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Introduction
The lung epithelium is susceptible to viral, bacterial, and toxic 
insults, but this susceptibility is offset by a remarkable capacity to 
repair and regain function after injury. This regenerative capacity 
of the lung was seen recently in the majority of patients recover-
ing from severe SARS-CoV-2 pneumonia (1). However, it declines 
with age, putting elderly people at disproportionate risk for mor-
tality from acute and chronic lung diseases (2), as evidenced by 
the disproportionate impact of the COVID-19 pandemic on elderly 
populations (3). The age-related decline of lung repair in response 
to viruses and toxins that is observed in humans is in part recapit-
ulated in murine models, which has enabled causal genetic studies 
to elucidate specific mechanisms underlying the decreased repair 
in older individuals (4–6). Furthermore, the development of inno-
vative experimental techniques such as single-cell RNA sequencing 
analysis, in vivo lineage tracing technology, and 3D organoid culture 
systems has provided tools to probe region-specific epithelial stem 
or progenitor cell populations throughout the airways and alveoli 
(7–9). Here, we focus on our emerging understanding of alveolar 
epithelial repair mechanisms and hypotheses for their decline with 
age. We particularly focus on newly described epithelial popula-
tions identified by single-cell RNA sequencing in the alveolar space 
of humans and mice, and the small conducting airways including 
terminal and respiratory bronchioles of humans (10–20).

Development and maintenance of the alveolar 
epithelium
The primary physiologic function of the mammalian lung is to 
supply oxygen sufficient to meet the metabolic needs of the organ-
ism and to remove carbon dioxide to prevent toxicity (21). This is 
accomplished by diffusion of these gases across a basement mem-
brane shared by alveolar epithelial type I (AT1) cells and a special-

ized population of endothelial cells marked by expression of car-
bonic anhydrase 4 (CAR4) (22). AT1 cells are extremely large and 
thin cells that in the mouse can be conceptualized as bedsheets 
draped over approximately three alveoli (23, 24). AT1 cells repre-
sent approximately 50% of the cells in the alveolar epithelium but 
comprise 95% of the alveolar surface area (25). In stark contrast, 
alveolar epithelial type II (AT2) cells are relatively small cuboidal 
cells that secrete lipoproteins (surfactants) necessary to maintain 
alveolar surface tension and prevent regional alveolar atelectasis, 
and play key roles in the host response to infection (26, 27). Several 
fibroblast populations are found in the alveolar interstitium, and 
alveolar macrophages reside both in the alveolar luminal space 
and around bronchovascular bundles (28–30).

Repair of the alveolar epithelium after injury may involve the 
activation of developmental pathways, which might decline with 
advancing age. Development of the alveolar airspaces (i.e., alve-
olarization) starts postnatally during the alveolar stage and con-
tinues for 4 to 5 weeks in mice and at least 3 years in humans (31). 
During homeostasis, the turnover of AT2 cells in the alveolar space 
is thought to be slow, with some estimates suggesting a turnover 
of approximately 7% of murine alveoli per year (32). The normal 
doubling time of murine AT2 cells is long, ranging from months 
to more than one year, likely depending on age, anatomical loca-
tion, or injury exposure (33, 34). Turnover of the lung extracellular 
matrix (ECM) is also thought to be slow. For example, deletion of 
Lama3, one of the matrix component–encoding genes secreted by 
epithelial cells, in mouse distal lung epithelium resulted in just an 
approximately 50% loss of the protein at 3 months (35). Wheth-
er these turnover rates slow with aging in either mice or humans 
represents an interesting but unresolved question, particularly 
given that pulmonary fibrosis, a disease of excessive ECM accu-
mulation, is associated with advanced age and may be worsened 
by reduced rates of ECM turnover (36).

In normal young adult mice, lineage tracing methods revealed 
that AT2 cells both self-renew and give rise to AT1 cells, and thus 
serve as the primary progenitor cells responsible for alveolar epi-
thelial maintenance (32, 34). Evidence suggests that only a sub-
population of AT2 cells (1%–20%) are poised to regenerate AT2 
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AT2 progenitor phenotype is locally maintained by Wnt-produc-
ing niche cells (33), AT2 injury appears to disrupt this exclusive 
reliance on niche cells for Wnt ligands, and upregulates an entire 
suite of Wnts across the bulk population of AT2 cells, presum-
ably to recruit a greater proportion of the AT2 cell population for 
expansion and differentiation to AT1 cells (33). These data are 
consistent with evidence that mouse (33) and human (37) AT2 
cells in organoid culture proliferate in response to Wnt/β-caten-
in pathway activation. The notion that normal alveolar epithelial 
turnover is controlled by narrowly confined signals between epi-
thelial and niche cell interactions, and that injury or advancing 
age blurs and disrupts these signals, is a powerful concept that 
may inform our understanding of the age-related susceptibility 
to alveolar disease.

By applying single-cell RNA sequencing analysis to lung 
explants from patients undergoing lung transplantation for pulmo-
nary fibrosis and lung tissue from decedents without lung disease, 
several groups identified a population of epithelial cells that simul-
taneously express genes that are normally restricted to either AT2 
or AT1 cells (15, 16, 18). These cells also express high levels of cyto-
keratins, genes associated with cell cycle arrest (CDKN2A, CDK-
N1A), and genes sometimes associated with senescence (SER-
PINE1). In parallel, single-cell RNA sequencing of murine models 
of lung injury and fibrosis has identified a transcriptionally similar 
population of cells (10–13). These cells are variously referred to as 
Krt8+ alveolar differentiation intermediate (ADI) (12), damage-as-
sociated transition progenitors (DATPs) (13), and pre–alveolar 
type 1 transitional cell state (PATS) in mice (10), and KRT17+KRT-
5lo (15) or aberrant basaloid cells (16) in humans. Using organoid 
models, Tata and colleagues (10) demonstrated that these cells 
represent a transitional cell population that accumulates during 
the differentiation of AT2 to AT1 cells, a finding confirmed by oth-
er groups in both murine and human systems (10–13, 15, 16, 18). 
We found these cells accumulated in the lungs of patients dying 
from or requiring lung transplantation after COVID-19 (18), a 
finding subsequently confirmed by others (53, 54). In a single-cell 
atlas of murine lung development, Sucre and colleagues identified 
a transcriptionally similar population of cells that emerges during 
postnatal alveologenesis (14). It is worth noting that selective 
killing of AT2 cells in mice can be restored by a temporally dis-
tinct, two-step process: AT2 death is first accompanied by AT1 cell 
membrane expansion over the original AT2 cell footprint; second-
arily, small airway cells migrate, reprogram, and replace AT2 cells 
in the distal lung (55). While the accumulation of transitional cells 
is clearly associated with lung pathology, whether these cells are 
pathogenic or merely markers of ongoing alveolar differentiation 
is still unresolved. Furthermore, it is not clear whether the same 
injury results in a greater accumulation of transitional cells in old 
compared with young animals.

Progenitors in human respiratory bronchioles
In the distal lung of mice and rats, there is an abrupt transition 
between tubular airway structures, lined by cuboidal epithelium, 
and the alveolar epithelium discussed above (56). However, in 
humans, nonhuman primates, ferrets, and other mammals, there 
is an additional anatomic structure called the respiratory bronchi-
ole, where tubules lined by cuboidal epithelium are intermittent-

cells and form new AT1 cells, and this poised state is controlled 
by localized activation of β-catenin (33, 37). These Wnt-activated 
AT2 cells, lineage-labeled with the universal β-catenin target gene 
Axin2, manifest key features of stem cells: they are long-lived, 
with a greater capacity for cell division than Axin2-negative AT2 
cells; they also show an ability to clonally expand (self-renew) and 
give rise to AT1 daughters. What controls the range in percent-
age of Axin2+ AT2 cells between distinct mouse Cre lines remains 
unknown. Using genetic tools to force-activate or inhibit β-catenin 
signaling in AT2 cells, Nabhan et al. affirmed that β-catenin signal-
ing maintained the AT2 progenitor cell state without differentia-
tion, whereas removal of β-catenin promoted the AT2-to-AT1 dif-
ferentiation (33). How β-catenin–activated, Axin2-expressing AT2 
cells are spatially maintained or inhibited within the narrow con-
fines of AT2 cell niches is not fully understood. While the Axin2+ 
status of AT2 cells requires Wnt secretion from adjacent stromal 
cells (33), whether particular Wnts are spatially arranged to direct 
these decisions is under investigation (38). In addition, while AT1 
renewal by AT2 progenitor cells appears biased toward perivascu-
lar and sub-mesothelial regions (32), Axin2+ AT2 cells appear spo-
radically distributed throughout the lung (33, 37), suggesting that 
cues for these regional expansion zones are likely codirected by 
signals other than Wnts.

Alveolar epithelium is susceptible to 
environmental injury
The alveolar epithelium has a large surface area (~70 m2 in 
humans) and is directly exposed to the ambient air, making it sus-
ceptible to airborne pathogens, particulates, and toxins (25, 39, 
40). The alveolar epithelium is protected by a thin layer of fluid 
rich in antimicrobial peptides whose viscosity and mucous con-
tent are precisely controlled (41–43). The epithelial lining fluid is 
continuously surveilled by alveolar macrophages (44, 45). Alveo-
lar macrophages take up particles and toxins that are trapped in 
the epithelial lining fluid, after which they detach from the alve-
olar epithelium and undergo mucociliary clearance to the phar-
ynx, where they are swallowed to be excreted in the feces (43, 
46). Age-related changes in the composition of alveolar lining 
fluid and in the function of alveolar macrophages might enhance 
the susceptibility to infections, particulate matter air pollutants, 
and smoking (47, 48), and contribute to the prevalence of alve-
olar diseases in the elderly (2). Damage to the alveolar epitheli-
um and endothelium and lung inflammation contribute to the 
adverse health consequences of exposure to inhaled particulate 
matter air pollutants and smoking (47, 48). These include pneu-
monia, the most common cause of death from infectious diseases 
(49); chronic obstructive pulmonary disease (COPD), among the 
top four causes of death in the United States (49); lung cancer, 
the most common cause of cancer-related death in both men and 
women (50); and pulmonary fibrosis (51).

Repair of the damaged alveolar epithelium
Studies in mouse models of lung injury and repair combined with 
studies of murine and human alveolar epithelial cells in organ-
oid cultures have elucidated pathways of alveolar repair in some 
detail, and the reader is referred to comprehensive reviews on 
this topic (8, 52) (Figure 1). Nabhan et al. showed that while the 

https://doi.org/10.1172/JCI170504


The Journal of Clinical Investigation   R E V I E W  S E R I E S :  L U N G  I N F L A M M AT O RY  I N J U RY  A N D  T I S S U E  R E PA I R

3J Clin Invest. 2023;133(20):e170504  https://doi.org/10.1172/JCI170504

thelia (61). Independent groups identified these cells as originating 
from the distal airway (37, 61–63), and this heterogeneous cell pop-
ulation appears to migrate to severely damaged areas and undergo 
expansion (64). Inhibition of Notch signaling via HIF-1α deletion or 
enhanced Wnt/β-catenin activity promotes the differentiation of 
this cell population into AT2/AT1 cells, rather than KRT5/p63+ (64, 
65). The resulting KRT5/p63+ pods persist over time (66), and this 
response seems adaptive, as ablation of KRT5+ cells during influenza 
A–induced injury led to the accumulation of inflammatory cells and 
the development of fibrosis (67). Homologous structures have been 
observed in humans with idiopathic pulmonary fibrosis, and their 
ontologic origins are under investigation (68).

Bronchioalveolar stem cells are a rare cell population, coexpress-
ing the club cell marker CC10 (SCGB1A1) and the AT2 marker SP-C 
(69). These cells reside at the bronchoalveolar duct junction in mice, 
and can serve as an alternate progenitor cell population in some 
conditions (70–73). However, these cells have not been observed in 
humans. Some speculate that their function is performed by progen-
itor cells in the respiratory bronchioles in humans (19, 20).

In addition, it has been suggested that a small population of 
AT1 cells may “reverse-differentiate” back to an AT2 fate after inju-
ry through alterations in actin organization that promote nuclear 
accumulation of the Hippo pathway transcription factors YAP and 
TAZ (74, 75). Thus, as with other regenerative organ systems (e.g., 
gut), a variety of differentiated lung epithelial cells show capacity 
to reprogram and replenish proximal cell types through iterative 
bidirectional communication between epithelia and stroma com-
ponents. Indeed, understanding the molecular rules of reparative 
versus pathogenic epithelial-mesenchymal cross-communication 
and how they change with advancing age may guide therapeutic 
approaches to amplify or attenuate these circuits.

ly interrupted by alveolar epithelium, creating a small airway that 
participates in gas exchange (19, 20, 39). Respiratory bronchioles 
are a primary site of many age-related human pathologies, includ-
ing emphysema (an important pathologic finding in patients with 
COPD) (20) and bronchiolitis obliterans, seen in patients with 
chronic lung allograft dysfunction after lung transplantation (57), 
as a complication of some systemic autoimmune disorders (58), 
and in response to specific inhaled toxins (59, 60). Two groups 
independently applied single-cell RNA sequencing and single-mol-
ecule fluorescence in situ hybridization (sm-FISH) to microdissect-
ed regions of the human lung and identified a transcriptomically 
novel progenitor cell population in the respiratory bronchioles (19, 
20). Using organoid cultures and computational models to infer the 
origins and progeny of these progenitor cells, Murthy et al. suggest-
ed that these “AT0” cells (marked by expression of SCGB3A2, SFT-
PC, and AGER) originate from AT2 cells, and can give rise to either 
AT1 cells or cuboidal terminal bronchiole secretory cells (marked 
by expression of SCGB3A2 and SFTPB) (19). In contrast, Basil et 
al. suggested that respiratory airway secretory cells (also marked 
by expression of SCGB3A2) undergo unidirectional differentiation 
into AT2 cells (20). Further studies will be required to resolve the 
fate of these cells during lung injury and repair, and the functional 
significance of these cells in the development of lung diseases.

Other progenitor populations implicated in 
age-related lung disease
Influenza A infection in mice results in diffuse lung injury that is het-
erogeneous in severity across lung regions. Kumar et al. noted that in 
areas of severe injury, damaged alveolar epithelium was abnormally 
replaced by “pods” of cuboidal epithelial cells marked by expres-
sion of KRT5 and p63, which are typically expressed in airway epi-

Figure 1. Repair of the alveolar epithelium after lung injury. (A) Alveolar epithelial type II (AT2) cells are small cuboidal cells that serve as a partially com-
mitted progenitor population. AT2 cells are required for the differentiation and maintenance of tissue-resident alveolar macrophages and are maintained 
by signals from adjacent mesenchymal cells, including Wnt2+ fibroblasts. Alveolar epithelial type I (AT1) cells are large flat cells that can spread over more 
than one alveolus. Their differentiation and maintenance in the niche also require signals from the adjacent mesenchyme, including Wnt5a+ fibroblasts. 
(B) In response to injury, AT2 cells undergo asymmetric division, with the smaller daughter cell regenerating the AT2 cell and the larger daughter cell 
differentiating into an AT1 cell. Single-cell RNA sequencing of the lung in murine models of injury, repair, and fibrosis and patients with pulmonary fibrosis 
identified a population of transitional cells with intermediate phenotypes between AT1 and AT2 cells that accumulate in areas of fibrosis. Transitional cells 
and profibrotic monocyte-derived alveolar macrophages recruited in response to epithelial injury drive the differentiation of fibroblasts into an interme-
diate phenotype characterized by expression of Sfrp1 and subsequently a myofibroblast, characterized by Cthrc1. Tregs provide signals that directly or 
indirectly enhance epithelial repair.
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chronic lung diseases, including pneumonia, COPD, lung cancer, 
and pulmonary fibrosis (2). This impact of age on the severity of 
lung disease is recapitulated in murine models. For example, com-
pared with young adult mice, old mice develop more severe and 
persistent fibrosis in response to bleomycin, suffer higher mor-
tality after influenza infection, and fail to completely repair the 
lung after influenza-induced lung injury (4, 5, 88, 89). Young adult 
mice can generate new alveoli after unilateral pneumonectomy, 
but this ability is lost in older mice, perhaps as early as 9 months of 
age (90, 91). Isolated AT2 cells from old mice generate fewer and 
smaller alveolar organoids when compared with those from young 
adult mice (92).

A combination of cell-autonomous and non-cell-autonomous 
mechanisms likely drives these age-related phenotypes. An exam-
ple of a purely cell-autonomous mechanism of progenitor cell dys-
function is polyploidy, which offers cells a mechanism to become 
larger as cell size scales with DNA content (93). This is advanta-
geous during injury when the barrier is leaky, but might come at 
a cost of reduced proliferative potential after subsequent injury 
(94). Polyploidy has been observed in differentiating AT2 cells 
in culture and in injured mice (95, 96), but its role in lung aging 
is still unexplored. An example of a purely non-cell-autonomous 
mechanism of age-related epithelial stem cell dysfunction can be 
found in the observation that Tregs from young but not old mice 
drive alveolar epithelial repair after adoptive transfer (88). In the 
remainder of this Review, we discuss both cell-autonomous and 
non-cell-autonomous changes in the aging lung that might impair 
epithelial repair after injury. Shortened telomeres represent a 
clinically important case in which alveolar epithelial regeneration 
might be impaired by both cell-autonomous and non-cell-autono-
mous mechanisms (97, 98).

Cellular stress response and aging
The lungs are constantly exposed to environmental stressors and 
infectious pathogens. Cellular stress is associated with chronic 
lung diseases and has been implicated in the pathogenesis of lung 
diseases such as COPD and pulmonary fibrosis. The integrated 
stress response (ISR) is an evolutionarily conserved mechanism 
that protects cells against a variety of stresses (reviewed in ref. 99). 
Although additional mechanisms exist to respond to these stress-
es, particularly proteostasis defects, we will focus our discussion 
on the ISR, as recent studies link it to several pathogenic process-
es, encouraging further consideration of its role in aging. ISR acti-
vation is induced by four specialized kinases (PERK, PKR, GCN2, 
and HRI), which sense and respond to distinct environmental 
stressors (Figure 2A). These kinases all phosphorylate eukaryotic 
translation initiation factor 2 subunit α (eIF2α) at Ser51 (100). Phos-
phorylation of eIF2α alters its binding to the guanine nucleotide 
exchange factor eIF2B, inhibiting its function, which results in a 
global inhibition of translation (101) but preferential translation 
of select mRNAs that harbor inhibitory upstream open reading 
frames in their 5′-untranslated regions, preventing translation 
during homeostasis (99, 102). These include ATF3, ATF4, ATF5, 
and CHOP (encoded by Ddit3) (103). These transcription factors, 
particularly ATF4, increase the expression of genes involved in 
stress response and one-carbon metabolism, and further enhance 
the expression of Ddit3. At the same time, ATF4 drives the tran-

The aging mesenchyme’s role in alveolar 
epithelial plasticity
The epithelium and mesenchyme form reciprocal interactions 
during homeostasis, which are likely critical for stem cell main-
tenance that involves signaling through a variety of growth and 
differentiation factors. Gokey et al. showed that treatment of 
fibroblasts isolated from old mice with retinoic acid improved the 
age-related loss of alveolar epithelial differentiation in an organ-
oid model, which they attributed to enhanced expression of plate-
let-derived growth factor subunit A (PDGFA) (76). Nabhan et al. 
found that inhibiting Wnt secretion from PDGF receptor A–pos-
itive (PDGFRA+) fibroblasts (via removal of the Wnt chaperone 
Wntless) reduced the number of Axin2+ AT2 cells (33). Consistent 
with a model in which Wnt signals from fibroblasts maintain an 
epithelial stem cell niche, Lee et al. identified a population of 
alveolar mesenchymal cells marked by expression of the stem cell 
marker leucine-rich repeat–containing G protein–coupled recep-
tor 5 (LGR5), which also expressed high levels of Wnt ligands 
(77). Similarly, Murthy et al. identified a population of LGR5-ex-
pressing fibroblasts in human respiratory bronchioles, which they 
implicated in the development of the terminal bronchiole secre-
tory cells and AT0 cells (19). Since LGR5 itself is a Wnt/β-catenin 
target gene (78), and Wnt/β-catenin–activated (Axin2+) mesen-
chymal cells enhance AT2 cell expansion and self-renewal (79), 
Wnt signals in both the epithelial and fibroblast niche cells appear 
to be critical for alveolar epithelial regeneration. Other pathways, 
including FGF signaling, have also been identified as regulating 
the interaction between epithelium and mesenchyme for stem cell 
maintenance (79–81).

Recently, Mayr et al. applied serial single-cell RNA sequenc-
ing and sm-FISH to the mouse model of bleomycin-induced lung 
injury and fibrosis (82), and identified a fibroblast population 
characterized by expression of Sfrp1 in peribronchiolar, adven-
titial, and alveolar locations. Sfrp1+ fibroblasts appear to precede 
the emergence of Cthrc1-expressing myofibroblasts (82). Sfrp1 is 
expressed in lung mesenchyme during embryogenesis (83), but 
the expression level appears to be decreased after birth (84). We 
also observed the expansion of a transcriptionally similar popula-
tion of Sfrp1+ fibroblasts in a murine model of lung epithelial defi-
ciency of mitochondrial electron transport chain (ETC) complex 
I, which results in the accumulation of abundant transitional epi-
thelial cells in alveoli (85). In humans, a population of fibroblasts 
characterized by expression of CTHRC1 and TGFB1 was identified 
in lung explants from patients with idiopathic pulmonary fibrosis 
(86). These fibroblasts drove the differentiation of human AT2 cell 
ex vivo organoid cultures toward a basal cell phenotype reminis-
cent of transitional cells (68). Notably, stromal cell aging can neg-
atively impact AT2 progenitor activity in organoid growth assays, 
but the soluble niche factors responsible for this deficit remain 
unclear (87). Collectively, these results suggest bidirectional sig-
nals between epithelium and mesenchyme that are important 
during the homeostatic response to injury.

Age-related decline in alveolar regeneration in 
murine models
Epidemiologic data consistently implicate age as the most import-
ant risk factor for the development of the most prevalent acute and 
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inhibitor of the ISR (ISRIB) (99, 103), which was shown to exert ben-
eficial effects across an array of developmental, neurodegenerative, 
and normal aging phenotypes in murine models (105, 112–121).

The laboratories of Peter Walter and David Ron used a struc-
tural approach to show that ISRIB interacts with eIF2B, restoring 
its guanine nucleotide exchange function even in the presence of 
phosphorylated eIF2B (99, 101, 103, 122) (Figure 2A). Because it 
facilitates the formation of eIF2B multimers, its effect is limited 
when ISR activation (evidenced by eIF2B Ser51 phosphorylation) 
is extremely robust, as occurs during viral infection (99). Hence, 
ISRIB functions as a tool compound, with a precisely defined 
molecular mechanism, that can dial back without completely 
inhibiting ISR signal. In murine models of bleomycin- and asbes-
tos-induced lung fibrosis, our group found that ISRIB attenuat-
ed fibrosis severity in both young and old mice (105). We used 
a lineage tracing system to label AT2 cells and found that ISRIB 
increases the number of lineage-labeled AT1 cells and reduces 
the number of KRT8+ transitional cells both during bleomycin-in-
duced fibrosis and in a murine model of adult alveologenesis after 
pneumonectomy. Collectively, these findings suggest a model in 
which persistent activation of the ISR stalls AT2-to-AT1 differenti-
ation, preventing restoration of the alveolar epithelial barrier and 
promoting fibrosis (Figure 2B). Further support for this model was 
provided by Dobrinskikh et al., who found that ISRIB attenuated 
fibrosis in mice overexpressing Muc5b in the epithelium (119).

Age-related mitochondrial dysfunction
Transcriptomic and metabolomic profiling of old animals, 
including humans, has revealed an age-related loss of mitochon-
drial transcripts, number, and function that varies between cell 
populations and tissues (123). Whether these changes are func-

scription of Gadd34, which encodes a phosphatase that targets 
eIF2α, creating a negative-feedback loop that allows further trans-
lation. Consequently, ISR activation drives a transcriptional pro-
gram that enables cells to restore cellular homeostasis or activate 
apoptosis during environmental stress. Evidence suggests that 
there is an age-dependent ISR induction in mice and Caenorhab-
ditis elegans (104), but it remains unknown whether the age-de-
pendent ISR induction is pathogenic or adaptive and what is the 
optimal level and duration of ISR activation. Notably, we have 
reported that pathologically high levels of ISR activation inhibit 
AT2-to-AT1 differentiation (85), and inhibiting ISR activation pro-
motes AT2-to-AT1 differentiation and ameliorates bleomycin-in-
duced lung fibrosis in mice (85, 105) (Figure 2B).

Endoplasmic reticulum (ER) stress has been linked to the devel-
opment of fibrotic diseases, which is the subject of an excellent 
review in the JCI (106). Lawson et al. identified a mutation in SFT-
PC in a cohort of patients with familial pulmonary fibrosis (107). The 
mutation interferes with the normal folding of SFTPC in the ER, 
leading to the activation of ER stress pathways in alveolar epithelial 
cells (108). They went on to show that mice expressing this mutant 
protein, as well as mice treated with tunicamycin, showed increased 
fibrosis in response to bleomycin (109). Consistent with this hypoth-
esis, Borok et al. found that mice deficient in Grp78 (encoding BIP) 
were sensitized to bleomycin-induced fibrosis (110), and Katzen et 
al. showed that an inhibitor of ER stress attenuated fibrosis in mice 
expressing a human mutant SFTPC associated with familial pulmo-
nary fibrosis (111). PERK is localized to the ER membrane and is acti-
vated upon ER stress, linking the ER stress pathways with the ISR, 
creating a challenge for understanding the respective roles of these 
pathways in the pathobiology of pulmonary fibrosis. In a screen 
for inhibitors of PERK, Sidrauski et al. identified a small-molecule 

Figure 2. The integrated stress response and cell differentiation. (A) Integrated stress response (ISR) signaling. ISR activation inhibits global protein 
synthesis but induces ATF4 translation, both of which are improved by the ISR inhibitor (ISRIB). (B) Cell-autonomous and environmental signals during 
aging may contribute to activation of the ISR that serves as a barrier to AT2 differentiation. This could result in the accumulation of transitional cells that 
may preclude normal repair.
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tionally important has been a subject of some debate, as max-
imal mitochondrial capacity typically far exceeds metabolic 
tissue demands even under stress conditions, and modest reduc-
tions in mitochondrial function induced by haploinsufficiency 
in mitochondrial genes do not accelerate aging phenotypes in 
unstressed animals (124). Interestingly, Liu and colleagues iden-
tified rare genetic variants in families with pulmonary fibrosis 
involved in the formation of mitochondrial ETC complex I (125), 
and Cuevas-Mora et al. identified alterations in mitochondrial 
function in alveolar epithelial cells with mutations in adaptor 
protein complex 3 β1 (Ap3b1), a cause of Hermansky-Pudlak syn-
drome (126). Several groups have shown that the ISR is activat-
ed in response to mitochondrial ETC dysfunction in vitro and in 
vivo (127–138). As noted above, we showed that deletion of mito-
chondrial ETC complex I from the alveolar epithelium during 
development led to accumulation of cells with transcriptional 
signatures similar to those of transitional cells during postnatal 
alveologenesis and models of lung injury, ultimately resulting in 
death of the animal (85). The accumulation of transitional cells 
was driven by an increase in the ratio of NADH to NAD+, which 
was necessary for activation of the ISR. Remarkably, inhibition 
of the ISR with ISRIB rescued the developmental phenotype in 
these mice, likely by inhibiting a pathway involving the mito-
chondrial proteins OMA1 and DELE1, which were identified by 
genetic screens as proteins linking mitochondrial inhibition with 
ISR activation (133, 134). These findings suggest the intriguing 
hypothesis that age-related mitochondrial dysfunction might 
drive excessive ISR activation during alveolar epithelial differen-
tiation to preclude lung repair after injury (Figure 2B).

Age-related senescence
Non-malignant cells maintained in culture eventually develop 
replicative senescence, characterized by stable expression of the 
cell cycle arrest proteins p16 and p21 (encoded by CDKN2A and 
CDKN1A, respectively) (139). These cells often increase in size, 
become resistant to apoptotic stimuli, and secrete cytokines, 
growth factors, and immune modulators, a condition referred to 
as the senescence-associated secretory phenotype (SASP) (140). 
Evidence for a role of senescence in age- related phenotypes 
comes from transgenic mouse models in which induction of the 
p16 promoter drives expression of a protein that causes apop-
tosis (141, 142). In these models, promoting apoptosis of p16- 
expressing cells resulted in improvements in age-related dysfunc-
tion (141, 143–146). Furthermore, improvements in age- related 
phenotypes are consistently observed when drugs that activate 
apoptosis or inhibit antiapoptotic proteins in p16-expressing 
cells, referred to collectively as senolytics, are administered to old 
mice (147–149). Based on these data, it is hypothesized that the 
accumulation of senescent cells within organs and tissues with 
advancing age results in high levels of SASP proteins that drive 
age-related phenotypes.

However, single-cell RNA sequencing atlases of the human 
and murine lung challenge this senescence hypothesis. First, 
CDKN2A and CDKN1A are expressed in multiple cell types in 
the normal lung, even during development, and the abundance 
of these cells is not expanded in normal aging (14, 150). Second, 
despite the ability to detect rare cell populations (as few as 0.01% 

of cells in the human lung cell atlas), single-cell RNA sequencing 
studies have not detected a population of transcriptionally distinct 
cells simultaneously expressing CDKN2A and SASP genes in the 
normal human lung (150), or in diseases like pulmonary fibrosis, 
where senescence has been suggested to play a role (15–17). It has 
been suggested that senescent cells may be selectively damaged 
or destroyed during tissue digestion for cell isolation, a possibility 
that should soon be addressed by spatial transcriptomic approach-
es. Alternatively, the beneficial effects of senolytics and therapies 
targeting p16-expressing cells on age-related outcomes may be 
attributable to the apoptosis of cells expressing p16 that are not 
senescent (151), or may result from a nonspecific response to the 
efferocytosis of apoptotic cells generated in response to senolysis, 
as has been suggested to explain the beneficial effects of mesen-
chymal stem cell administration (152, 153).

The transitional epithelial cells that emerge during pulmonary 
fibrosis described above express CDKN2A, CDKN1A, and other 
canonical genes associated with cellular senescence, but careful 
lineage tracing studies in mice and in human organoid systems 
suggest they are capable of differentiating into AT1 (10–13, 15, 18, 
105). Given their high-level expression of CDKN2A, however, it 
is likely that these cells are targeted when apoptosis is induced in 
p16-expressing cells. The amelioration of fibrosis in response to 
these therapies indirectly supports the hypothesis that transitional 
cells are not merely markers of failed epithelial repair but are caus-
ally related to its pathobiology. In contrast, Negretti et al. observed 
these cells during normal mouse development (14), and we did 
not observe lung fibrosis when transitional cells were expanded in 
response to epithelial loss of mitochondrial ETC complex I (85).

All of the stem cell populations discussed above, including 
AT2 cells, are cuboidal cells that are extremely small in compari-
son with large, flat AT1 cells, which in mice can span more than one 
alveolus (23). As these stem cells differentiate, they must migrate 
to sites of injury and dramatically increase their membrane sur-
face area either by spreading from a leading edge or by expand-
ing in response to luminal fluid pressure (154). In this context, the 
finding that transitional epithelial cells upregulate genes encoding 
p53, p21, and p16, those associated with DNA damage signaling 
and cell cycle arrest, and genes involved in migration and matrix 
remodeling may reflect changes that facilitate these cellular pro-
cesses rather than end-stage pathology (10–13). Indeed, a form of 
epithelial cell migration commandeered by “leader cell” behavior 
relies on p53/p21 signaling (155).

Age-related changes in the ECM
There is emerging evidence that the ECM undergoes extensive remod-
eling and increases tissue stiffness during aging (36, 156). Similarly, 
several studies have reported age-related ECM changes in the lungs 
altering lung mechanics and structure (157). Atomic force microscopy 
has been used to demonstrate age-related increases in stiffness in the 
parenchymal and vessel compartments of the human lungs (158). Inte-
grated analysis of transcriptomic and proteomic data from aged mice 
revealed ECM changes, including increased collagen IV and XVI and 
decreased Fraser syndrome complex proteins and collagen XIV (159). 
Also, the expression and solubility of fibrillar collagens are decreased 
in the lungs of aged mice (160). ECM alterations in the lungs are asso-
ciated with chronic lung disease and have emerged as a potentially 
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important player during lung development, homeostasis, and repair 
after injury (161). Recent studies suggest that changes in lung mechan-
ical tension may be a cue for AT2 cells to proliferate and differentiate 
in order to repair damaged AT1 cells or damaged whole alveoli (162, 
163). YAP is a transcription coactivator and acts as a stiffness sensor, 
regulating mechanotransduction. Using conditional knockout mice 
and pharmacologic tools, Liu et al. demonstrated that YAP in AT2 cells 
is necessary for post-pneumonectomy alveolar growth, which was reg-
ulated by JNK and p38 MAPK signaling upstream (162). They showed 
that Cdc42 was required for the activation of JNK, p38, and subse-
quently YAP in post-pneumonectomy alveolar growth. Furthermore, 
the loss of Cdc42 in AT2 cells induced spontaneous progressive lung 
fibrosis in aged mice, and led to impaired alveolar growth and fibro-
sis after pneumonectomy (163). Whether and how age-related ECM 
changes in the lung alter epithelial repair remains an important area 
for further investigation.

Age-related immune dysregulation
A substantial body of literature points to dysregulation of the immune 
system with advancing age. This is characterized by systemic inflam-
mation: increased levels of cytokines induced upon activation of the 
NLRP3 inflammasome (IL-1β and IL-18) in parallel with increased 
levels of TNF-α and IL-6 (164, 165). At the same time, adaptive 
immune responses and vaccine efficacy are also reduced in the elder-
ly. Collectively, these changes might contribute to the enhanced sus-
ceptibility of the elderly to pathogens and result in hyperinflammato-
ry responses during sterile and infectious injury (166). The molecular 
drivers of these changes are incompletely understood.

In parallel, immune-mediated repair of the lung declines with 
age. For example, Tregs contribute to lung repair after injury, but 
Tregs from old mice show a cell-autonomous loss of reparative 
function (88, 167). Alveolar macrophages have also been impli-
cated in lung repair after injury (30). We observed an age-associ-
ated reduction in expression of cell cycle genes in alveolar mac-
rophages in mice, accompanied by reduced numbers of alveolar 
macrophages (4). In contrast to Tregs, however, these changes 
were not cell autonomous, and instead were driven by the alve-
olar microenvironment. Interestingly, we did not observe chang-
es in the levels of GM-CSF expressed by AT2 cells or the levels of 
GM-CSF in alveolar fluid with age. Instead, a transcriptomic anal-
ysis and in vitro studies implicated ECM changes, including lev-
els of the major extracellular polysaccharide hyaluronan (4). The 
mechanisms by which immune cells interact with the epithelium 
or other lung cells to promote tissue repair and how these func-
tions change with aging are poorly understood.

Conclusions
Notably, while here we have focused on new insights into age- 
related changes that contribute to failed alveolar epithelial repair in 
the elderly, there are other mechanisms involved that we have not 
discussed for the sake of brevity. These include the accumulation of 
DNA damage with age (168), the loss of transcriptional fidelity lead-
ing to a length imbalance favoring long transcripts in the transcrip-
tome (169), and telomere shortening, the effects of which have been 
localized to the alveolar epithelium in animal models (97, 170).

With technical innovations such as single-cell analysis and genet-
ic mouse models, we have made dramatic advances in the past decade 
toward understanding the mechanisms of alveolar repair. Neverthe-
less, research in this area has been limited in both humans and mice, 
albeit for different reasons. In humans, sample collection is biased 
toward sicker patients, who are typically older. In the absence of 
specific recruitment strategies, the relative undersampling of young 
individuals underpowers studies comparing biological responses in 
patients over the lifespan. In animals, meaningful inclusion of age 
as a biological variable in causal genetic models requires time (18–24 
months is considered old in a C57BL/6 mouse) and incurs substan-
tial costs, both of which can easily exceed a typical five-year research 
award. Studies of lung aging will therefore require a concerted com-
mitment by investigators conducting clinical and basic translational 
research and by funding agencies. Arguably, these investments are 
worthwhile given the strength of the epidemiologic link between 
advanced age and acute and chronic lung disease and the impact of 
these diseases on public health.
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