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RAS trafficking and activation 
by posttranslational 
modifications
Three human RAS genes encode four high-
ly homologous proteins: NRAS, KRAS4a, 
KRAS4b, and HRAS, which share about 
85% identity and a conserved catalytic 
domain (1). Oncogenic RAS mutations are 
found in approximately 25% of human 
cancers and are also prevalent in myeloid 
disorders (2, 3). The most common domi-
nant somatic mutations in RAS genes occur 
at codons 12, 13, and 61, and substitution at 
any of these residues induces RAS proteins 
as constitutively active in human cancers by 
favoring the GTP-bound conformation. Dif-
ferent RAS genes are preferentially mutated 
in distinct cancer types, with KRAS muta-
tions highly prevalent in common epithelial 
malignances (4). Hematologic cancers are 
unusual in that NRAS and KRAS are both 
mutated at high frequencies, with NRAS 
mutations predominating (5). Numerous 
studies suggest that RAS mutations are 

prevalent in relapsed hematological malig-
nancies and that they are associated with 
poor overall survival. However, the direct 
targeting of RAS proteins remains a sub-
stantial challenge due to a lack of druggable 
pockets on the protein surface and a pico-
molar affinity for binding with GTP. Con-
sequently, there is a need to find alternative 
strategies that disrupt RAS signaling.

RAS family proteins share the amino 
acid sequence CAAX in their carboxyl-ter-
minal, where C is cysteine, A is usually 
aliphatic, and X is any amino acid (6). The 
CAAX motif always carries a prenyl or 
farnesyl posttranslational moiety, termed 
CAAX processing, which is necessary, but 
not sufficient, for delivery of RAS proteins to 
the plasma membrane. RAS family proteins 
also must undergo a series of posttransla-
tion modifications at their C-terminal end 
for differential targeting to distinct mem-
branes and activation, called a second sig-
nal, and occurs upstream of the CAAX motif 
(7). Palmitoylation of RAS, as one of the sec-

ond signals, can confer RAS proteins with 
a 100-fold greater affinity for membranes 
than prenylated-only proteins (8, 9). Protein 
palmitoylation is dynamically controlled 
by palmitoyl-acyl transferases and palmi-
toyl thioesterases. Palmitoylation regulates 
protein folding in the ER, mediates protein 
retention in the Golgi, and determines pro-
tein interaction with specific membranes or 
membrane domains (10).

Like all RAS proteins, NRAS under-
goes a series of posttranslational modifi-
cations necessary for binding to the plas-
ma membrane and subsequent activation 
of downstream signaling pathways. The 
requirement for palmitoylation of RAS 
proteins in NRAS-driven leukemia has 
been demonstrated in the NRASG12D mod-
el, which reflects a common NRAS muta-
tion in human myeloid malignancies (11, 
12). However, another study that used a 
KRASG12D model observed that palmitoy-
lation was not essential in KRAS-mediated 
leukemogenesis (13).

In this issue of the JCI, Ren, Xing, et 
al. (14) provided compelling evidence that 
palmitoylation of NRAS plays a critical role 
in trafficking NRAS to the plasma mem-
brane and activating NRAS signaling. The 
findings suggest that targeting RAB27B by 
blocking the palmitoylation of NRAS could 
provide a promising therapeutic strategy 
for NRAS-driven cancers.

CBL/JAK2/RAB27B signaling axis
Three members of CBL family ubiquitin E3 
ligases have been identified so far, name-
ly C-CBL (also called CBL), CBL-B and 
CBL-C. Previous studies have shown that 
deletions or loss-of-function mutations in 
CBL are frequently observed in myeloid 
malignancies, especially in myelodysplas-
tic syndrome/myeloproliferative neoplasm 
(MDS/MPN) overlap syndromes (15, 16). 
Janus kinase 2 (JAK2) is a pivotal kinase in 
hematopoietic stem and progenitor cells 
(HSPCs), and its uncontrolled hyperac-
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Palmitoylation is a critical posttranslational modification that enables the 
cellular membrane localization and subsequent activation of RAS proteins, 
including HRAS, KRAS, and NRAS. However, the molecular mechanism that 
regulates RAS palmitoylation in malignant diseases remains unclear. In this 
issue of the JCI, Ren, Xing, and authors shed light on this topic and revealed 
how upregulation of RAB27B, as a consequence of CBL loss and Janus kinase 
2 (JAK2) activation, contributes to leukemogenesis. The authors found that 
RAB27B mediated NRAS palmitoylation and plasma membrane localization 
by recruiting ZDHHC9. The findings suggest that targeting RAB27B could 
provide a promising therapeutic strategy for NRAS-driven cancers.
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promoting oncogenic NRAS signaling and 
leukemic growth, and inhibiting RAB27B 
may represent a potential therapeutic strate-
gy. The study also highlights the importance 
of identifying small molecules that can dis-
rupt the interaction between RAB27B and 
ZDHHC9 as a potential treatment approach 
for NRAS mutation–driven hematopoietic 
malignancies (14).

Conclusion
Ren and colleagues have discovered a role 
of the CBL/JAK2/RAB27B/ZDHHC9 sig-
naling axis in regulating NRAS trafficking 
to the plasma membrane for activation by 
palmitoylation in myeloid malignancies (14) 
(Figure 1). This study presents the possibility 
for targeting RAS-driven cancers by specifi-
cally blocking NRAS palmitoylation. How-
ever, it also raises important unknowns. For 
instance, the specific palmitoylation sites 
of NRAS and the palmitoyl thioesterases of 
NRAS have yet to be identified in leukemia. 
Furthermore, the prevalence of simultane-
ous CBL loss and NRAS mutations in hema-
topoietic malignancies is unclear. Finally, 
the precise mechanism by which RAB27B 
facilitates the palmitoylation of NRAS still 
requires additional investigation. Further 
exploration will reveal the detailed mech-
anisms underlying the role of RAB27B in 
RAS-driven cancers and the therapeutic 
potential of targeting RAB27B in the treat-
ment of hematopoietic malignancies.
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tivation is a prominent oncogenic driver 
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Figure 1. The proposed mechanism for the regulation of NRAS mutation-driven hematopoietic 
malignancies involves the CBL/JAK2/RAB27B signaling axis. Deletion or loss-of-function mutations 
of CBL stabilize JAK2, leading to upregulation of the transcription of RAB27B. RAB27B facilitates NRAS 
trafficking to the plasma membrane and regulates its palmitoylation, thereby activating the RAS/RAF/
MEK/ERK signaling pathway and promoting leukemogenesis. 
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