high metabolic activity; blue, biopsies with low metabolic activity. 
(B) Differentially expressed genes in biopsies with high or low metabolic 
activity. (C) Volcano plot for the differential expression analysis at pathway 
level between biopsies with different metabolic activity. Gene set variation 
analysis (GSVA) was performed according to hallmark gene sets. (D) Flow-
chart for the generation of transcriptomic signature reflecting prostatic 
DHEA utilization. (E) Heatmap of DHEA transcriptomic signature genes in 
biopsies. (F) Prostate cancer GWAS hits on DHEA transcriptomic signature 
genes. Prostate cancer GWAS summary statistics were determined 
according to UK Biobank and are shown in gray and blue. Hits on signature 
genes are shown in yellow. (G) DHEA transcriptomic signature for patient 
stratification in TCGA. Log-rank test. (H) Pearson’s correlations of DHEA 
transcriptomic signature with AR-responsive hallmark in TCGA and GTEx 
databases. Pearson’s correlation test. (I) Validation of DHEA transcriptom-
ic signature in prediction of biopsy metabolic activities. Random grouping 
has been performed over 200 times by selection of 14 biopsies with high 
metabolic activity and 10 biopsies with low metabolic activity from the 60 
sequenced biopsies. (J) DHEA transcriptomic signature for patient stratifi-
cation in CPGEA. Log-rank test. (K and L) Correlations of DHEA transcrip-
tomic signature genes with DHEA GWAS signature in our cohort (K) and 
CPGEA (L). Pearson’s correlation coefficient for the correlation analysis. 
(M) Genetic features associated with DHEA transcriptomic signature genes 
in CPGEA. One-tailed Student’s t test. *P < 0.05.
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Figure 6. UBE3D binds to 3βHSD1. (A) Schema of potential ubiquitin ligase screening. Immunoprecipitation–mass spectrometry (IP-MS) was performed 
in LNCaP cells expressing FLAG-tagged 3βHSD1 (LNCaP-FLAG-3βHSD1). (B) UBE3D mRNA abundance in biopsies with high or low metabolic activities. (C) 
Correlation of UBE3D levels with treatment duration in TCGA. Log-rank test. (D) Deletion frequency of UBE3D in prostate cancer. (E) Correlation of UBE3D 
levels with DHEA transcriptomic signature and DHEA signature in our cohort. Pearson’s correlation. (F and G) UKBB-PRS and PRACTICAL-PRS in patients 
with different UBE3D levels. One-tailed Student’s t test. (H) Interaction between UBE3D and 3βHSD1. UBE3D and 3βHSD1 were overexpressed in HEK293T 
cells. (I) Interaction of 3βHSD1 with different UBE3D truncations. (J) Direct binding of UBE3D to 3βHSD1 in vitro. UBE3D was purified in E. coli system, and 
3βHSD1 was purified in Sf9 cells. (K) Endogenous UBE3D binds to 3βHSD1. Stable cell line with FLAG-3βHSD1 expressed at comparable levels of endoge-
nous 3βHSD1 was used. Two-tailed Student’s t test. *P < 0.05; **P < 0.01.
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tatic metabolic features, providing clinically feasible approaches 
for patient stratification. Both upstream regulators and down-
stream effectors of AR pathways are enriched in these signatures; 
thus it is not surprising to find the correlations of GWAS signa-
ture and transcriptomic signatures with steroidogenesis and AR 
pathways, respectively. Consistently, 3βHSD1 genotype has been 
proved to be a predictive biomarker for patient stratification (11, 
12). However, because of the low frequency of HSD3B1 (1245C) 
in East Asian populations, its application is limited to Western 
countries (18, 47). The GWAS signature and transcriptomic sig-
nature for DHEA utilization reflect prostatic 3βHSD1 activity and 
may serve as alternative approaches for patient stratification in 
different ethnicities. Risk alleles were enriched in patients with 
enhanced prostatic DHEA utilization, indicating a genetic back-
ground for patient heterogeneity and tumor occurrence. Higher 
mutation loads were observed in biopsies with suppressed DHEA 
utilization, indicating that androgen deprivation might increase 
tumor heterogeneity. Thus, androgens are not always a foe to 
patients, which explains the clinical benefits of bipolar androgen 
therapy and intermittent ADT (48–51). Also, PTEN deletion and 
other oncogenic gene mutations were frequently found in patients 
with low prostatic metabolic activity, indicating that multiple 
strategies are involved in disease progression. Prostatic DHEA uti-
lization provides one but would not be the only aspect to identify 
at-risk patients.

Different mechanisms are involved in prostatic metabolic het-
erogeneity. UBE3D was found in our studies to regulate 3βHSD1 
homeostasis, regardless of 3βHSD1 genotype, and negatively cor-
relate with tumor aggressiveness in different databases. UBE3D 
is frequently deleted in advanced prostate cancer, and its expres-
sion is also varied substantially in patients at early disease stages. 
Patients with lower UBE3D abundance are at risk for the onset and 
early development of aggressive prostate cancer.

BCA has recently been reported as a potent 3βHSD1 inhibitor 
for suppressing prostate cancer progression, even after abiraterone 
and enzalutamide resistance (16, 17). However, a large-scale drug 
screening platform for 3βHSD1 has not yet been established. Here 
we optimized the virtual screening system and established a bio-
chemical screening platform based on NAD+ detection. Equilin 
was discovered in our studies to be the most potent 3βHSD1 inhibi-
tor after more than 17,000 compounds were screened. Equilin, also 
known as 7-dehydroestrone, is a natural estrogenic steroid synthe-
sized in pregnant mares and used together with estrone and equile-
nin for hormone replacement therapy in postmenopausal woman 
to reduce coronary artery disease. Equilin modifies lipid profiles in 
patients and obtains neuroprotective and antioxidant activity (52–
54). Here we found that equilin markedly suppresses the growth 
of UBE3D-deleted xenografts in mice as a 3βHSD1 inhibitor. With 
prostatic DHEA metabolic features as a predictive biomarker for 
aggressive prostate cancer, equilin might be potentially useful in 
the treatment of high-risk prostate cancer at early disease stages.

In conclusion, our results demonstrate the correlation between 
prostatic DHEA utilization and tumor aggressiveness at early dis-
ease stages. Genomic classifiers have been generated to evaluate 
prostatic DHEA utilization for patient stratification. UBE3D regu-
lates 3βHSD1 homeostasis, and equilin antagonizes the develop-
ment of tumor with potent 3βHSD1 activity (Figure 9L).

ment resistance is inevitable, and clinical benefits are limited (36–
38). Preventing the onset of aggressive prostate cancer or treating 
it at early stages could fundamentally change the field of prostate 
cancer treatment. Given that less than 20% of newly diagnosed 
prostate cancer will metastasize and become life-threatening, 
approaches for patient stratification and therapeutic targets for 
personalized treatment are essential to avoid overtreatment. 
Racial heterogeneity should also be taken into consideration in 
developing such strategies (39, 40). Although different genomic 
classifiers have been established to predict tumor aggressiveness, 
most of them aim for patients at late disease stages, or provide lim-
ited clues for novel therapeutic targets and strategies (41–44).

Androgens are major oncogenic metabolites for the initiation 
and early development of prostate cancer. DHT is synthesized 
in the prostate gland from testosterone originated from testis 
or DHEA from the adrenal gland. Circulating testosterone lev-
els gradually decrease with age, while prostate cancer incidence 
increases with age. The activity of SRD5A2, which converts tes-
tosterone to DHT, declines with disease progression (9, 45). These 
facts indicate that testosterone is not the sole determinant of pros-
tate cancer. It is yet undetermined how important adrenal DHEA 
is for prostate cancer progression at early disease stages. It is of 
interest only for humans and other primates, who have adrenal- 
secreted DHEA for DHT synthesis when abundant testosterone 
exists (46). The DHEA-to-DHT route provides more intermediate 
metabolites than the testosterone-to-DHT route. These intermedi-
ate metabolites are more stable, with detailed biological functions 
that have not been thoroughly investigated. Here we correlated 
prostatic DHEA metabolic features with tumor aggressiveness to 
find ways to distinguish patients with potential aggressive prostate 
cancer as early as possible. The DHEA-to-DHT route generates a 
polymorphic and heterogenic androgenic environment, which is 
conducive to aggressive prostate cancer onset and progression.

Dozens of enzymes participate in the conversion of DHEA to 
DHT, and it is difficult to comprehensively evaluate the activities 
of DHEA utilization in patients, making it impossible to investi-
gate the physiological or pathological effects of DHEA utilization. 
Here, we treated fresh biopsies with [3H]-DHEA to evaluate pros-
tatic DHEA utilization ex vivo and found that enhanced prostatic 
DHEA utilization is associated with tumor aggressiveness. With 
the aid of next-generation sequencing, we identified high-risk 
SNPs and gene mutations as well as gene signatures to reflect pros-

Figure 7. UBE3D ubiquitinates 3βHSD1. (A) 3βHSD1 levels in HEK293T cells 
overexpressing UBE3D. (B) Endogenous 3βHSD1 levels in LNCaP and VCaP 
cells with or without UBE3D knockdown. Different siRNAs were used to 
knock down endogenous UBE3D. (C) Half-life of endogenous 3βHSD1 in 
LNCaP cells with or without UBE3D knockdown. CHX, cycloheximide, 100 
μM. (D) 3βHSD1 ubiquitylation in the reconstituted ubiquitylation bacterial 
system. (E) 3βHSD1 ubiquitylation in 293T cells with or without UBE3D 
overexpression. (F) K27-linked polyubiquitin (poly-Ub) chains were conju-
gated to 3βHSD1 by UBE3D. K27R, the K-to-R substitution only at K27 in 
Ub protein. (G) Potential 3βHSD1 ubiquitylation sites determined by mass 
spectrometry. The protein samples were obtained from an in vivo ubiquiti-
nation assay in HEK293T cells. (H) Identification of the ubiquitylation sites 
in 3βHSD1. K37R, K55R, and K274R: 3βHSD1-FLAG mutant with K-to-R 
substitutions at K37, K55, and K274, respectively. (I) Stabilities of different 
3βHSD1 mutants in HEK293T cells with or without UBE3D overexpressed.
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scriptome sequencing, and the remaining portion was fixed in forma-
lin, paraffin-embedded, site-mounted, and assessed for pathology 
examination to determine the cancer cell content and Gleason score. 
Biopsy samples were washed with DMEM (Invitrogen), minced with 
razor blades, and then cultured in a 12-well plate at 37°C with DMEM 
(Invitrogen), 10% FBS (ExCell Bio), and penicillin-streptomycin 
(100×; Invitrogen) for immediate steroid metabolism assay.

Steroidogenesis in patient biopsy samples. Biopsy samples were treat-
ed with [3H]-labeled DHEA (100,000–200,000 cpm; final concentra-
tion 48 nM) (PerkinElmer). Two hundred fifty microliters medium 
was collected at 84 hours for HPLC analysis (35). Then samples were 

Methods
Preparation of human primary prostate tissue biopsies. This investiga-
tion was conducted according to Declaration of Helsinki principles. A 
total of 524 primary prostatic biopsy samples were collected from 241 
patients with increasing PSA or abnormal digital rectal exam results. 
The registered patients underwent transperineal ultrasound–guid-
ed systematic biopsy using an 18 G needle. Analysis of biochemical 
parameters including serum sex hormones (DHEA and AD) and pros-
tate multiparametric MRI was performed before the procedure.

One-third of each biopsy sample (2.5 ± 1 mg) was used for meta-
bolic profile analysis, one-third was used for whole-exome and tran-

Figure 8. UBE3D deletion enhances tumor aggressiveness. (A) DHEA utilization in LNCaP and VCaP cells upon UBE3D knockdown. [3H]-DHEA was used to 
treat LNCaP and VCaP after UBE3D knockdown. (B and C) Expression of AR target genes in LNCaP and VCaP after UBE3D knockdown. Charcoal-stripped 
serum (CSS) was used for starvation before DHEA was added. (D) Cell proliferation in LNCaP and C4-2 with or without UBE3D overexpression. Prostate can-
cer cells with doxycycline-induced (Dox-induced) UBE3D overexpression were starved in CSS for 48 hours before DHEA or Dox treatment. (E) Cell prolifera-
tion in LNCaP and C4-2 with or without UBE3D knockout. Different guide RNAs were used to generate UBE3D-knockout cells in LNCaP and VCaP. (F) Effect 
of UBE3D on DHEA-induced xenograft growth. C4-2 cells with Dox-induced UBE3D overexpression were used for xenograft assay in castrated mice. DHEA 
treatment was achieved through sustained-release DHEA pellets. Dox, 2 mg/mL in water. (G) Tumor weights from xenograft assay. Results are shown as 
mean ± SD. *P < 0.05, **P < 0.01 by 1-way ANOVA.
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Aldrich) was used to induce UBE3D expression. DHEA and DHT 
were purchased from Steraloids.

RNA-Seq. Total RNA from biopsy samples was extracted using All-
Prep DNA/RNA/Protein Mini Kit (QIAGEN). VAHTS mRNA-seq V3 
Library Prep Kit for Illumina (NR611) was used for library construc-
tion, following the manufacturer’s instructions. Briefly, 1,000 ng of 
total RNA was used for the purification and fragmentation of mRNA. 
Purified mRNA was subjected to first- and second-strand cDNA syn-
thesis. cDNA was then ligated to sequencing adapters (VAHTS RNA 
Adapters set3–set6 for Illumina, N809/N810/N811/N812) and ampli-
fied by PCR (using 12 cycles). The final libraries were evaluated using a 
Qubit Fluorometer (Invitrogen) and QIAxcel Advanced System (QIA-
GEN). Next, sequencing was performed on NovaSeq 6000 (PE150, 
Illumina) by Berry Genomics Co. Ltd. The quality control of raw 
sequence data was evaluated by FastQC (v0.11.7; https://www.bioin-
formatics.babraham.ac.uk/projects/fastqc), and the quality trimming 
and adapter clipping were performed using Trimmomatic (v0.36-5; 
http://www.usadellab.org/cms/?page=trimmomatic). Paired-end 
reads were aligned to the GRCh38.91 human reference genome using 
HISAT2 (v2-2.1.0; http://daehwankimlab.github.io/hisat2/). Gene 
expression levels were quantified by HTSeq (v0.11.1; https://htseq.
readthedocs.io/en/latest/). The normalization of counts was per-
formed using DESeq2 (v1.24.0; https://bioconductor.org/packages/
release/bioc/html/DESeq2.html). Differential expression analyses 
were performed using DESeq2 based on the gene read count data.

DNA extraction and library construction. Genomic DNA was 
extracted from patient prostatic biopsy samples using AllPrep DNA/
RNA/Protein Mini Kit (QIAGEN). DNA quantification and integrity 
were determined by the Nanodrop spectrophotometer (Thermo Fish-
er Scientific) and 1% agarose electrophoresis, respectively. Genomic 
DNA samples were captured using Agilent SureSelect Human All Exon 
v6 library following the manufacturer’s protocol (Agilent Technolo-
gies). Briefly, approximately 130 μL (3 μg) genomic DNA was sheared 
to 150 to 220 bp small fragments using a sonicator (Covaris Inc.). The 
sheared DNA was purified and treated with reagents supplied with the 
kit according to the protocol. Adapters from Agilent were ligated onto 
the polished ends, and the libraries were amplified by PCR. The ampli-
fied libraries were hybridized with the custom probes. The DNA frag-
ments bound with the probes were washed and eluted with the buffer 
provided in the kit. Then these libraries were sequenced on the Illu-
mina sequencing platform (HiSeq X-10), and 150 bp paired-end reads 
were generated. The whole-exome sequencing and analysis were con-
ducted by OE Biotech Co. Ltd.

Preprocessing of sequencing reads. The raw data were compiled in 
FASTQ format. In order to get high-quality reads that could be used 
for subsequent analysis, the raw reads were preprocessed with fastp 
(v0.19.5). Firstly, adapter sequences were trimmed. Bases in a sliding 
window with average quality value below 20 were also trimmed. Then 
reads with ambiguous bases or shorter than 75 bp were also removed. 
Clean reads were aligned to the reference human genome (GRCh37) 
using the Burrows-Wheeler Aligner (v0.7.12; https://github.com/lh3/
bwa). The mapped reads were sorted and indexed using SAMtools 
(v1.4; https://github.com/samtools/samtools).

Pathway enrichment and gene set enrichment analysis. For pathway 
enrichment analysis, the differentially expressed genes were prepared 
for pathway enrichment with the MSigDB Investigate Gene Set mod-
ule using hallmark gene sets (h.all.v7.2.symbols.gmt). For gene set 

treated with β-glucuronidase (Novoprotein Scientific Inc.) at 37°C 
for 2 hours. Steroids were extracted with a mixture of ethyl acetate 
and isooctane (1:1), concentrated with a vacuum drier (Martin Christ 
Gefriertrocknungsanlagen), and resuspended with a mixture of meth-
anol and water (1:1). An Acquity Arc System (Waters) and a β-RAM 
model 5 in-line radioactivity detector (LabLogic Systems) were used to 
analyze metabolites in samples. A mixture of [3H]-labeled androgens 
(AD, DHEA, progesterone, pregnenolone; PerkinElmer) was used as 
the standard to distinguish metabolites. The percentages of metabo-
lites were calculated based on the area under the curve (AUC) for each 
metabolite. For example, DHEA % = (AUC of DHEA)/(AUC of DHEA 
+ AUC of all DHEA metabolites) × 100%. Prostatic 3βHSD1 activity 
was calculated as: potent androgens %/(DHEA % + potent androgens 
%) × 100%. Based on prostatic 3βHSD1 activity, biopsies showing top 
10% and bottom 10% activities with sufficient tissues for genomic and 
transcriptomic sequencing were selected for further analysis.

Cell lines and materials. LNCaP, C4-2, and HEK293T cells were 
purchased from the American Type Culture Collection and main-
tained in RPMI 1640 (LNCaP, C4-2) or DMEM (HEK293T) with 
10% FBS (ExCell Bio). VCaP cells were provided by Jun Qin (Shang-
hai Institute of Nutrition and Health). All experiments with LNCaP 
and VCaP cells were done in plates coated with poly-dl-ornithine 
(Sigma-Aldrich). Cell lines were authenticated by Hybribio and 
determined to be mycoplasma free with primers 5′-GGGAGCAAA-
CAGGATTAGATACCCT-3′ and 5′-TGCACCATCTGTCACTCT-
GTTAACCTC-3′. The following primary antibodies were used: 
anti-3βHSD1 (Abcam, ab55268), anti-UBE3D (Abcam, ab121927), 
anti-ubiquitin (Abways, CY5965), anti–glutathione S-transferase 
(anti-GST) (Cell Signaling Technology, 2624), anti-MYC (Milli-
pore, 06-549), anti-FLAG (Sigma-Aldrich, H9658), and anti–β-actin 
(ABclonal, China, AC026). For stable cell lines, HEK293T cells were 
transfected with plvx-tight-puro-UBE3D, together with pMD2.G and 
pSAPX.2 plasmids. The supernatant was collected and used to infect 
LNCaP, VCaP, and C4-2 cells. Puromycin (1 μg/mL) and G418 (600 
μg/mL) were used for selection. Doxycycline (Dox; 0.1 μg/mL; Sigma- 

Figure 9. Equilin suppresses UBE3D-related tumor aggressiveness. 
(A) Schema of 3βHSD1 inhibitor screening. (B) Screening results of 176 
potential hits. LNCaP cells were treated with [3H]-DHEA and potential 
hits for DHEA metabolism. Inhibitory efficacy was compared with that 
of biochanin A (BCA). (C) Equilin inhibited DHEA utilization in VCaP cells 
more potently. [3H]-DHEA was used to treat VCaP cells with different 
doses of equilin and BCA. (D) Equilin inhibited the activity of purified 
3βHSD1 more potently. GST-3βHSD1 (2 μg) was used for the in vitro enzyme 
activity assays. (E) Affinity of equilin and BCA to purified 3βHSD1 protein 
determined by surface plasmon resonance technology. Data were fitted 
with a 1:1 kinetic binding model as binding affinity (KD) indicated. (F and 
G) Equilin inhibited the expression of AR target gene. DHEA, 100 nM. 
Charcoal-stripped serum was used for starvation before DHEA was added. 
(H) Effects of equilin on cell proliferation of C4-2 cells. Equilin, 2.5 μM. (I) 
Effects of equilin on cell proliferation of C4-2 cells with or without UBE3D 
knocked out. Equilin, 5 μM; BCA, 5 μM. One-way ANOVA. (J) Effects of 
equilin on xenograft growth. C4-2 cells with or without UBE3D knocked out 
were used for xenograft assay. Mice were castrated and implanted with 
sustained-release DHEA pellets. BCA, 50 mg/kg/d; equilin, 50 mg/kg/d. 
(K) Tumor weights from xenograft assay. (L) Schema for 3βHSD1 regulation 
in aggressive prostate cancer and related treatment with equilin. Results 
are shown as mean ± SD. *P < 0.05, **P < 0.01 by 2-tailed Student’s t test 
unless otherwise stated.
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low 3βHSD1 activity group, with one group as training set and the oth-
er as test set. Random sampling of 200 times was performed to evalu-
ate the performance of the signature and individual gene with random 
forest algorithm. The predictive ability of the signature and individual 
gene for 3βHSD1 activity was compared using area under the receiv-
er operating characteristic curve (AUC). The prognostic ability of the 
signature and individual gene was compared using hazard ratios and  
P values of survival analysis.

3βHSD1 activity–related polygenic risk score calculation. Polygenic 
risk scores (PRSs) were generated using sets of prostate cancer–asso-
ciated variants in UKBB and PRACTICAL (24). To obtain the optimal 
set of PRS variants, the P value threshold for GWAS resulting in the 
best-performing PRS was defined based on the maximum amount of 
variants required for 3βHSD1 activity and PRS to achieve a significant 
association. Variants with a P value below the threshold were selected 
as the optimal-variants set.

Standard approaches were used to generate a PRS for each indi-
vidual (59). For each PRS variant, risk alleles were counted for each 
individual, i.e., the allele dosage at locus i in individual j (di, j) ranges 
from 0 to 2. Mean counts of risk alleles for each study site were used 
to fill in any missing genotype data. This was done to avoid biases 
whereby individuals with more missing data have lower polygenic 
scores. For each risk score, allele dosages were weighted using GWAS 
effect sizes β. PRSs were generated for each individual by summing 
across L loci:

    Equation 1

Survival analysis. Log-rank test was used for Kaplan-Meier survival 
curves. Cox proportional-hazards regression models were used to gen-
erate hazard ratios and 95% confidence intervals.

Gene expression assay. Cells were starved for at least 48 hours with 
phenol red–free and 10% charcoal-stripped serum (Lonsera) and 
treated with DHEA (Steraloids) for 24 hours. Cell to cDNA Kit (EZBio-
science) was used for cDNA synthesis directly from cells. Quantitative 
PCR (qPCR) experiment was conducted with a Bio-Rad CFX96 using 
EZBioscience 2′ SYBR Green qPCR master mix. The primers for qPCR 
have been described in a previous study (20). Results are presented 
as the mean and SD value from 1 representative experiment. All gene 
expression assays were performed in technical duplication and repeat-
ed at least 3 times in independent experiments.

Protein purification and GST binding assay. DNA fragment corre-
sponding to UBE3D was cloned into the pMAL-C2X-3C vector. The 
MBP-UBE3D proteins were expressed in the BL21 (DE3) strain. Then 
the bacteria were grown to an optical density (OD600) of about 0.6, 
with 0.3 mM IPTG to induce protein expression at 16°C for 16 hours. 
Soluble UBE3D was enriched with MBP Resin (Biolab), and 10 mM 
maltose was used for elution. Hitrap Q anion exchange column (GE 
Healthcare) and HiLoad 26/60 Superdex 200 gel filtration column 
(GE Healthcare) were used for further purification.

The human 3βHSD1 gene (accession NP_000853.1) was codon 
optimized and subcloned into a pFastBac vector (Invitrogen) with 
amino-terminal 10× His tag. Baculovirus was generated with the 
Bac-to-Bac system (Invitrogen) and used for infecting Spodoptera fru-
giperda (Sf9) cells (Union-Bio, China) at a density of 2 × 106 cells per 
mL and 10 mL of virus per liter of cells. Infected cells were collected 

enrichment analysis, normalized counts were prepared for analysis 
using GSEA 3.0. The hallmark gene sets (h.all.v7.2.symbols.gmt) were 
used, and the genes were ranked as Ratio_of_Classes or Signal2Noise. 
The permutation type selected was gene_set, and other sets followed 
the default set of GSEA. The thresholds for inclusion were P < 0.05 
and q < 0.25. The GSEA plot, normalized enrichment score, and false 
discovery rate (FDR) q values were derived from GSEA output.

Rare variants burden test. To perform the gene-based burden test, 
high-confidence variants and variants that are likely pathogenic based 
on minor allele frequency were selected. Variants that met quality 
and pathogenicity filters are referred to as “qualifying variants.” For 
each gene, the number of individuals with high 3βHSD1 activity or low 
3βHSD1 activity who carried at least 1 qualifying variant was counted. 
After tabulation of high 3βHSD1 activity group and low 3βHSD1 activi-
ty group counts, a 2 × 2 contingency table was generated for each gene. 
This contingency table represents the number of high 3βHSD1 activity 
group and low 3βHSD1 activity group members who carried and did 
not carry a qualifying variant in each gene. P values were calculated 
using 2-sided Fisher’s exact test.

Variant calling. The GATK HaplotypeCaller was used to conduct 
germline mutation calling (55). Mutect2 (https://gatk.broadinstitute.
org/hc/en-us/articles/360037593851-Mutect2) was used to perform 
somatic SNV and indel calling in biopsy samples with matching blood 
sample. Many annotation databases, such as RefSeq, 1000 Genomes, 
the Catalogue of Somatic Mutations in Cancer (COSMIC), and OMIM, 
were referred to during SNP and indel calling and annotated using 
ANNOVAR (https://annovar.openbioinformatics.org/en/latest/). 
CNVkit was used to detect genomic segments with somatic copy num-
ber variations (CNVs) from whole-exome sequencing data from 54 
tumors (56). In addition, 47 matched normal blood samples from this 
study were used to create a pooled reference to evaluate segment copy 
number, which was further used in processing all tumor samples. The 
GISTIC2 algorithm was used to detect recurrently amplified or deleted 
genomic regions with the following modified parameters: -ta, 0.1; -td, 
0.1; -js, 4; -broad, 1; -brlen, 0.7; -conf, 0.99; -genegistic, 1; -savegene, 1 
(57). The CNV level for all genes was extracted from the GISTIC output 
files (all_threshold_by_genes) using a cutoff of ±1.

To obtain the somatic indel and SNV frequency in patients, tier 
1 genes of Cancer Gene Census in COSMIC were investigated, and 
the results of Mutect2 were converted to MAF file. A patient would be 
identified as a carrier when a mutation was detected in a gene (regard-
less of its alternative allele fraction) in any biopsy samples. The CNV 
frequency within a patient group was calculated as G-score output 
from GISTIC2, which reflects both the degree of an alteration and its 
frequency in the group.

Latent variable hierarchical model. The hierarchical model consists 
of 3 layers, with a set of genes as the bottom layer representing the 
transcriptomic signature underlying 3βHSD1 activity. 3βHSD1 activity 
was modeled as a hidden variable Z at the second layer. 3βHSD1 activ-
ity consequently influences disease-free survival of prostate cancer, 
which is modeled as the final observable layer. Random forest algo-
rithm was used to determine genes associated with Z (3βHSD1 activ-
ity), and disease-free survival analysis based on biochemical recur-
rence with TCGA database was further integrated to parameterize this 
hidden variable model (58).

Performance assessment of gene signature. Biopsy samples were split 
into 2 groups, according to the ratio of high 3βHSD1 activity group to 
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products/prime), and the minimized complex was used as the recep-
tor for virtual screening. The structures of the ligands from the small- 
molecule library were prepared by LigPrep and screened by Glide 
at SP and XP precision in Schrödinger software. The compounds for 
bioassay validation were selected by a comprehensive consideration 
of the docking score, docked poses, structure diversity, and other fac-
tors. The 3D structure of the docked protein-ligand complex and the 
2D protein-ligand interaction diagrams were presented by Maestro 
(https://www.schrodinger.com/products/maestro).

NAD+-based biochemical screening. The biochemical screening 
experiment was performed using a NAD(P)H-Glo Detection System 
Kit (Promega, G9061) in 384-well plates according to the manufactur-
er’s instructions. Firstly, purified 3βHSD1 protein solution was added 
into 1× PBS Buffer (Abcone, P41970) containing 0.1% BSA (Thermo 
Fisher Scientific, 37525) and 10 μM inhibitors from the small-molecule 
library. The reaction was incubated for 30 minutes at 4°C. Secondly,  
1 mM NAD+ and 1 μM DHEA were added into each reaction sample, 
and the reaction was allowed to proceed at 37°C for 15 minutes. Lastly, 
the detection of NADH production was initiated by addition of an equal 
volume of NAD(P)H-Glo Detection Reagent, which contains reductase, 
reductase substrate, and luciferin detection reagent, to the reaction 
sample. Then luminescence was measured with an Envision instrument 
(PerkinElmer), and the available compounds were identified.

Surface plasmon resonance binding assays. The purified 3βHSD1 
protein solution was first diluted with 10 mM sodium acetate (pH 5.5) 
to the concentration of 200 μg/mL. Then the protein was injected at 
a constant flow rate of 10 μL/min for 900 seconds and immobilized 
to CM7 sensor chips (GE Healthcare, UK) using the amine coupling 
kit. All surface plasmon resonance measurements were performed at 
25°C using a Biacore 8K instrument (GE Healthcare, UK) in running 
buffer containing 1× PBS Buffer (pH 7.4) and 1% DMSO at a flow rate 
of 30 μL/min. To determine the binding affinities, BCA and equi-
lin were analyzed using concentration response experiments. The 
resulting increasing concentrations of the analytes were injected 
over purified 3βHSD1 protein in the running buffer for 300 seconds. 
The surface was washed between each binding cycle with running 
buffer for 240 seconds, and the analyte was fully dissociated. Both 
experiments were analyzed by fitting with a 1:1 kinetic binding mod-
el to determine the KD, Ka, and Kd values of different analytes in the 
Biacore 8K evaluation software.

In vitro 3βHSD1 activity assay. 3βHSD1 protein activity was mea-
sured by HPLC technology in vitro. Purified 3βHSD1 protein solution 
was added into 1× PBS Buffer (Abcone, P41970) containing 200 μM 
NAD+, 1 μM inhibitors, [3H]-labeled DHEA, and 0.1% BSA. Reactions 
were allowed to proceed at 37°C for 30 minutes.

Statistics. Unpaired 1-tailed and 2-tailed Student’s t test, 1-way 
and 2-way ANOVA, and log-rank test were performed to compare 
the differences between groups. FDR correction was used for multi-
ple Student’s t test, and Tukey’s correction was used for ANOVA. Cox 
proportional-hazards regression models were used to generate hazard 
ratios and 95% confidence intervals. Pearson’s correlation coefficient 
was used for the correlation analysis. P values of less than 0.05 were 
considered significant. All analyses were performed using R (https://
www.R-project.org/) 3.6.3 software. Data represent the median ± 
interquartile range unless indicated otherwise.

Study approval. All mouse experiments were approved by the 
Institutional Animal Care and Use Committee of the Center for Excel-

after 60 hours by centrifugation, frozen in liquid nitrogen, and stored 
at −80°C. Cell pellets were disrupted using a Dounce tissue grinder 
(Sigma-Aldrich) on ice with lysis buffer (25 mM HEPES [pH 7.5], 150 
mM NaCl, 5% vol/vol glycerol) and then solubilized with 0.08% (wt/
vol) Triton X-100 (Sigma-Aldrich) at 4°C for 2 hours. After centrifu-
gation (55,000g, 45 minutes, 4°C), 3βHSD1 was purified from the 
supernatant using a Ni2+-nitrilotriacetate affinity resin (QIAGEN), 
0.5 mL resin per liter cell culture. 3βHSD1 was then concentrated to 
around 5 mg/mL (Amicon, 50 kDa cutoff; Millipore) and loaded onto 
a Superdex 200 Increase 10/300 GL size-exclusion column (Thermo 
Fisher Scientific) equilibrated with 25 mM HEPES (pH 7.5), 150 mM 
NaCl, and 0.03% Triton X-100. Purified 3βHSD1 was concentrated to 
around 10 mg/mL for the assay.

GST and GST-3βHSD1 proteins were respectively mixed with glu-
tathione resin (Sigma-Aldrich, G4510) in PBS with cocktail and incu-
bated overnight. MBP-UBE3D was added into the mixture and incu-
bated for 2 hours at 4°C. Then beads were washed extensively with 
NP-40 lysis buffer (50 mM Tris-HCl [pH 7.6], 150 mM NaCl, 5 mM 
EDTA, 1% NP-40, and 1.0% protease inhibitor cocktail [Roche]). Pro-
teins bound to glutathione beads were boiled at 100°C for 10 minutes, 
and detected by immunoblotting with indicated antibodies.

In vitro ubiquitination assay. The experiment was performed 
using an in vitro ubiquitination assay kit (Enzo Life Sciences, BML-
UW9920-0001) according to the manufacturer’s instructions. 
3βHSD1 protein was added into each reaction buffer containing 100 
nM E1 ligase (Boston Biochem), 0.5 mM E2 ligase, and 1× Ubiqui-
tin Conjugation Reaction Buffer containing ATP in the presence or 
absence of 100 ng UBE3D proteins. Reactions were allowed to pro-
ceed at 37°C for 1 hour.

Mouse xenograft studies. Male B-NDG [B: Biocytogen; N: NOD 
background; D: DNAPK (Prkdc) null; G: IL2rgknockout] mice (aged 
4–6 weeks) were obtained from Beijing Biocytogen. Cells (1 × 107) 
were implanted subcutaneously into the right flank of the intact mice 
with Matrigel (Corning, 354234). Mice were castrated, implanted with 
DHEA sustained-release pellets (EZBioscience, China), and randomly 
assigned into different groups when the xenografts reached approx-
imately 200 mm3 (length × width × width × 0.5). Stratified random-
ization was applied. Mice were first separated into different groups 
according to the tumor size. Sucrose control (5% sucrose) and dox-
ycycline (2 mg/mL and 5% sucrose in water) containing water were 
replaced every 2 days. Equilin and biochanin A (BCA), both at a dose of 
50 mg/kg/d, were used for equilin function assay. Tumor growth was 
measured every 2 days with a caliper. Two-tailed Student’s t test was 
used for significance calculation; *P < 0.05, **P < 0.01.

Mass spectrometry for detection of ubiquitination sites. UBE3D was 
overexpressed in HEK293T cells and enriched with agarose beads. 
TCEP reduction, NEM alkylation, and trypsin digestion were per-
formed sequentially. Peptides were separated by the EASY-nLC sys-
tem (Thermo Fisher Scientific) and analyzed using a Q Exactive mass 
spectrometer (Thermo Fisher Scientific). Protein and ubiquitylation 
analysis was performed with Thermo Proteome Discoverer 2.1 (Ther-
mo Fisher Scientific), and identified proteins were searched against 
the UniProt Human database (http://www.uniprot.org/).

Virtual screening and molecular docking. The structural model of 
human 3βHSD1 was built by AlphaFold and combined with the NAD+ 
cofactor and substrate DHEA. Then protein-ligand complex mini-
mization was carried out by Prime (https://www.schrodinger.com/ 
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