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Introduction
In renal transplantation, short-term allograft outcomes, including 
acute rejection, have significantly improved, without a propor-
tionate improvement in long-term allograft outcomes (1). While 
distinct etiologies are identifiable in half of all allograft loss cas-
es, allograft fibrosis or interstitial fibrosis and tubular atrophy (IF/

TA) of unclear etiology account for 30% to 40% of cases (2, 3). 
A role for antidonor alloimmunity is directly implicated in all cas-
es of allograft failure from rejection, but is also reported in IF/TA 
(without rejection) by transcriptomic data (4). Thus, a majority of 
allograft loss is related to immune injury.

Alloimmune responses leading to allograft damage are trig-
gered by recipient T cells directly interacting with mismatched, 
polymorphic donor human leukocyte antigen (HLA) molecules 
and/or by indirectly recognizing donor-derived peptides processed 
and presented by recipient HLA on recipient antigen-presenting 
cells. These cognate interactions are driven by DNA sequence 
mismatch between HLA regions of donor and recipient on chro-
mosome 6. Non-HLA loci that contribute to allograft rejection can 
alter protein sequences that, if mismatched between donor and 
recipient, can trigger activation of pathogenic, donor-reactive T 
cells in donor-recipient (D-R) pairs that share HLA, and have been 
traditionally labeled as “minor” histocompatibility (mH) antigens. 
Our group among others have employed genome-wide screening 
to advance this field by demonstrating that such D-R genetic dif-
ferences can impact allograft survival either via rejection (5–7) or 
via allograft IF/TA (8) independently of HLA matching. Efforts 
to unravel specific non-HLA gene loci, wherein D-R mismatches 
disproportionately contribute to transplant outcomes, and under-
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over half of all graft losses were related to immunologic events 
(Supplemental Table 2). There were 36 cases of subclinical or 
clinical rejection (acute rejection, AR) identified within 2 years 
of transplant, as described previously (13). After excluding vari-
ants with low confidence (INFO score < 0.4) or high missing rate 
(≥0.05), with no alternative allele, or in the MHC region, there 
remained 30,109,467 variants to calculate genome-wide D-R mis-
match score; after filtering variants with low mismatch frequen-
cy (≤0.05), there remained 2,251,582 common variants used for 
gene-level and variant-level mismatch calculation (Supplemental 
Figure 1A and Methods).

Validation cohort. Briefly, the parent CTOT-01 study was a 
prospective, multicenter, observational study that enrolled 280 
adult and pediatric, crossmatch-negative kidney transplant candi-
dates. All CTOT-01 recipients were followed up for 2 years after 
transplantation, while CTOT-17 was designed to observational-
ly collect data on 5-year outcomes among patients in this cohort 
(Methods). Genome-wide genotype data were generated and 
imputed as well with the 1000 Genomes Project reference panel 
for 146 D-R pairs from the parent CTOT-01/17 study (Methods). 
In the CTOT cohort, the median follow-up time was 1,825 days, 
124 (84.8%) were living donors, and 9 (6.2%) DCGL events were 
observed (Supplemental Table 1 and Methods). The etiologies of 
graft loss in CTOT have been reported previously (10). The most 
common cause was chronic allograft injury/chronic rejection. As 
compared with the GoCAR cohort, the CTOT cohort had young-
er donors and recipients, fewer rejection and DCGL events, more 
donors with African American ancestry, and higher HLA mis-
match score, while other relevant variables had no significant dif-
ference (Supplemental Table 1). With similar quality control steps 
as GoCAR on the imputed genotype data, a total of 11,091,731 
variants remained for genome-wide D-R mismatch score calcula-
tion, and 137,777 SNPs were left for the gene-level and variant-lev-
el mismatch analyses (Supplemental Figure 1B and Methods).

Defining D-R mismatches at different genomic scales. In any giv-
en D-R pair in either cohort, we defined 3 levels of donor-to-recip-
ient mismatches based on imputed genotype data: genome-wide 
mismatches, gene-level mismatches, and variant-level mismatch-
es, where the former 2 were themselves defined based on cumu-
lative variant-level mismatches (Figure 1 and Methods). At the 
variant level (including SNPs and small indels), a D-R mismatch 
was defined as the donor carrying 1 or 2 alleles that are not present 
in the recipient. Depending on the number of “alien” alleles intro-
duced from the donor to the recipient, a variant-level mismatch 
was further categorized as single mismatch (1 allele introduced), 
double mismatch (2 alleles introduced), and any mismatch (1 or 2 
alleles introduced) (Figure 1). We identified 1,280,475 ± 335,138 
of any mismatches in the 385 GoCAR D-R pairs and 233,365 ± 
97,270 in the 146 CTOT D-R pairs at the genome-wide scale. The 
non-exonic region contributed dominantly to the genome-wide 
mismatch in both cohorts and the nonsynonymous SNPs con-
tributed approximately 50% of the mismatches in exonic regions 
(Supplemental Table 2). The differences in the total number of 
mismatches between the 2 cohorts are due to different genotyp-
ing platforms and imputation methods, but after normalizing with 
interquartile range (IQR), the genome-wide mismatch score is 
consistent between studies (see results below).

stand mechanisms thereof, have clinical applications for allograft 
risk stratification, surveillance, or even therapeutics. One example 
is the reported role of mismatches at rs893403 within the LIMS1 
gene locus, a copy number variant–tagging (CNV-tagging), intron-
ic single nucleotide polymorphism (SNP), that was associated with 
rejection episodes in 3 independent cohorts (9). An increased risk 
of rejection was observed only when the A allele at this locus was 
introduced by the donor into G allele–carrying recipients, imply-
ing the “directionality” of this allele mismatch.

To provide a more in-depth understanding, herein we under-
took an unbiased examination of genome-wide SNP array data from 
D-R pairs in 2 prospective kidney transplant cohorts — Genomics of 
Chronic Allograft Rejection (GoCAR) and Clinical Trials in Organ 
Transplantation-01/17 (CTOT-01/17) (10, 11) — with the goal of 
identifying mismatches within non-HLA loci that associate with long-
term death-censored graft loss (DCGL). After confirming that global 
D-R genetic differences resulting from SNP mismatches associate 
with DCGL, we systematically scanned mismatches across all anno-
tated gene loci, to identify individual gene-level mismatches that sig-
nificantly associated with increased risk of graft loss, independently 
of HLA. This screening confirmed LIMS1 as a top-ranked gene locus 
associated with DCGL, independent of genome-wide mismatches. 
When we further screened SNP-wise D-R mismatches, we identified 
30 SNPs in high linkage disequilibrium (LD), distinct from the pre-
viously reported rs893403, which are significantly associated with 
increased risk of graft loss and demonstrated “directionality” when 
grouped as haplotype alleles. Our analysis of multiple transcriptomic 
data sets showed a role for both rs893403 and these linked SNPs as 
cis-expression quantitative trait loci (cis-eQTL) for GCC2, a gene adja-
cent to LIMS1, that promotes transforming growth factor β1 (TGF-β1, 
gene TGFB1) signaling in lymphocytes/epithelial cells by regulating 
the trafficking of mannose-6-phosphate receptors (M6PRs), which 
cleave the latency-associated peptide (LAP) and activate TGF-β1.

Results

Description of study cohorts and D-R mismatches
We employed the subsets of kidney transplant D-R pairs with 
genome-wide genotype information from their parent studies, 
GoCAR (11) and CTOT-01/17 (10, 12), respectively, as our discov-
ery and validation cohorts in the current study. Demographic and 
clinicopathologic characteristics of the D-R pairs in the GoCAR 
(discovery) and CTOT-01/17 (validation) cohorts are shown in 
Supplemental Table 1 (supplemental material available online with 
this article; https://doi.org/10.1172/JCI170420DS1) and reported 
in detail elsewhere (8, 13).

Discovery cohort. Briefly, the parent GoCAR study was a pro-
spective, multicenter study. Enrolled patients had clinical data, 
longitudinal blood draws, and serial surveillance biopsies collect-
ed at 0, 3, 12, and 24 months, detailed in our published studies (8, 
11, 14). Genome-wide genotype data were generated for 385 D-R 
pairs from the GoCAR study followed by an imputation based on 
the reference panel from the 1000 Genomes Project (Methods). 
In the GoCAR cohort, the median follow-up time was 1,824 days, 
194 (50.4%) were live donors, and 50 (13.0%) DCGL events were 
observed (Supplemental Table 1 and Methods). The single most 
common etiology of late DCGL was chronic allograft injury, and 
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analyses, we evaluated European-to-European (E-to-E) D-R pairs 
and identified similar association signals (Supplemental Figure 2). 
Similarly, we incorporated HLA-DQ mismatches (in GoCAR) and 
HLA-C, DP, and DQ mismatches (in CTOT) in multivariable Cox 
models and identified a similar relationship of genome-wide mis-
matches with DCGL (Supplemental Figure 3).

Within our cohorts, we also aimed to evaluate genome-wide 
mismatches defined within transmembrane nonsynonymous SNPs 
versus other genomic regions and tested their reported association 
with DCGL (Methods) (5). We observed high correlations between 
these different components of the normalized genome-wide mis-
match score (Supplemental Figure 4). Hence, the specific role 
of transmembrane nonsynonymous SNP mismatches and their 
impact on graft survival could not be dissected in our data sets.

Screening of gene-level mismatches unraveled mismatches at the  
LIMS1 locus associated with graft loss
We next scanned the whole genome in an effort to pinpoint spe-
cific non-HLA gene loci at which D-R mismatches are associated 
with graft loss. To achieve this, we derived gene-level mismatch 
scores by summing over variant-level mismatch scores for vari-
ants mapped to each gene region (Methods). To avoid identi-
fication of rare-variant-based mismatches while enriching for 
important gene-level signals, we only considered variants with 
relatively frequent occurrence of mismatches (≥5% D-R pairs 
in our study cohorts) (Supplemental Figure 1 and Methods). We 
then screened gene-specific mismatch scores for association 
with DCGL, each using a multivariable Cox regression adjusting 
genome-wide mismatch score, HLA mismatch score, and clin-
ical covariates (Figure 3A). We considered any mismatch and 
double mismatch for all and E-to-E D-R pairs, resulting in 4 sets 
of analyses. Manhattan plots depicting results of these analyses 
are in Figure 3A and Supplemental Figure 5. In GoCAR, among 

Normalized genome-wide non-HLA D-R mismatch scores are 
associated with graft loss
We first calculated the normalized genome-wide non-HLA D-R 
mismatch score (or simply, the genome-wide mismatch score) by 
summing the variant-level any mismatch scores (0 for match and 1 
for mismatch) at all the imputed, quality-controlled SNPs across the 
genome (excluding the MHC region) as raw mismatch counts. We 
normalized the raw counts by their IQR for each D-R pair (Meth-
ods) (5). This normalized score was able to capture information 
from both quantitative measures of genome-wide mismatches that 
we described in previous work: (a) genetic ancestry and (b) propor-
tion of genome-shared identity by descent (pIBD), which are them-
selves mutually orthogonal (8). First, the normalized mismatch 
score could reflect the relative differences in genetic ancestries of 
D-R pairs in both GoCAR and CTOT cohorts, where inter-ances-
try pairs generally had larger mismatch scores than intra-ancestry 
pairs (Figure 2, A and C). Within inter- and intra-ancestry D-R 
pairs, the distribution of the scores is also consistent with existing 
knowledge about the relative distance between different major 
ancestral populations (8). Second, independent of genetic ances-
try in both cohorts, the normalized mismatch score was highly 
correlated with pIBD, a quantitative measure of kinship between 
2 individuals (Figure 2, B and D). Hence, we used this variable as 
a representative quantification of genome-wide D-R mismatches 
in all association analyses with DCGL. In the discovery cohort, 
using univariate and multivariable Cox regression (adjusting HLA 
mismatch score, induction therapy, and donor status), increased 
genome-wide mismatch scores were associated with DCGL (HR = 
1.46, P < 0.001 and HR = 1.25, P = 0.04, respectively) (Figure 2E). 
The association in the univariate model was validated in the CTOT 
cohort, and although we observed a similar HR in the multivari-
able model, it was less significant, with a wider confidence interval 
due to lower sample size and event rate (Figure 2E). As sensitivity 

Figure 1. Definition of genetic mismatch between donor-recipient (D-R) pairs at multiple scales. Genetic D-R mismatches are defined at genome-wide 
(left), gene (middle), and variant (right) levels, followed by association analysis with transplant outcomes. For a specific variant (e.g., SNP), 2 different 
types of mismatches, single mismatch and double mismatch, are defined as shown in the right side of the diagram. All the double mismatches and single 
mismatches were defined together as “any mismatch.”
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5, Supplemental Figure 6, B and C, and Supplemental Table 4). 
The association signal was validated in the CTOT cohort (Sup-
plemental Table 5). Incorporation of HLA-DQ mismatches (in 
GoCAR) and HLA-C, DP, and DQ mismatches (in CTOT) in 
multivariable Cox models did not alter the relationship of LIMS1 

20,141 genes with derived mismatch score, we found that the 
gene-level mismatch score at the LIMS1 locus was robustly asso-
ciated with DCGL in all 4 scenarios, independently of genome-
wide mismatch, highlighting the important role of this non-HLA 
locus in graft outcomes (Figure 3, B and C, Supplemental Figure 

Figure 2. Genome-wide D-R mismatch score was associated with graft loss. Genome-wide mismatch score between donor-recipient (D-R) pairs was 
calculated at all imputed SNPs with high confidence after quality control, and normalized by IQR. The distribution of normalized genome-wide mismatch 
scores is shown for D-R pairs stratified by different combinations of D-R genetic ancestries in GoCAR (A) and CTOT (C), with inter-ancestry D-R pairs in red 
and intra-ancestry in blue. Genome-wide D-R mismatch score is highly correlated with interpersonal relatedness, reflected as the proportion of identi-
ty-by-descent (pIBD) in GoCAR (B) and CTOT (D). (E) Forest plots show the association with DCGL of genome-wide D-R mismatch scores calculated at all 
imputed SNPs as well as the SNPs within exonic and non-exonic regions. The association analyses were performed using univariate and multivariable Cox 
regression models adjusted for HLA mismatches, induction therapy, and donor status for both the GoCAR and CTOT cohorts.
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on chromosome 2q12, are in proximity to LIMS1. Hence, these 
analyses suggested a role for mismatches in the non-HLA chro-
mosomal region surrounding the LIMS1 gene.

Evaluation of variant-level mismatches in LIMS1 revealed variants 
associated with DCGL
The top candidate gene locus observed in our analyses, LIMS1, 
was also implicated in a previous study, harboring an import-
ant mismatch at intronic SNP rs893403 (9, 15) — defined by the 
presence of homozygosity in the CNV-tagging minor allele in the 
recipient and the presence of the major allele (either heterozygous 
or homozygous) in the donor kidney. In prior data, the rs893403 
mismatch was associated with increased risk of rejection (9). In 
GoCAR, we first observed that the mismatch at rs893403 was 
associated with increased risk of DCGL in all and E-to-E D-R pairs 
(Figure 4, A and B).

We then evaluated variant-level D-R mismatches (any mis-
match) for all non-rs893403 LIMS1 SNPs (n = 287 variants after 
quality control; Methods) and their individual associations 

mismatches with DCGL (Supplemental Table 6). De novo anti-
HLA donor-specific antibodies (DSAs) developed in 23 out of 
385 (5.97%) GoCAR recipients, and was independently asso-
ciated with DCGL (Supplemental Table 7). However, LIMS1 
mismatches were associated with DCGL when adjusted for de 
novo anti-HLA DSAs, suggesting this association is independent 
of anti-HLA DSAs (Supplemental Table 7). As sensitivity anal-
ysis, a less stringent threshold (nominal P ≤ 0.05) led to a list 
of 23 candidate genes (including LIMS1) whose gene-level mis-
match scores were associated with DCGL (Supplemental Table 
4 and Supplemental Figure 6A). We summarized mismatches at 
the 23 gene loci into a single mismatch score by accumulating 
gene-wise mismatch score and evaluated its association with 
DCGL. In adjusted Cox models, the 23-gene mismatch score 
was significantly associated with DCGL, while the association 
of the remaining genome mismatches with DCGL was mark-
edly attenuated, highlighting the disproportionate relevance of 
mismatches in these 23 non-HLA genes (Supplemental Figure 
7). Notably, among the 23 genes, GCC2 and GCC2-AS1, located 

Figure 3. Genome-wide screening of D-R mismatch at gene level revealed the association of mismatch score at LIMS1 locus with graft loss. (A) A 
representative Manhattan plot shows the P values of the association of gene-level “any mismatch” scores, with DCGL in GoCAR being 1 out of the 4 
models tested (see B below). The 23 top candidate gene loci that were commonly identified from 4 different analyses are highlighted by red diamonds and 
included GCC2 and LIMS1. (B) Venn diagram shows the number of genes identified with mismatch score at the LIMS1 locus in significant association with 
DCGL (nominal P ≤ 0.01) from 4 different analyses: double mismatch or any mismatch (definition in Figure 1 and Methods) for the whole GoCAR cohort or 
the subset of European-to-European (E-to-E) D-R pairs. (C and D) Kaplan-Meier plots show the graft survival curves for equally dichotomized groups of 
mismatch scores at the LIMS1 locus, where mismatch scores were defined as “any mismatch” (C) and “double mismatch” (D). P values were derived from 
log-rank tests in comparison of upper quantile versus lower quantile.
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Figure 4. Variant-level mismatches at the LIMS1 locus were associated with death-censored graft loss. (A) Kaplan-Meier plot shows that the SNP 
rs893403 mismatch was associated with DCGL. P value was derived from log-rank test in comparison of mismatch versus non-mismatch group. (B) Forest 
plot for the association of the rs893403 mismatch with DCGL in all and European-to-European (E-to-E) D-R pairs, with univariate and multivariable mod-
els adjusted by genome-wide mismatch, HLA mismatch score, donor status, and induction therapy. (C) Venn diagram shows the number of top candidate 
SNPs (other than rs893403) associated with DCGL (nominal P ≤ 0.05) within the LIMS1 gene region in Cox regression analyses adjusted by rs893403 mis-
match or within the rs893403 non-risk stratum for all and E-to-E D-R pairs. (D) LocusZoom plot shows the association P values (on –log10 scale) of variants 
with high frequency of any mismatch (≥5% D-R pairs) within the LIMS1 locus in adjusted analysis in all D-R pairs. The linkage disequilibrium metric R2 was 
calculated for SNPs surrounding 1 of the top candidate SNPs, rs200106875, within the LIMS1 gene region.
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with DCGL. To investigate association signals independent of 
rs893403, we screened any mismatch of each LIMS1 SNP using 
(a) Cox models adjusted by rs893403 risk mismatches (n = 
385) and (b) stratified Cox model by excluding D-R pairs with 
rs893403 risk mismatches, i.e., within the rs893403 non-risk 
stratum (n = 335) (Figure 4C). The SNP-wise screening was car-
ried out in all and E-to-E D-R pairs, resulting in 4 sets of analy-
ses for each SNP. Supplemental Table 8 shows the top ranked (by 
P value) 30 individual SNP mismatches, which were identified 
as significantly associated with DCGL in all 4 scenarios. Nota-
bly, all 30 SNPs identified are located in LIMS1 intronic regions. 
Using the linkage disequilibrium (LD) data derived from all the 
major continental populations of the 1000 Genomes Project 
(16), we observed that these intronic SNPs are in high LD with 
each other (R2 > 0.99), but are not linked with rs893403 (R2 < 
0.5) (Supplemental Figure 8A), while the latter itself serves as 
a tagging SNP of a different haplotype within the LIMS1 locus 
(Supplemental Figure 8B). Hence, we accounted for mismatch-
es within these linked SNPs as a single block (or haplotype) dis-
tinct from rs893403 (Figure 4D and Supplemental Figure 8). In 
the CTOT (validation) cohort, we successfully reidentified 28 

of the 30 haplotype SNPs discovered in GoCAR. Here too, D-R 
mismatch within this haplotype was associated with increased 
risk of DCGL in univariate and adjusted multivariable surviv-
al analyses (Supplemental Figure 9 and Supplemental Table 
9). Comparison of allele prevalence of the LIMS1 haplotype 
and rs893403 in the 1000 Genomes Project (n = 2504) and 
within GoCAR (n = 385 D-R pairs) revealed a 0.097-to-1 rate 
for the minor haplotype allele and a 0.568-to-0.98 rate for the 
rs893403 A allele in different ancestral populations (Supple-
mental Figure 10), with rare recombination within the haplo-
type in all ancestries (17). Notably, given the high prevalence of 
the minor haplotype or the A allele in East Asian populations, 
LIMS1 mismatches at either locus are likely not relevant in East 
Asian ancestry transplants.

In summary, we confirmed and extended prior data regard-
ing the LIMS1 locus implicated in kidney transplant rejection, and 
specifically the D-R mismatch at the CNV-tagging SNP rs893403, 
and identified its association with DCGL. We also discovered that 
an independent mismatch within the LIMS1 locus (surrogated by 
a 30-SNP haplotype) was associated with DCGL, overall showing 
the importance of this chromosomal region in allotransplantation.

Figure 5. Dosage effect and directionality 
of the haplotype mismatch associated with 
DCGL. Kaplan-Meier survival curves of DCGL 
grouped by the dosage of mismatches (i.e., 
the number of “alien” alleles introduced by 
the donor) at the haplotype in all (A) and 
European-to-European (E-to-E) D-R pairs 
(B). Kaplan-Meier survival curves of DCGL 
grouped by the directionality of the mis-
matches at the haplotype and the rs893403 
risk mismatch in all (C) and E-to-E D-R pairs 
(D). Major: mismatch derived from major 
haplotype allele introduced by donor to the 
recipient with homozygous minor allele and 
no rs893403 risk mismatch; Minor: mis-
match derived from minor haplotype allele 
introduced by donor to the recipient with 
homozygous major allele and no rs893403 
risk mismatch; rs893403: mismatch at 
rs893403 defined as risk allele (A allele) 
introduced by donor to the recipient carrying 
G/G genotype; Other: no mismatch at the 
haplotype and rs893403.
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To identify mediators of the association of the haplotype mis-
matches with DCGL, we first evaluated rejection episodes in the 
GoCAR cohort, as previously described (13). As shown in Supple-
mental Table 11, LIMS1 haplotype mismatches were not associat-
ed with subclinical/clinical AR episodes in GoCAR. Interestingly, 
in ordinal logistic regression models specifically in E-to-E trans-
plants, the number of minor LIMS1 haplotype alleles in the donor 
kidney and the number of haplotype mismatches tended to asso-
ciate with increased chronic allograft dysfunction index (CADI) 
score and interstitial fibrosis/atrophy (Ci+Ct) score obtained at 
12-month surveillance biopsies (11, 18) (n = 151 in GoCAR; Sup-
plemental Table 12). These suggested that LIMS1 haplotype mis-
matches may associate with cumulative allograft damage.

LIMS1 SNPs are eQTLs for GCC2 associated with Treg activation and 
TGF-β1/SMAD signaling
To explore the putative mechanism of the directional mismatch-
es of the SNPs in intronic regions of LIMS1 in contributing to 
DCGL, and based on the previous report of rs893403 as an eQTL 
in non-glomerular renal tissue (Supplemental Figure 12A) (9), we 
evaluated the association between LIMS1 gene expression and the 
haplotype. To study the donor haplotype and gene expression in 
allograft kidneys, we examined the NephQTL data of published 
kidney transcriptomes (18). Similar to rs893403, the minor alleles 
of the haplotype SNPs were associated with increased expression 
of LIMS1 in tubules (Supplemental Figure 12B).Dosage effect, directionality, and mediators of the association of D-R 

mismatch at the LIMS1 haplotype and graft loss
Using Cox regression, our analysis showed that the number of 
haplotype allele mismatches was associated with increased risk 
of DCGL in all and E-to-E D-R pairs in GoCAR, suggesting a 
dosage effect for D-R mismatches at this haplotype (Figure 5, A 
and B, and Table 1) (9). In the GoCAR cohort, we showed that the 
association of rs893403 mismatch with DCGL had directional-
ity; only donor A allele introduced into recipients with a homo-
zygous G allele (linked to the deletion) increased the risk of graft 
loss, consistent with existing results on the directionality of the 
association with acute rejection (9). We next explored the direc-
tionality of the effect on DCGL of the newly identified haplotype 
mismatch: donor-kidney-introduced minor allele of the haplo-
type to a mismatched recipient carrying a homozygous major 
allele, as opposed to vice versa. To minimize confounding from 
rs893403 mismatch, we set apart the D-R pairs with rs893403 
risk mismatch into a single group (regardless the mismatch status 
of the haplotype). In the whole cohort, and in E-to-E D-R pairs, 
patients with rs893403 risk mismatch and minor haplotype 
allele–introducing mismatch had worse DCGL outcomes (Figure 
5, C and D, and Table 2). In the E-to-E D-R pairs, the major hap-
lotype allele–introducing mismatch was not significantly associ-
ated with DCGL. In non–E-to-E D-R pairs, both the association 
and directionality of haplotype mismatch with DCGL were lost 
(Figure 5D, Supplemental Figure 11, and Supplemental Table 10).

Overall, these analyses revealed an observable dosage effect 
on DCGL from LIMS1 haplotype mismatch and suggested a direc-
tionality of this effect, i.e., worse allograft outcomes observed in 
D-R pairs with minor-to-major haplotype mismatch than major-to-
minor mismatch, even after accounting for the rs893403 risk mis-
match specifically in an ancestrally homogeneous E-to-E cohort.

Table 1. Dosage effect of the haplotype mismatch  
in association with DCGL in the GoCAR cohort

Variable HR 95% CI P value

All D-R pairs (n = 384; 50 [13.0%] graft loss events)
Dosage of haplotype mismatches (ref: no mismatch)

1 Mismatch 2.85 (1.34, 6.05) 0.01
2 Mismatches 3.95 (1.85, 8.46) <0.001

Genome-wide mismatch 1.55 (1.07, 2.24) 0.02
Induction (ref: no) 2.66 (0.93, 7.60) 0.07
Donor status (ref: live donor) 2.05 (1.05, 4.02) 0.04
HLA mismatch score 1.03 (0.73, 1.46) 0.87
rs893403 risk mismatch (ref: no) 1.58 (0.79, 3.18) 0.20

E-to-E D-R pairs (n = 223; 17 [7.6%] graft loss events)
Dosage of haplotype mismatches (ref: no mismatch)

1 Mismatch 5.29 (1.23, 22.79) 0.03
2 Mismatches 9.66 (2.25, 41.51) <0.001

Genome-wide mismatches 2.16 (0.78, 6.03) 0.14
Induction (ref: no) 2.17 (0.58, 8.09) 0.25
Donor status (ref: live donor) 1.08 (0.36, 3.3) 0.89
HLA mismatch score 0.75 (0.44, 1.28) 0.29
rs893403 risk mismatch (ref: no) 1.79 (0.53, 6.01) 0.35
 

Table 2. The directionality of the haplotype mismatch  
in association with DCGL in the GoCAR cohort

Variable HR 95% CI P value

All D-R pairs (n = 384; 50 [13.0%] graft loss events)
Mismatch groupA (ref: no mismatch)

rs893403 4.52 (2.04, 10) <0.001
Minor 4.00 (1.79, 8.93) <0.001
Major 3.75 (1.61, 8.75) <0.001

Genome-wide mismatch 1.52 (1.05, 2.18) 0.03
Induction (ref: no) 2.7 (0.94, 7.72) 0.06
Donor status (ref: LDs) 2.12 (1.06, 4.2) 0.03
HLA-mismatch score 1.04 (0.73, 1.47) 0.84

E-to-E D-R pairs (n = 223; 17 [7.6%] graft loss events)
Mismatch groupA (ref: no mismatch)

rs893403 11.09 (2.57, 47.86) <0.001
Minor 10.15 (2.36, 43.72) <0.001
Major 6.39 (0.93, 43.7) 0.06

Genome-wide mismatches 2.11 (0.77, 5.81) 0.15
Induction (ref: no) 2.30 (0.61, 8.68) 0.22
Donor status (ref: live donors) 1.24 (0.37, 4.08) 0.73
HLA mismatch score 0.75 (0.44, 1.28) 0.29
ADefinition of the mismatch group. Major: mismatch derived from major 
haplotype allele introduced by donor to the recipient with homozygous minor 
allele and no rs893403 risk mismatch; Minor: mismatch derived from minor 
haplotype allele introduced by donor to the recipient with homozygous major 
allele and no rs893403 risk mismatch; rs893403: mismatch at rs893403 
defined as risk allele (A allele) introduced by donor to the recipient carrying 
G/G genotype; Reference: no mismatch at the haplotype and rs893403.
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eQTL function on GCC2, the 5′-end-neighboring gene to 
LIMS1 (Figure 6A and Supplemental Figure 13). GCC2 (or Gol-
gin-185) is a GRIP domain–containing protein with a canonical 
role in late endosome–to-Golgi transport by binding Rab and 
Arl1 GTPases (21–23) and is essential for mannose-6-phos-
phate receptor (M6PR) trafficking (23). In turn, cation-inde-
pendent M6PR (CI-M6PR or IGF2R) has roles in binding and 

To simultaneously explore the role of the haplotype alleles 
in the recipient during the occurrence of a “mismatch,” we 
evaluated the eQTL function in immune cell transcriptomes 
from published data (19, 20). Unexpectedly, from multiple 
data sets, the LIMS1 haplotype is not an eQTL for LIMS1 mRNA 
in peripheral blood mononuclear cells (PBMCs). Instead, both 
the LIMS1 haplotype and rs893403 demonstrated significant 

Figure 6. eQTL analysis of rs893403 and the haplotype revealed GCC2 as cis-regulated gene. (A) Box-and-whisker plots show the distribution of GCC2 and 
LIMS1 expression within each genotype group of the haplotype and rs893403 in naive Tregs, naive CD4+ T cells, and naive CD8+ T cells from the DICE cohort. 
The significance of the association between expression level and the genotype is indicated by the P value derived from 1-way ANOVA. (B) Enriched path-
ways of DEGs (nominal P ≤ 0.05) associated the number of risk alleles of rs893403 and the haplotype in naive CD4+ T cells from the DICE cohort. (C) The 
distribution of GCC2 expression, displayed as violin plot, in the 15 different immune cell types from the DICE cohort. (D) Enriched pathways and transcrip-
tion factors of genes positively coexpressed with GCC2 (R ≥ 0.6, P ≤ 0.01) in pretransplant and 3-month posttransplant patients from the GoCAR cohort. 
The pathways or transcription factors shown in B and D are grouped by the source databases.
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Figure 7. Potential regulatory SNPs in high LD with rs893403 and the haplotype in the LIMS1 and GCC2 gene regions. Cell-specific peaks from 
whole-kidney single-cell ATAC-seq data (28) are shown for LIMS1 (A) and GCC2 (B). SNP IDs in red are in LD with rs893403, while SNP IDs in blue are in 
LD with the haplotype. Annotation of epigenetic and transcription factor ChIP-seq data in corresponding tracks is from the UCSC genome browser. The 
deletion (CNVR915.1) tagged by rs893403 (9) is denoted as a green bar.
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located in an ATAC-seq peak region specific to immune cells, while 
there are no peaks detected within the previously described CNV 
(CNVR915.1) tagged by rs893403. Evaluation of SNPs highly linked 
(R2 > 0.9) to rs893403 revealed 2 candidate SNPs located in accessi-
ble chromatin areas, rs2460944 (R2 = 0.96) within the transcription 
start site (TSS) of GCC2 and rs10084199 (R2 = 0.91) in the TSS of 
LIMS1. These SNPs showed DNase hypersensitivity, high Regulom-
eDB scores (Methods) (31), transcription-favorable histone modifi-
cations, and confirmed highly significant eQTL function in multiple 
tissues for GCC2 based on the genotype-tissue expression (GTEx) 
project data (20) (Supplemental Tables 14 and 15). SNP rs2460944 
mismatches were found to be associated with DCGL, with similar 
directionality as rs893403 (Supplemental Figure 17).

Among candidate SNPs within the LIMS1 haplotype, 
rs4012003 and an additional SNP, rs12622759, are located in 
areas of open chromatin, with further evidence of DNase hyper-
sensitivity, high RegulomeDB scores, favorable histone modi-
fications, and significant eQTL function for GCC2 in multiple 
cell types. These peak regions appear specific to immune cells 
according to the scATAC-seq data. These in silico analyses sug-
gest putative “causal” SNPs within the LIMS1-GCC2 locus, which 
are tagged by rs893403 or within the LIMS1 haplotype and could 
regulate GCC2 expression.

GCC2 modulates active TGF-β1 levels and SMAD signaling in 
lymphocytes and epithelial cell lines
Our in silico data are consistent with the reported roles of GCC2 
(or Golgin-185) in the trafficking of, and cell-surface abundance 
of, CI-M6PR, followed by activation of latent TGF-β1 by the cleav-
age of latency-associated peptide (LAP) (32), promoting autocrine 
or paracrine TGF-β1 signaling in T cells and/or in epithelial cells. 
Based on this, we evaluated in vitro the generic role of GCC2 in 
the trafficking of and membrane abundance of CI-M6PR and in 
regulating TGF-β1/SMAD signaling. We first overexpressed a 
GFP-tagged GCC2 construct (or GFP-control) in HEK-293T cells 
and Jurkat T cells and evaluated candidate proteins involved in 
this signaling axis (Figure 8, A–F). Overexpression of GFP-GCC2 
significantly increased the abundance of membrane-associated 
CI-M6PR versus GFP-controls (Figure 8, A, B, D, and E). In both 
of these cell types, GCC2 overexpression led to increased ratios 
of LAP-cleaved, active (free) TGF-β1 to total TGF-β1 levels in the 
supernatant (Figure 8, C and F). Similar findings of increased 
CI-M6PR and active-to-total TGF-β1 levels were also identifi-
able in inner medullary collecting duct (IMCD) cell lines (Supple-
mental Figure 18, A–C). In Jurkat T cells, GCC2 overexpression 
increased transcripts of IKZF2 (Helios) (33), tended to increase 
FOXP3, and reduced IFNG (34, 35) (Figure 8G). We then used 
lentiviral shRNA clones to knock down GCC2 and observed sig-
nificantly reduced phospho-SMAD3 downstream of TGF-β1 in 
HEK-293T cells versus a scrambled shRNA (Supplemental Figure 
18D). Total CI-M6PR was not significantly altered either by GCC2 
overexpression or knockdown, suggesting that the effect should 
be mediated indirectly, via altering protein trafficking (Figure 8, 
A and D, and Supplemental Figure 18D). Analogously, in both Jur-
kat T cells and IMCD cells, GCC2 knockdown tended to reduce 
active-to-total TGF-β1 levels in the supernatant (Supplemental 
Figure 18, E and F). These experiments connect the modulation 

activation of latent TGF-β1 by cleavage of latent peptide (pro-
moting TGF-β1 signaling) (24, 25), and in insulin-like growth 
factor-2 (IGF2) signaling (25–27).

Using the published DICE (Database of Immune Cell Expres-
sion, Expression quantitative trait loci and Epigenomics) cohort 
(19), where sorted PBMCs after leukapheresis from healthy con-
trols were genotyped and underwent RNA-seq (Methods), we 
successfully re-identified 22 of the 30 haplotype SNPs, which also 
showed consistent genotypes across samples. From these data of 
sorted immune cell populations, Supplemental Table 13 shows the 
rank of GCC2 among genes across the transcriptome (by Benjami-
ni-Hochberg–adjusted P value) in the eQTL analysis of rs893403 
and the haplotype in each of the 15 sorted PBMC subtypes, among 
which naive Tregs were top ranked (Methods). We also evaluated 
transcriptome-wide differentially expressed genes (DEGs) based 
on rs893403 and the LIMS1 haplotype genotype (Methods). Consis-
tent with the described role of GCC2, we identified enrichment of 
endosomal transport, TGF-β1/SMAD signaling, and IGF2 signaling 
in these analyses (Figure 6B and Supplemental Figure 14).

We next studied GCC2 expression levels in immune cell subsets 
of the DICE data. GCC2 was highly expressed in naive Tregs, naive 
CD4+ and CD8+ T cells, and was downregulated upon T cell recep-
tor stimulation (Figure 6C). LIMS1 mRNA expression was relatively 
high in monocytes (Supplemental Figure 15A). Relative expression 
of GCC2 and LIMS1 in PBMC subsets was corroborated in our own 
PBMC single-cell sequencing data obtained from patients with end-
stage kidney disease (Supplemental Figure 15B) (13).

To explore the function of GCC2 in peripheral blood cells using 
data from the parent GoCAR study, we performed coexpression 
analyses using previously obtained whole-blood transcriptomes 
from recipients, both before transplantation (GSE112927) and 
at 3 months after transplantation (GSE120398) (n = 292 and 147, 
respectively). As shown in Figure 6D, GCC2-coexpressed genes at 
both time points (R ≥ 0.6; adjusted P ≤ 0.05) (n = 571 and 853 genes, 
respectively) showed significant and consistent enrichment of 
TGF-β1/SMAD signaling pathway terms and FOXP3 transcription 
factor targets throughout multiple databases (also see Methods). 
GCC2-coexpressed genes (R ≥ 0.6; P ≤ 0.05) in each cell type from 
the healthy controls of the DICE cohort also showed enrichment of 
TGF-β1/SMAD signaling pathway terms and FOXP3 in multiple T 
cell subsets (Supplemental Figure 16 and Methods).

Our analysis here implies a regulatory role for rs893403 and 
the LIMS1 haplotype in GCC2 expression in immune cell sub-
sets, including Tregs, and further links GCC2 expression with the 
described canonical function relating to TGF-β1/SMAD signaling 
in immune cells.

Prioritizing candidate SNPs at the LIMS1-GCC2 locus with functional 
genomics annotation
Since our above analyses suggested eQTL functions of rs893403 and 
the LIMS1 haplotype for GCC2, we aimed to further prioritize these 
SNPs by integrating publicly available data sets, including assay for 
transposase-accessible chromatin with high-throughput sequenc-
ing (ATAC-seq) data (28), ChIP-seq data (29), DNase hypersensitiv-
ity (30), transcription factor binding (30), and ENCODE data. Our 
goal was to identify putative “causal” SNPs in our list of candidate 
LIMS1 SNPs, including rs893403. As shown in Figure 7, rs893403 is 
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Figure 8. GCC2 modulates generation of active TGF-β1 and downstream signaling in lymphocytes and epithelial cell lines. To investigate the cellular role of 
GCC2, we overexpressed either a GFP-tagged GCC2 (GCC2-OE) or a GFP-control expression plasmid in HEK-293T cells (A–C) and Jurkat T cells (D–F), followed 
by extraction of protein lysates, subcellular fractionation, and immunoblotting. Representative immunoblots of cellular fractions probed for GCC2, CI-M6PR, 
calreticulin, and GAPDH are displayed for HEK-293T (A) and Jurkat T cells (D). Dot plots show corresponding densitometric quantifications of CI-M6PR in the MFs 
(normalized to calreticulin) from these respective cell lines (B and E). Dot plots show corresponding ratios of active (LAP cleaved) to total TGF-β1 levels (both in 
pg/mL normalized to control in each paired set and analyzed by paired, 2-tailed t test) in GCC2-OE and controls in HEK-293T (C) and Jurkat T cells (F) superna-
tants assayed by ELISA after 24 hours serum starvation (n ≥ 4 sets). (G) Dot plots show qPCR results for IKZF2, FOXP3, and IFNG mRNA normalized to GAPDH in 
GCC2-OE and control Jurkat T cells (n = 3 sets). (H) Schema showing role of LIMS1 locus mismatch (A allele at rs893403) in activation of SMAD signaling pathway 
in response to increased GCC2 levels. GCC2 overexpression leads to increased levels of membrane-bound CI-M6PR levels via Golgi-to-endosome trafficking 
causing higher levels of active TGF-β1 and ultimately SMAD pathway activation (figure created using BioRender). *P < 0.05, **P < 0.01 by 2-tailed, unpaired t 
test. MF and CF, membrane and cytoplasmic fraction of lysate; TE, total extract; CI-M6PR, cation-independent mannose-6-phosphate receptor; IMCD, rat inner 
medullary collecting duct cells; TGF-β, TGF-β1.
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reported role for LIMS1 in fibrosis via facilitating ILK signaling 
and as markers of incomplete epithelial-mesenchymal transi-
tion in tubular cells, another potential mechanism linking donor 
minor haplotype to adverse allograft outcomes (36). In addi-
tion, these data raise the possibility of a role for GCC2 itself in 
renal epithelial cells, with minor-haplotype allografts associ-
ated with increased IF/TA via TGF-β1 signaling (37, 38), which 
we and others have reported as associated with early allograft 
fibrosis by gene expression profiling. On the other hand, the 
deletion-tagging allele (G allele) in recipients with a high-risk 
mismatch (i.e., A allele donors to G/G recipients) (9) was asso-
ciated with lower GCC2 levels in T cells and likely affected Treg 
function, via reduced TGF-β1/SMAD signaling. A recent report 
identified increased autoimmunity in global GCC2–/– (knockout) 
mice with development of autoantibodies against a wide range 
of antigens (34). In line with these observations, the prior report-
ed detection of anti-LIMS1 antibodies in recipients with a high-
risk mismatch could itself reflect impairment of Treg function in 
G/G recipients, and autoantibody development. Hence intronic 
regulatory loci in the context of a “directional” LIMS1 mismatch 
exert cell-specific effects by modulating gene expression, in turn 
affecting allograft survival. Our work sheds light on LIMS1 locus 
mismatches and allograft outcomes by identifying these intronic 
SNPs as eQTLs for GCC2 in T cells, impinging on its expected 
role in TGF-β1 signaling via modulating CI-M6PR levels, thus 
revealing an unexpected mechanism outside of the usual para-
digm involving non-HLA D-R mismatches.

Our data have potential clinical implications. First, given 
the high allelic prevalence of minor alleles in most populations 
(~0.367–0.622, except in African and East Asian), the occurrence 
of a D-R mismatch at these loci is expected to be a common 
occurrence in the clinical context. Next, both the occurrence 
of a haplotype mismatch and the directional association with 
DCGL were best observed in ancestrally homogeneous E-to-E 
D-R pairs in our cohort. In combination with prior reports (9, 15), 
our data highlight the important role of LIMS1 locus mismatches 
and this non-HLA genomic region in renal allotransplantation. 
Genotyping for these variants to delineate a high-risk mismatch 
could potentially allow for risk stratification — for personalized 
optimization of immunosuppression, or early surveillance for 
IF/TA or rejection (based on the prior work), or for enriching 
patient enrollment in subsequent clinical trials based on LIMS1 
mismatches. Given the current organ shortage, we believe LIMS1 
mismatches are not likely to be utilized for organ allocation, 
except in exceptional circumstances (for instance, where 2 liv-
ing donors are considered for the same recipient). Nonetheless, 
our identification of the role of LIMS1, GCC2, and other non-
HLA candidates paves the way for further detailed mechanistic 
studies with the potential for subsequent targeted therapeutics 
in case of an identified mismatch.

While the independent association of LIMS1 gene–level mis-
matches with DCGL was validated across both cohorts, intergenic 
regions were not evaluated in our approach — i.e., only loci within 
annotated gene boundaries were considered. By integrating reg-
ulatory data from public data sets, we identified candidate SNPs 
in high LD with rs893403 or the LIMS1 haplotype, which could 
potentially represent causal cis-eQTLs for GCC2 (Figure 7). For 

of cellular GCC2 levels by the LIMS1 haplotype or rs893403 with 
the generic role of GCC2 in M6PR trafficking and in regulating the 
TGF-β1 signaling pathway in multiple cell types, including specifi-
cally in T cells (schema in Figure 8H).

Discussion
The traditional paradigm regarding mismatches between donor 
and recipient is the development of an adaptive immune response 
against donor proteins of dissimilar peptide sequence by the recip-
ient’s allorecognition mechanisms. These responses are primarily 
determined by mismatches between the HLA regions of donor 
and recipient (5–8). Here, a systematic approach screening the 
whole genome to discover specific non-HLA gene loci revealed 
LIMS1 D-R mismatches as a top-ranked candidate associated 
with DCGL. Within the LIMS1 locus, the role and directionality 
of mismatches at the previously reported intronic SNP rs893403 
was extended to long-term DCGL. In addition to rs893403, a hap-
lotype of 30 intronic LIMS1 SNPs, almost perfectly linked with 
each other, was identified where mismatches were independently 
associated with increased risk of DCGL, again with a demonstra-
ble directionality (minor allele in donors introduced into major 
allele–carrying recipients). Hence, our analyses provide a pipeline 
for identifying the role of non-HLA gene mismatches relevant to 
allograft survival.

Neither rs893403 nor the SNPs in the LIMS1 haplotype alter 
the LIMS1 protein sequence; instead, both were identified as cis-
eQTLs for an adjacent gene, GCC2, in immune cells, with high 
expression in Tregs. Our subsequent transcriptomic analyses 
revealed the association of LIMS1 SNPs with TGF-β1/SMAD sig-
naling via GCC2 expression in multiple T cell subsets — including 
Tregs and naive CD4+ and CD8+ T cells. These transcriptomic data 
are consistent with the canonical role of GCC2 (or Golgin-185) as a 
trans-Golgi network protein with a central role in the Golgi-to-en-
dosome trafficking of M6PRs. Our experimental data (Figure 8 and 
Supplemental Figure 14) using multiple cell lines confirmed the 
effects of GCC2 overexpression (i.e., analogous to the increased 
expression induced by an A allele at rs893403 or minor allele at 
the LIMS1 haplotype) on the abundance of membrane-bound 
CI-M6PR. In turn, changes in surface CI-M6PR levels with GCC2 
overexpression/knockdown modulated active TGF-β1 levels and 
SMAD signaling. In Jurkat T cells, we demonstrated that GCC2 
overexpression increased Helios expression (associated with Treg 
stability and function) and reduced proinflammatory IFNG, in line 
with in silico and clinical data.

While we validated and extended previous association of 
the LIMS1 rs893403 mismatch to allograft survival, we could 
not find significant associations with either antibody-mediated 
acute rejection (ABMR) (9) or T cell–mediated rejection (TCMR) 
(15) in our data sets. We note that our study cohorts reported sub-
clinical and clinical rejection episodes up to 2 years by respective 
central pathology cores, but later episodes were not required to 
be reported in these data sets. Indeed, we identified an associa-
tion of the minor allele of the intronic LIMS1 SNP haplotype, or 
alternatively the A allele at rs893403 (accompanying a high-risk 
mismatch), with allograft fibrosis score at 12 months (CADI or 
Ci+Ct in GoCAR), which we previously reported as associated 
with DCGL (11). These data are consistent with the previously 
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or missing rate of 5% or less were considered low quality and exclud-
ed. For instance, the rs893403 genotype was not confidently imputed 
in CTOT, resulting in 52 out of 146 (35.6%) missing values in the D-R 
mismatch calculation, and thus was not used for validation. SNPs with 
no alternative alleles across the samples (i.e., monomorphic) or within 
the MHC region (chr6: 28866528–33775446 [hg19]) were excluded 
from downstream analysis as well. SNPs with mismatch carried by 5% 
or more of the D-R pairs were considered less frequent and removed 
from gene- and variant-level screening analyses.

Variants were annotated in terms of genomic locations (exon-
ic, intronic, intergenic, etc.) or protein-coding functions (synony-
mous, nonsynonymous, frameshift, etc.) with ANNOVAR (version 
2018Apr16) (44) with Refseq hg19 assembly. The transmembrane 
or secreted genes were defined with the key words from Uniprot as 
described in a former study (5): “transmembrane [KW-0812]” OR 
annotation: (type:transmem) OR locations: (location: “secreted [SL-
0243]”) AND organism: “Homo sapiens (human) [9606].”

Definition of D-R mismatch at different genomic scales. The D-R mis-
match for each variant (SNP and small indel) was defined following 
the strategy in a former study (5). A mismatch was defined as a donor 
carrying an allele that was not presented in the recipient. We consider 
mismatch derived from 1 “alien” allele introduced by donor as “sin-
gle mismatch,” while 2 alleles introduced as “double mismatch.” The 
“single mismatch” and “double mismatch” were collapsed into a class 
named “any mismatch” (Figure 1). The mismatch score was calculated 
for each variant among each D-R pair. To define gene-level mismatch 
score, the mismatch status (0 for absence and 1 for presence) of all the 
variants within each annotated gene region were summed up. Similarly, 
to define mismatch score at a different genomic scale, such as genome-
wide, exonic, non-exonic, or all transmembrane or secreted gene 
regions, the mismatch status of all the variants within the corresponding 
genomic regions were summed as the raw score and further normalized 
by the IQR of the corresponding raw scores across D-R pairs.

eQTL and DEG analysis with DICE data. To explore the gene 
expression regulation effect of rs893403 and the identified haplotype 
in immune cells, we utilized the RNA-seq and genotype data generated 
from the DICE project (https://dice-database.org/). Request (request 
number: 97206-2) for the access to the DICE data deposited in the 
Genotypes and Phenotypes (dbGaP) database (https://www.ncbi.
nlm.nih.gov/gap/; accession number: phs001703) was approved. The 
detailed description of the data set can be found in the original paper 
(19). Briefly, whole-transcriptome bulk RNA-seq was performed on 15 
immune cell types isolated from leukapheresis samples of 91 healthy 
donors. Gene expression was measured as transcripts per million 
(TPM). The raw TPM expression profile was then log2-transformed by 
log2(TPM + 1). Genome-wide genotype data were generated by Illu-
mina Infinium Multi-Ethnic Global-8 array, followed by imputation 
with the same pipeline as we applied to the CTOT cohort (see above). 
The number of risk alleles (A allele) of rs893403 and the number of 
minor alleles of the haplotype were counted in each sample. The asso-
ciation of expression of each gene with the genotype of rs893403 or 
the haplotype was tested with limma (45), using an additive model of 
the number of risk alleles adjusted by age, sex, and race. Genes with 
a nominal P value of 0.05 or less were identified as DEGs. Gene set 
enrichment analysis of DEGs was performed with R package enrichR 
(46), and gene sets with enrichment nominal P value of 0.05 or less 
were considered significant.

instance, rs2460944 is highly linked (R2 = 0.96) with rs893403, 
has high RegulomeDB scores (31), and is located within the 
transcription start site of GCC2. However, this and other candi-
dates identified here will need experimental validation in future 
studies by altering these linked loci individually and evaluating 
GCC2 expression and clinical outcomes. While the association 
of rs893403 mismatches with rejection (9) and the association 
of genome-wide mismatches with DCGL (5) were also previously 
identified in independent cohorts, we acknowledge that the asso-
ciation of these 2 variables with DCGL was not confirmed in our 
validation cohort in adjusted analyses. We also acknowledge that 
we did not test for anti-LIMS1 antibodies in recipient sera, iden-
tified in recipients of high-risk mismatches in the prior report, 
which currently has no commercial assay. Finally, while in silico 
data suggested a role of SNP-mediated GCC2 expression in T cell 
TGF-β1 signaling, we did not directly evaluate SNP-associated 
alterations in T cell subsets or TGFB1 signals, and further mecha-
nistic work is needed to quantitatively evaluate specific T cell sub-
set functional changes vis-a-vis rs893403 or the LIMS1 haplotype.

In summary, using 2 prospective kidney transplant cohorts, we 
identify a key role for D-R mismatches at the LIMS1 locus using a sys-
tematic screening approach of D-R mismatches at multiple genomic 
scales. Furthermore, our data reveal that these intronic variants at 
the LIMS1 locus have cis-regulatory function and D-R mismatch-
es generated at these variants impact allograft outcomes without 
altering protein sequences. The mechanisms described here provide 
insight into our understanding of D-R mismatches and are informa-
tive in ongoing efforts to improve long-term graft survival.

Methods
Genotyping and imputation for GoCAR and CTOT-01/17. The genotyp-
ing, quality control, and imputation for the GoCAR and CTOT cohorts 
have been described in our previous study (22, 37). Briefly, donor 
DNA was obtained from either pre-perfusion allograft biopsies (in 
deceased donors) or PBMCs (in living donors), while recipient DNA 
was obtained from PBMCs. The extracted DNA was genotyped with 
Illumina Human OmniExpressExome Array for GoCAR and Illumina 
Infinium Global Screening Array for CTOT. Samples with (a) genet-
ically inferred sex not matched with reported sex; (b) missing-geno-
type rate greater than 0.03; and (c) excessive genome-wide heterozy-
gosity, an indication of sample contamination were excluded. SNPs 
with (a) missing rate greater than 0.05; (b) minor allele frequency less 
than 0.01; and (c) Hardy-Weinberg equilibrium P value of less than 1 
× 10–6 were excluded.

We performed genome-wide genotype imputation on both 
cohorts. For GoCAR, the imputation analysis was done by the pipe-
line composed of SHAPIT (39) and IMPUTE2 (40) software packages 
using the 1000 Genomes Project phase I data (41) as the reference 
panel, and for CTOT, the imputation was done by the Michigan Impu-
tation Server (https://imputation-server.sph.umich.edu) (42) using 
the Haplotype Reference Consortium reference panel (release 1.1) 
(43). After imputation, an imputed genotype with a posterior probabil-
ity of less than 0.95 was set as missing data.

As shown in Supplemental Figure 1, quality control on the imput-
ed genome-wide genotype data of GoCAR and CTOT was performed 
separately in each cohort following the same strategy. The imputed 
SNPs with low confidence (INFO score < 0.4, GoCAR; R2 < 0.3, CTOT) 

https://doi.org/10.1172/JCI170420
https://dice-database.org/
https://www.ncbi.nlm.nih.gov/gap/
https://www.ncbi.nlm.nih.gov/gap/
https://imputation-server.sph.umich.edu
https://www.jci.org/articles/view/170420#sd


The Journal of Clinical Investigation   R E S E A R C H  A R T I C L E

1 5J Clin Invest. 2023;133(21):e170420  https://doi.org/10.1172/JCI170420

proteins, 10 μg plasmid in 100 μL Opti-MEM was used to electropo-
rate 1 × 106 Jurkat T cells or IMCD cells. Forty-eight to 72 hours after 
transfection, expression was verified by fluorescence microscopy. 
G-418 was used to select and enrich for expressing clones.

In vitro GCC2-knockdown studies. Lentiviral human GCC2 con-
structs (short hairpin clones; Dharmacon, Inc.) were tested for opti-
mal suppression of GCC2 expression in HEK-293T cells, to generate 
stable GCC2 knockdown in HEK-293T, IMCD, and Jurkat T cells (gift 
from Dan Jane-Wit, Department of Medicine, Yale University School 
of Medicine). The selected RFP-tagged (red fluorescent protein) hair-
pins and respective scrambles were used to generate a mammalian 
VSV pseudotyped lentiviral expression construct. Lentiviral medium 
was used to infect each of the human HEK-293T, IMCD, and Jurkat T 
cell types and were grown in puromycin-contining (1 μg/mL) DMEM/
F12 medium or RPMI 1640, respectively, for experiments after at least 
7 days of selection at 37°C.

Total protein extraction. To obtain total cell extracts, cells were 
lysed with a buffer containing 25 mM Tris-HCl pH 7.4, 150 mM NaCl, 
1 mM EDTA, 1% NP-40, and 5% glycerol, a protease inhibitor mixture, 
and tyrosine and serine/threonine phosphorylation and phosphatase 
inhibitors. Extracts were quantified using BCA protein estimation and 
denatured using Laemmli SDS sample buffer.

Subcellular fractionation. Hypotonic lysis and fractionation were 
performed using a Pierce Subcellular Protein Fractionation Kit (Thermo 
Fisher Scientific, 78840, 35 mL). Cytoplasmic and membrane extracts 
were prepared according to the manufacturer’s protocol. Briefly, the 
cells were resuspended in cytoplasmic extraction buffer with protease 
inhibitors for 10 minutes at 4°C on a rocker. Cytoplasmic extracts were 
obtained by spinning down at 500g for 5 minutes, followed by resus-
pending in membrane extraction buffer with protease inhibitors for 10 
minutes at 4°C on a rocker. Membrane extracts were obtained by spin-
ning down at 3,000g for 5 minutes. Extracts were quantified using BCA 
protein estimation and denatured using Laemmli SDS sample buffer.

Western blotting. Overexpression of GCC2 was confirmed by immu-
noblotting for each of the cell lines used. For SMAD3 phosphorylation 
and TGF-β1 supernatant studies, overexpressing cell lines were serum 
starved overnight. Total and fractionated extracts were analyzed by 
immunoblot using a rabbit anti-GCC2 polyclonal antibody (PA5-
89457, Invitrogen), anti–IGF-II receptor/CI-M6PR (D3V8C) rabbit 
monoclonal antibody (14364, Cell Signaling Technology [CST]), anti–
phospho-SMAD3 rabbit monoclonal antibody (pS423/425) (C25A9) 
(9520, CST), anti-SMAD3 rabbit monoclonal antibody (9523, CST), 
rabbit calreticulin antibody supernatant (CPTC-CALR-1-s, DSHB), 
anti-GAPDH rabbit monoclonal antibody (14C10) (2118, CST), and 
anti–β-actin mouse monoclonal antibody (A5441, Sigma-Aldrich). 
Densitometry was performed on images of Western blots using ImageJ 
software (NIH).

TGF-β1 ELISA. The supernatants were collected and centrifuged 
at 500g and 4°C for 5 minutes, and the supernatants were collected 
carefully and stored at –20°C prior to ELISA. TGF-β1 activity was esti-
mated by ELISA using a LEGEND MAX Free Active TGFβ-1 ELISA Kit 
and LEGEND MAX Total TGF-β1 ELISA Kit (BioLegend) according to 
the manufacturer’s protocols. Briefly, standards and 50 μL of superna-
tants were loaded into the wells, and the absorbance were measured at 
450 nm using a Synergy-LX multimode reader (BioTek) and analyzed 
by Gen5 Microplate Reader and Imager software (BioTek). Each of the 
standard and samples were tested in duplicate.

Coexpression and functional enrichment analysis for GoCAR PBMC 
transcriptomes. The details of the RNA-seq experiment and analysis of 
the PBMCs of a subgroup of GoCAR patients before transplant and 3 
months after transplant were described in our published studies (14, 
47). The normalized data were downloaded from the NCBI Gene 
Expression Omnibus (GEO) database (accession numbers GSE112927 
and GSE120398). Gene coexpression was evaluated by Pearson’s cor-
relation between the expression values of each gene pair for pretrans-
plant and 3-month posttransplant data sets separately. Genes with 
Benjamini-Hochberg–adjusted P value of 0.05 or less and absolute 
correlation coefficient |R| ≥ 0.6 were considered coexpressed, fol-
lowed by gene set enrichment analysis as described above.

Online tools for in silico analyses. The LD matrix (on GRCh37) for 
haplotype SNPs and rs893403 was generated with LDmatrix from the 
LDlink online portal (https://ldlink.nci.nih.gov/?tab=home) using all 
major continental populations from the 1000 Genomics Project as 
reference. SNPs in LD with rs893403 and the haplotype were identi-
fied by LDproxy from the LDlink online portal using the same refer-
ence. SNPs with R2 greater than 0.9 were considered in high LD with 
targeted SNPs, and each SNP was annotated with the Regulomedb 
database (29) through LDproxy. The Regulomedb score was defined 
based on the strength of the supporting data as described in https://
regulomedb.org/regulome-help/, with a lower value indicating stron-
ger confidence of the regulatory role of the corresponding SNP. The 
SNPs were mapped to human kidney scATAC-seq peaks using the 
Susztaklab Kidney Biobank (28) with human genome hg19 assembly. 
The H3K27Ac mark, DNase I hypersensitivity clusters, transcription 
factor ChIP-seq clusters, chromatin state segmentation, and histone 
modification information were generated from the UCSC Genome 
Browser with human genome hg19 assembly (48). The eQTL analy-
sis box-and-whisker plots for LIMS1 gene expression associated with 
rs893403 and the haplotype genotype in kidney tubulointerstitial tis-
sue were generated from the NephQTL online portal (https://nephqtl.
org) (18). The LD structure between SNPs (on genome build hg19) 
within the LIMS1 gene region and the identified haplotype (represent-
ed by rs200106875) was evaluated by locuszoom/1.4 (49), with major 
continental populations from the 1000 Genomes Project as reference.

Cell lines. Jurkat T cells were obtained from ATCC and grown in 
complete RPMI 1640 medium supplemented with 10% fetal calf serum. 
For Jurkat cell activation/proliferation, anti-CD3 (OKT3 FG; 16-0037-
85, Thermo Fisher Scientific) at 1 μg/mL and anti-CD28 cocktail (16-
0289-85, Thermo Fisher Scientific) at 3 μg/mL were applied. HEK-293T 
(ATCC) and IMCD (gift from Stefan Somlo, Department of Medicine, 
Yale University School of Medicine) kidney tubular cell lines were 
grown in complete DMEM and F12/DMEM (GIBCO), respectively, sup-
plemented with 10% fetal calf serum. At indicated times in each experi-
ment (48–72 hours after transfection/electroporation), cells were centri-
fuged at 500g and 4°C for 5 minutes.

In vitro GCC2 overexpression studies. A human GCC2 construct 
(encoding full-length GCC2 C-terminus from Open Biosystems) was 
cloned into mammalian expression vector pcDNA3.1-C-eGFP with 
Neomycin resistance gene (Genscript) with a C-terminal GFP tag. The 
GCC2-GFP construct or GFP-control was overexpressed in HEK-293T 
cells using TurboFect (Thermo Fisher Scientific), or via electropora-
tion into IMCD (125 V, 5 ms, Nepagene) and Jurkat T cell lines (300 V, 
1 ms, Nepagene) using the NEPA21 electroporator as per the manufac-
turer protocols. For expression of full-length GCC2 fluorescent fusion 
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Reverse transcription and quantitative PCR. RNA was extracted 
using an RNA extraction kit (Thermo Fisher Scientific GeneJET RNA 
Purification Kit) and was transcribed into cDNA using a cDNA Reverse 
Transcription Kit (Thermo Fisher Scientific Maxima First Strand cDNA 
Synthesis Kit for RT-qPCR), with starting total RNA at approximately 
1,000 ng. Gene expression at the transcript level was assayed in vitro 
by real-time PCR using SYBR Green reagents and an automated 7500 
software platform (Applied Biosystems StepOne Plus Real-Time PCR 
systems, Thermo Fisher Scientific).

Specific primers were designed for the following human genes: 
IFNG (Forward [Fw] primer: TCGGTAACTGACTTGAATGTCCA 
and Reverse [Rv] primer: TCGCTTCCCTGTTTTAGCTGC), IKZF2 
or Helios (Fw primer: TCACCCGAAAGGGAGCACT and Rv Primer: 
CATGGCCCCTGAT-CTCATCTT), FOXP3 (Fw primer: GTGGCCCG-
GATGTGAGAAG and Rv primer: GGAGCCCTT-GTCGGATGATG). 
Amplification curves were analyzed via the 2–ΔΔCt method. GAPDH (Fw 
primer: GGAGCGAGATCCCTCAAAAT and Rv primer: GGCTGTTGT-
CATACTTCTCA-TGG) was used as endogenous control.

Statistics. The associations of time-to-event outcomes (e.g., DCGL) 
with risk factors (e.g., D-R mismatches) were evaluated by Cox regression 
implemented in R package survival, with other relevant factors adjusted 
as covariates. Samples with missing data in covariates were omitted. For 
categorical (e.g., rejection episodes) or ordinal outcomes (e.g., CADI-, Ci-, 
Ct-, i-, t-scores at 12 months after transplant), logistic or ordinal regressions 
were performed to investigate the association with risk factors, respective-
ly. For the box-and-whisker plots, the line in the middle shows the median 
value, while the lower and upper regions show the 25th and 75th percen-
tiles. The upper whisker extends to the largest value no more than 1.5 × 
IQR from the upper hinge, while the lower whisker extends to the mini-
mum value no less than 1.5 × IQR from the lower hinge. Kaplan-Meier plot 
was generated by ggsurvplot implemented in R package survminer, and P 
values for comparing between risk groups were generated by log-rank test. 
For in vitro and in vivo experiments, unpaired t test and paired t test were 
used to analyze data between 2 groups. In vitro experiments were repeated 
to obtain standard deviations, and representative experiments are shown. 
Statistical significance was considered with a 2-tailed P value of less than 
0.05. GraphPad Prism version 9.5.1 was used for analyses. Some images 
were created with Biorender (license number D3D32E84-0003).

Data availability. RNA-seq data of whole-blood transcriptomes 
from the recipients in the parent GoCAR study are available in the NCBI 
GEO database (GSE112927, before transplant; GSE120398, 3 months 
after transplant). RNA-seq and genotype data from the DICE project are 
available in the dbGaP under accession number phs001703. SNP array 
data generated from the GoCAR and CTOT-01/17 studies are available 
from the corresponding author upon request. Values for all data points 
found in graphs can be found in the Supporting Data Values file.
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obtained from all participating institutions (see list below for GoCAR 
and CTOT). For the CTOT study, written informed was obtained from 
all participants from the individual clinical sites at the time of enroll-
ment in the original study. IRB approval was obtained from all partic-
ipating institutions. Consent included the use of deidentified genetic 
data for research purposes and retrospective data reporting.

Participating institutions for GoCAR: Icahn school of Medicine at 
Mount Sinai, New York, New York, USA; University of Sydney, Westmead 
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