
Supplemental Figure 1 Related to Figure 1. PCIF1 expression associated with clinical pathological parameters in HNSCC patients cohorts.

A. PCIF1 mRNA expression in the normal tissues (n = 44) and tumor tissues (n = 520) from The Cancer Genome Atlas (TCGA) head and neck squamous cell carcinoma

profiles. \*\*\*p < 0.001 by two-tailed unpaired Student's t-test.

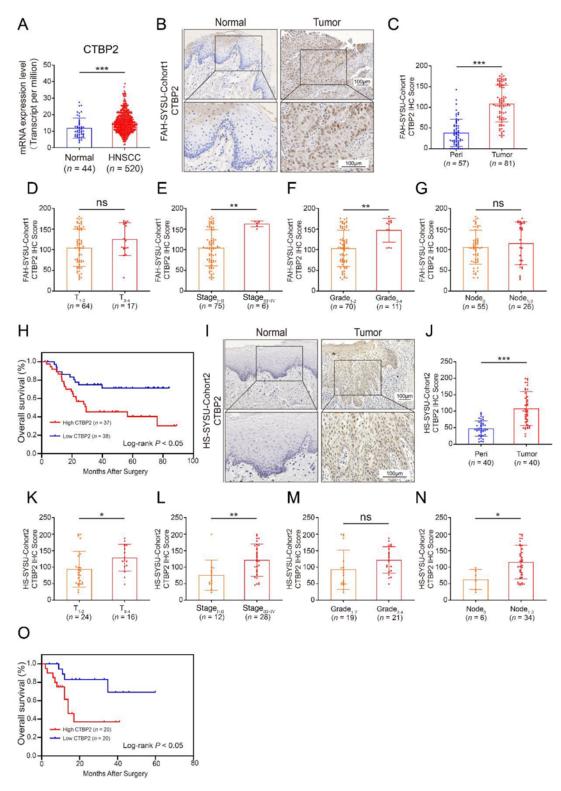
B-E. Comparison of PCIF1 staining score by T classification (B), tumor stage (C), tumor grade (D), and lymph node metastasis status (E) of patient from FAH-SYSU-Cohort1 (n = 81). p>0.05, \*p < 0.05, \*p < 0.01, \*\*\*p < 0.001 by two-tailed unpaired Student's t-test.

F-I. Comparison of PCIF1 staining score by T classification (F), tumor stage (G), tumor grade (H), and lymph node metastasis status (I) of patient from HS-SYSU-Cohort2 (n = 40). \*p < 0.05, \*\*p < 0.01 by two-tailed unpaired Student's t-test.



Supplemental Figure 2 Related to Figure 2. PCIF1 played an oncogenic function in  $m^{6}Am$ -dependent manner.

A. Western blotting analyses detecting the PCIF1 expression in SCC1 control cells and transfected with wild-type (OE) or mutant PCIF1 plasmid (OE<sub>mut</sub>).


B. Cell Counting Kit-8 assay (CCK8) of cell viability in control, OE and OE<sub>mut</sub> groups. Data are presented as mean  $\pm$  SD (n = 3). \*\*\*p < 0.001 by one-way ANOVA with Tukey's multiple comparison test.

C. The colony formation assay detecting the colony ability of control, OE and  $OE_{mut}$  groups. Data are presented as mean  $\pm$  SD (n = 3). \*\*\*p < 0.001 by one-way ANOVA with Tukey's multiple comparison test.

D. The cell cycle progression was detected by flow cytometric analyses in control, OE and OE<sub>mut</sub> group. Left panels: representative images. Right panel: quantification data. Data are presented as mean  $\pm$  SD (n = 3). \*\*\*p < 0.001 by one-way ANOVA with Tukey's multiple comparison test.

E and F. The cell migration (F) and invasion (G) ability of control, OE and  $OE_{mut}$  groups were determined by transwell assay. Data are presented as mean  $\pm$  SD (n = 3). \*\*\*p < 0.001 by one-way ANOVA with Tukey's multiple comparison test.

G. Flow cytometry assay for cell apoptosis in control, OE and  $OE_{mut}$  groups. Data are presented as mean  $\pm$  SD (n = 3). \*\*\*p < 0.001 by one-way ANOVA with Tukey's multiple comparison test.



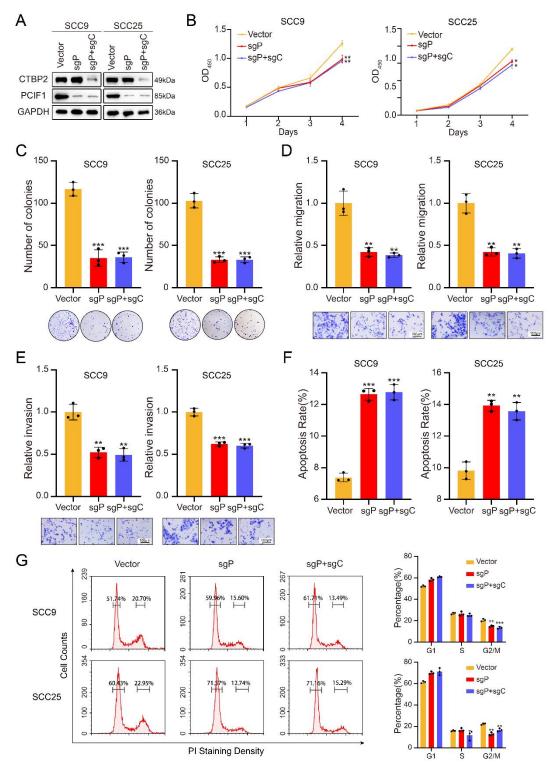
Supplemental Figure 3 Related to Figure 3. Prognostic impact of CTBP2 expression in HNSCC.

A. CTBP2 mRNA expression in the normal tissues (n = 44) and tumor tissues (n = 520) from The Cancer Genome Atlas (TCGA) head and neck squamous cell carcinoma profiles. \*\*\*p < 0.001 by two-tailed unpaired Student's t-test.

B. Representative images of CTBP2 staining in tumor and nontumorous tissues from HNSCC patients (FAH-SYSU-Cohort1). Scale bar, 100µm.

C. Quantification of CTBP2 staining score between tumor tissue samples (n = 81) and nontumorous tissue samples (n = 57) from HNSCC patients (FAH-SYSU-Cohort1). \*\*\*p < 0.001 by two-tailed unpaired Student's t-test.

D-G. Comparison of PCIF1 staining score by T classification (D), tumor stage (E), tumor grade (F), and lymph node metastasis status (G) of patient from FAH-SYSU-Cohort1 (n = 81). p > 0.05, \*\*p < 0.01 by two-tailed unpaired Student's t-test.

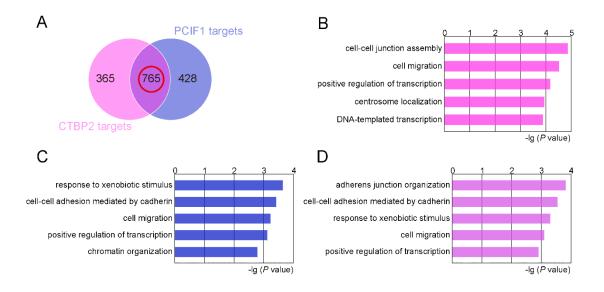

H. Kaplan-Meier curve depicting the overall survival (OS) of patients with HNSCC (FAH-SYSU-Cohort1) stratified by CTBP2 expression levels. P values were calculated by log-rank test.

I. Representative images of CTBP2 staining in tumor and nontumorous tissues from HNSCC patients (HS-SYSU-Cohort2). Scale bar, 100µm.

J. Quantification of CTBP2 staining score between tumor tissue samples (n = 40) and nontumorous tissue samples (n = 40) from HNSCC patients (HS-SYSU-Cohort2). \*\*\*p < 0.001 by two-tailed unpaired Student's t-test.

K-N. Comparison of PCIF1 staining score by T classification (K), tumor stage (L), tumor grade (M), and lymph node metastasis status (N) of patient from HS-SYSU-Cohort2 (n = 40). p > 0.05, \*p < 0.05, \*\*p < 0.01 by two-tailed unpaired Student's t-test.

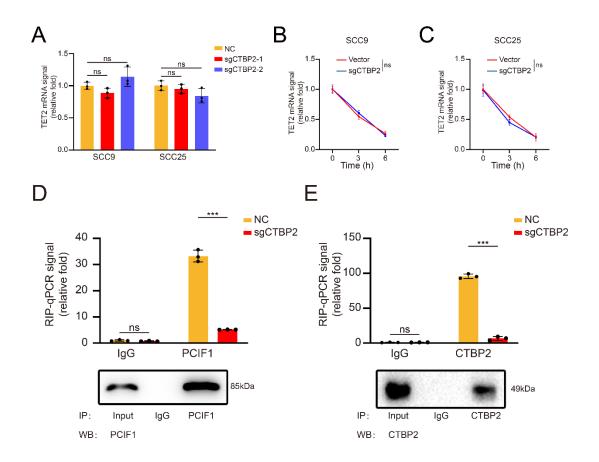
O. Kaplan-Meier curve depicting the overall survival (OS) of patients with HNSCC (HS-SYSU-Cohort2) stratified by CTBP2 expression levels. *P* values were calculated by log-rank test.




Supplemental Figure 4 Related to Figure 3. The dual knockdown of PCIF1 and CTBP2 did not synergistically worsen the phenotype resulting from PCIF1 knockdown.

A. PCIF1 and CTBP2 protein expression level in HNSCC cell lines with sole PCIF1 knockout (sgP) or dual knockout of PCIF1 and CTBP2 (sgP + sgC).

B-F. The proliferation ability (B), migration (C), invasion (D), cell apoptosis (E), and cell cycle (F) were detected in HNSCC cell lines with sole PCIF1 knockout or dual


knockout of PCIF1 and CTBP2. Data are presented as mean  $\pm$  SD (n = 3). \*p < 0.05, \*\*p < 0.01 by one-way analysis of variance, Dunnett's test (B). \*p < 0.05, \*\*p < 0.01, \*\*\*p < 0.001 by one-way ANOVA with Tukey's multiple comparison test (C-G).



Supplemental Figure 5 Related to Figure 3. PCIF1 and CTBP2 CLIP-seq in SCC25 cells.

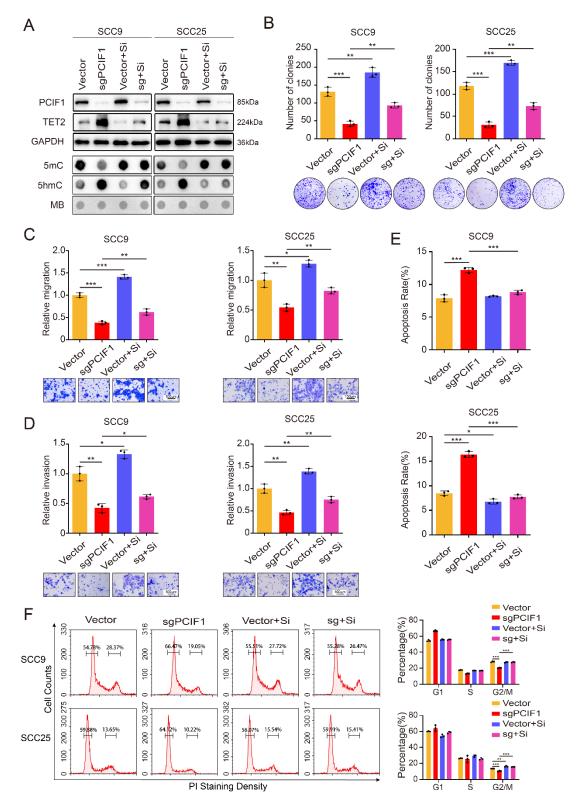
A. Venn diagrams shows the intersections of genes in CTBP2 CLIP-seq targets (CTBP2 targets) and PCIF1 CLIP-seq targets (PCIF1 targets).

B-D. Bar plots showing the top 5 GO terms of CTBP2 CLIP-seq targets genes (B), PCIF1 CLIP-seq targets genes (C), and the overlapped genes (D).



Supplemental Figure 6 Related to Figure 5. TET2 transcriptional activity is unaffected after CTBP2 knockout.

A. TET2 mRNA expression was determined by qRT-PCR in control and CTBP2 knockout cells. Data are presented as mean  $\pm$  SD (n = 3). p >0.05 by one-way analysis

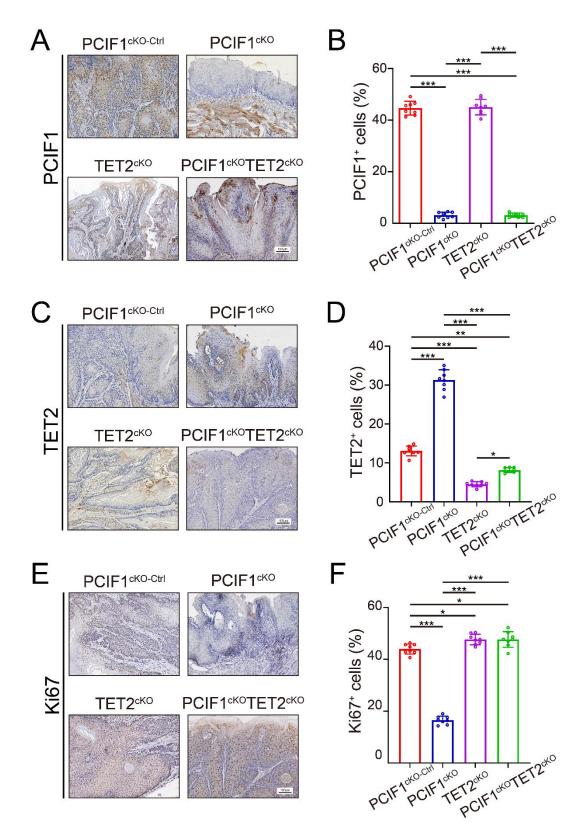

of variance, Dunnett's test.

B. qRT-PCR analysis of TET2 mRNA levels at the indicated times in SCC9 control and CTBP2 knockout cells after actinomycin D treatment. Data are presented as mean  $\pm$  SD (n = 3). p >0.05 by two-tailed unpaired Student's t-test.

C. qRT-PCR analysis of TET2 mRNA levels at the indicated times in SCC25 control and CTBP2 knockout cells after actinomycin D treatment. Data are presented as mean  $\pm$  SD (n = 3). p >0.05 by two-tailed unpaired Student's t-test.

D. RIP-qPCR analysis of TET2 mRNA retrieved by anti-PCIF1 antibody in control and CTBP2 knockout cells. Data are presented as mean  $\pm$  SD (n = 3). p >0.05, \*\*\*p < 0.001 were obtained from two-tailed unpaired Student's t-test.

E. RIP-qPCR analysis of TET2 mRNA retrieved by anti-CTBP2 antibody in control and CTBP2 knockout cells. Data are presented as mean  $\pm$  SD (n = 3). p >0.05, \*\*\*p < 0.001 were obtained from two-tailed unpaired Student's t-test.

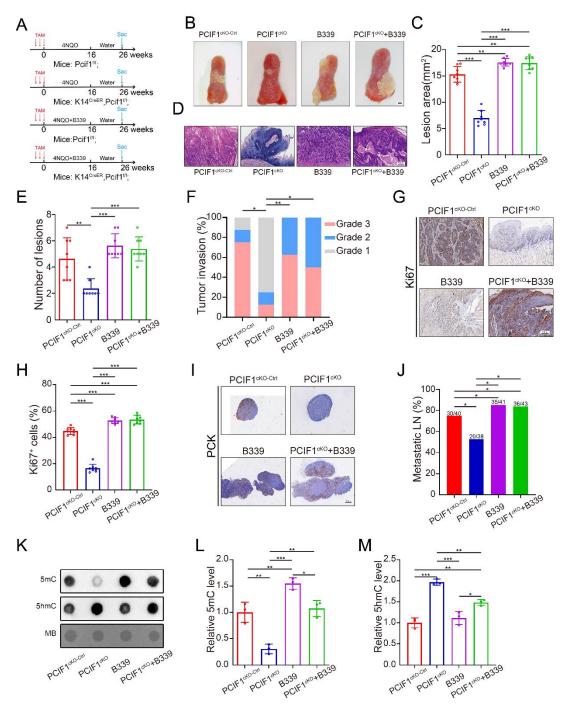



Supplemental Figure 7 Related to Figure 5. Identification of TET2 as a functional target in HNSCC cell lines.

A. PCIF1 and TET2 protein expression level (upper) and DNA 5mC and 5hmC modification levels (lower) in HNSCC cell lines with or without stable PCIF1 knockout

was transfected with non-targeting siRNA or siRNA targeting TET2.

B-F. The proliferation ability (B), migration (C), invasion (D), cell apoptosis (E), and cell cycle (F) were detected in HNSCC cell lines with or without stable PCIF1 knockout was transfected with non-targeting siRNA or siRNA targeting TET2. Data are presented as mean  $\pm$  SD (n = 3). \*p < 0.05, \*\*p < 0.01, \*\*\*p < 0.001 by one-way ANOVA with Tukey's multiple comparison test.




Supplemental Figure 8 Related to Figure 6. Effects of *PCIF1* knockout on TET2 expression and cell proliferation.

A. Representative PCIF1 staining of HNSCC in the indicated groups. Scale bar, 100μm.
B. Quantification of PCIF1<sup>+</sup> cells in the indicated groups. Data are presented as mean

 $\pm$  SD (n = 8). \*\*\*p < 0.001 by one-way ANOVA with Tukey's multiple comparison test. C. Representative TET2 staining of HNSCC in the indicated groups. Scale bar, 100µm. D. Quantification of TET2<sup>+</sup> cells in the indicated groups. Data are presented as mean  $\pm$  SD (n = 8). \*p < 0.05, \*\*p<0.01, \*\*\*p < 0.001 by one-way ANOVA with Tukey's multiple comparison test.

E. Representative Ki67 staining of HNSCC in the indicated groups. Scale bar, 100 $\mu$ m. F. Quantification of Ki67<sup>+</sup> cells in the indicated groups. Data are presented as mean  $\pm$  SD (n = 8). \*p < 0.05, \*\*\*p < 0.001 by one-way ANOVA with Tukey's multiple comparison test.



Supplemental Figure 9 Related to Figure 6. Effects of TET2 inhibitor on tumor growth and metastasis in *Pcif1* knockout mice.

A. The experimental design showing the B339 treatment schedule for the carcinogeninduced HNSCC mouse model.

B. Representative image of tongue visible lesions in the different treatment groups.Scale bar, 1mm.

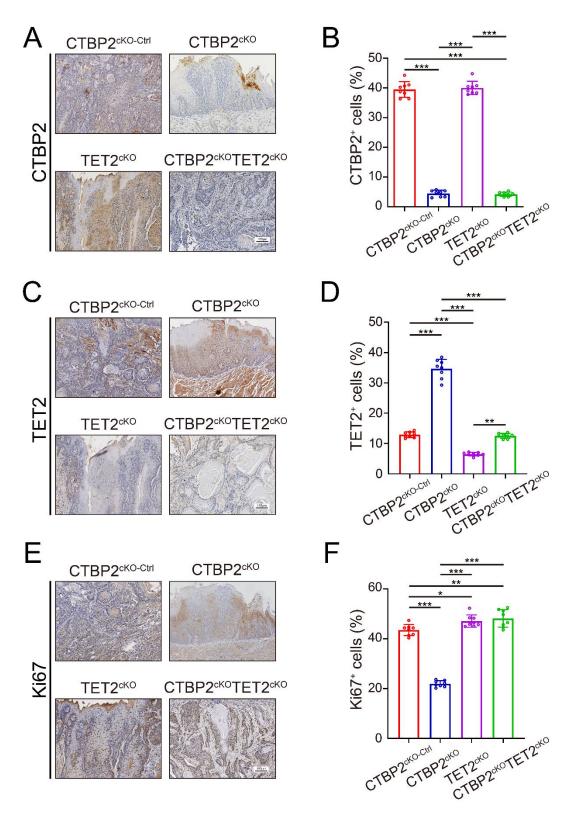
C. Quantification of HNSCC lesion area in the different treatment groups. Data are presented as mean  $\pm$  SD (n = 8). \*\*p < 0.01, \*\*\*p < 0.001 by one-way ANOVA with

Tukey's multiple comparison test.

D. Representative H&E staining of HNSCC in the different treatment groups. Scale bar, 100µm.

E. Quantification of HNSCC number of lesions in the different treatment groups. Data are presented as mean  $\pm$  SD (n = 8). \*\*p < 0.01, \*\*\*p < 0.001 by one-way ANOVA with Tukey's multiple comparison test.

F. Quantification of HNSCC tumor grade in the different treatment groups. \*p < 0.05, \*\*p < 0.01 by Pearson chi-square test.


G. Representative Ki67 staining of HNSCC in the different treatment groups. Scale bar, 100µm.

H. Quantification of Ki67<sup>+</sup> cells in the different treatment groups. Data are presented as mean  $\pm$  SD (n = 8). \*\*\*p < 0.001 by one-way ANOVA with Tukey's multiple comparison test.

I. Representative PCK staining of metastatic lymph node in the different treatment groups. Scale bar, 300µm.

J. Quantification of metastatic lymph node percentage in the different treatment groups. \*p < 0.05 by Pearson chi-square test.

K-M. Representative dot-blot image (K) and the quantitative analysis of DNA 5mC (L) and 5hmC (M) modification levels in the indicated groups. Data are presented as mean  $\pm$  SD (n = 3). \*p < 0.05, \*\*p < 0.01, \*\*\*p < 0.001 by one-way ANOVA with Tukey's multiple comparison test.



Supplemental Figure 10 Related to Figure 7. Effects of CTBP2 knockout on TET2 expression and cell proliferation.

A. Representative CTBP2 staining of HNSCC in the indicated groups. Scale bar, 100μm.
B. Quantification of CTBP2<sup>+</sup> cells in the indicated groups. Data are presented as mean

 $\pm$  SD (n = 8). \*\*\*p < 0.001 by one-way ANOVA with Tukey's multiple comparison test. C. Representative TET2 staining of HNSCC in the indicated groups. Scale bar, 100µm. D. Quantification of TET2<sup>+</sup> cells in the indicated groups. Data are presented as mean  $\pm$  SD (n = 8). \*\*p < 0.01, \*\*\*p < 0.001 by one-way ANOVA with Tukey's multiple comparison test.

E. Representative Ki67 staining of HNSCC in the indicated groups. Scale bar, 100 $\mu$ m. F. Quantification of Ki67<sup>+</sup> cells in the indicated groups. Data are presented as mean  $\pm$  SD (n = 8). \*p < 0.05, \*\*p < 0.01, \*\*\*p < 0.001 by one-way ANOVA with Tukey's multiple comparison test.

| ID | gender | age | Tumor | grade | stage | lymph<br>node | time  | statu |
|----|--------|-----|-------|-------|-------|---------------|-------|-------|
| 1  | Male   | 62  | 2     | 1     | 2     | 0             | 56.6  | 0     |
| 2  | Male   | 45  | 1     | 1     | 1     | 0             | 30    | 0     |
| 3  | Female | 63  | 3     | 1     | 2     | 0             | 39.8  | 1     |
| 4  | Male   | 53  | 1     | 1     | 1     | 0             | 76.8  | 0     |
| 5  | Male   | 29  | 2     | 1     | 2     | 2             | 76.2  | 1     |
| 6  | Female | 46  | 3     | 1     | 2     | 2             | 9.57  | 1     |
| 7  | Male   | 56  | 1     | 1     | 1     | 0             | 13.23 | 1     |
| 8  | Male   | 56  | 1     | 1     | 1     | 0             | -     | -     |
| 9  | Male   | 50  | 4     | 1     | 3     | 0             | 3.27  | 1     |
| 10 | Male   | 51  | 4     | 1     | 3     | 2             | 38.3  | 0     |
| 11 | Male   | 61  | 1     | 1     | 1     | 0             | 73.6  | 0     |
| 12 | Male   | 59  | 1     | 2     | 1     | 0             | 10.83 | 1     |
| 13 | Male   | 62  | 1     | 2     | 1     | 0             | 14.9  | 1     |
| 14 | Male   | 83  | 1     | 2     | 1     | 0             | 35    | 0     |
| 15 | Male   | 64  | 1     | 1     | 1     | 0             | 24.23 | 0     |
| 16 | Male   | 85  | 1     | 2     | 1     | 0             | 37.2  | 0     |
| 17 | Male   | 66  | 1     | 1     | 1     | 0             | 22.9  | 1     |
| 18 | Male   | 68  | 1     | 1     | 1     | 0             | 83.8  | 0     |
| 19 | Female | 80  | 1     | 2     | 1     | 0             | 34.6  | 0     |
| 20 | Male   | 72  | 1     | 1     | 1     | 0             | 10    | 1     |
| 21 | Male   | 41  | 2     | 2     | 1     | 0             | 2.2   | 0     |
| 22 | Male   | 35  | 2     | 1     | 1     | 0             | 27.67 | 1     |
| 23 | Male   | 47  | 2     | 2     | 1     | 0             | 87.4  | 0     |
| 24 | Male   | 52  | 2     | 1     | 1     | 0             | 89    | 0     |
| 25 | Male   | 60  | 2     | 1     | 1     | 0             | 50.9  | 0     |
| 26 | Male   | 61  | 2     | 1     | 1     | 0             | 74.3  | 0     |
| 27 | Female | 23  | 2     | 1     | 1     | 0             | 65.7  | 0     |
| 28 | Female | 59  | 2     | 1     | 1     | 0             | 48.8  | 0     |
| 29 | Female | 65  | 2     | 1     | 1     | 0             | 52.4  | 0     |
| 30 | Male   | 49  | 2     | 2     | 1     | 0             | 65.6  | 0     |
| 31 | Male   | 62  | 2     | 2     | 1     | 0             | 37    | 0     |
| 32 | Male   | 65  | 2     | 2     | 1     | 0             | 29.43 | 1     |
| 33 | Female | 61  | 1     | 1     | 1     | 1             | 14.73 | 1     |
| 34 | Male   | 46  | 3     | 1     | 2     | 0             | 76.4  | 0     |
| 35 | Male   | 68  | 2     | 2     | 1     | 0             | 46.7  | 0     |
| 36 | Male   | 63  | 3     | 1     | 2     | 0             | 19.63 | 1     |
| 37 | Male   | 68  | 3     | 1     | 2     | 0             | 55.7  | 0     |
| 38 | Female | 50  | 3     | 1     | 2     | 0             | 21.27 | 1     |
| 39 | Male   | 47  | 1     | 2     | 1     | 0             | 69.9  | 0     |
| 40 | Female | 63  | 2     | 2     | 1     | 0             | 22    | 1     |

Supplemental Table 1: The demographic, pathologic, and clinical information of FAH-SYSU cohort.

| 41 | Female | 85 | 2 | 2 | 1 | 0 | -     | - |
|----|--------|----|---|---|---|---|-------|---|
| 42 | Male   | 42 | 3 | 2 | 2 | 0 | 28.63 | 1 |
| 43 | Male   | 42 | 3 | 2 | 2 | 0 | 22.67 | 1 |
| 44 | Female | 59 | 1 | 2 | 2 | 2 | 13.5  | 1 |
| 45 | Female | 70 | 1 | 2 | 2 | 2 | 15.97 | 1 |
| 46 | Male   | 62 | 2 | 2 | 2 | 2 | 79.7  | 0 |
| 47 | Male   | 66 | 2 | 2 | 2 | 2 | 8.4   | 1 |
| 48 | Male   | 70 | 2 | 2 | 2 | 2 | 49    | 0 |
| 49 | Male   | 41 | 4 | 2 | 3 | 0 | 47.7  | 0 |
| 50 | Female | 82 | 4 | 2 | 3 | 1 | 4.03  | 0 |
| 51 | Male   | 50 | 1 | 2 | 1 | 0 | 20.47 | 1 |
| 52 | Male   | 67 | 1 | 2 | 1 | 0 | 70.6  | 0 |
| 53 | Female | 53 | 2 | 2 | 3 | 3 | 13.5  | 1 |
| 54 | Male   | 88 | 1 | 2 | 1 | 0 | 84.1  | 0 |
| 55 | Male   | 59 | 4 | 2 | 3 | 3 | 9.83  | 1 |
| 56 | Female | 63 | 1 | 2 | 1 | 0 | 59.9  | 0 |
| 57 | Female | 63 | 1 | 2 | 1 | 0 | 48.9  | 0 |
| 58 | Male   | 32 | 2 | 2 | 1 | 0 | 50.3  | 1 |
| 59 | Male   | 44 | 1 | 3 | 1 | 0 | 6.7   | 1 |
| 60 | Male   | 73 | 1 | 3 | 1 | 0 | 18.77 | 1 |
| 61 | Male   | 66 | 2 | 2 | 1 | 0 | 76.9  | 0 |
| 62 | Female | 54 | 1 | 3 | 1 | 0 | 36.9  | 0 |
| 63 | Male   | 71 | 2 | 2 | 1 | 0 | 80.3  | 0 |
| 64 | Male   | 48 | 1 | 2 | 1 | 1 | 60.2  | 0 |
| 65 | Female | 62 | 1 | 3 | 1 | 0 | 29.37 | 1 |
| 66 | Female | 51 | 1 | 2 | 1 | 1 | 24.53 | 1 |
| 67 | Female | 78 | 1 | 2 | 1 | 1 | 10    | 1 |
| 68 | Male   | 29 | 2 | 3 | 1 | 1 | 38.4  | 0 |
| 69 | Male   | 66 | 3 | 3 | 2 | 0 | 5.63  | 1 |
| 70 | Male   | 37 | 2 | 2 | 1 | 1 | 71.2  | 0 |
| 71 | Male   | 62 | 2 | 2 | 1 | 1 | -     | - |
| 72 | Male   | 53 | 1 | 3 | 2 | 2 | -     | - |
| 73 | Male   | 60 | 2 | 3 | 2 | 2 | 40    | 0 |
| 74 | Male   | 63 | 2 | 2 | 1 | 1 | 13.03 | 1 |
| 75 | Female | 69 | 2 | 2 | 1 | 1 | 87.4  | 0 |
| 76 | Male   | 82 | 3 | 2 | 2 | 0 | -     | - |
| 77 | Male   | 63 | 2 | 3 | 2 | 2 | -     | - |
| 78 | Female | 47 | 3 | 2 | 2 | 0 | 68.7  | 0 |
| 79 | Female | 46 | 2 | 2 | 2 | 2 | 41.2  | 0 |
| 80 | Female | 64 | 2 | 3 | 2 | 2 | 39.1  | 0 |
| 81 | Male   | 70 | 3 | 3 | 2 | 2 | 20.9  | 1 |
|    |        |    |   |   |   |   |       |   |

| ID       | gender | age | Tumor | grade | stage | lymph<br>node | time | status |
|----------|--------|-----|-------|-------|-------|---------------|------|--------|
| 20150780 | Female | 62  | 3     | 3     | 3     | 1             | 6    | 1      |
| 20150732 | Female | 54  | 4     | 3     | 4     | 1             | 9    | 0      |
| 20150611 | Male   | 41  | 3     | 3     | 3     | 2             | 2    | 1      |
| 20150655 | Female | 53  | 1     | 1     | 1     | 0             | 8    | 0      |
| 20150631 | Female | 60  | 2     | 1     | 2     | 1             | 4    | 0      |
| 20150451 | Male   | 21  | 3     | 1     | 3     | 1             | 9    | 1      |
| 20150412 | Male   | 74  | 2     | 2     | 3     | 2             | 18   | 0      |
| 20150453 | Male   | 74  | 2     | 3     | 3     | 2             | 10   | 0      |
| 20150382 | Female | 75  | 3     | 3     | 3     | 2             | 7    | 1      |
| 20150283 | Female | 47  | 1     | 1     | 1     | 0             | 33   | 0      |
| 20150181 | Male   | 64  | 4     | 3     | 4     | 1             | 39   | 0      |
| 20141575 | Female | 63  | 1     | 1     | 3     | 2             | 14   | 1      |
| 20141423 | Male   | 59  | 2     | 1     | 3     | 2             | 12   | 0      |
| 20141404 | Male   | 68  | 2     | 3     | 3     | 2             | 39   | 0      |
| 20141247 | Male   | 60  | 2     | 3     | 3     | 2             | 16   | 0      |
| 20141125 | Male   | 49  | 2     | 3     | 3     | 2             | 43   | 0      |
| 20140915 | Male   | 51  | 2     | 1     | 2     | 1             | 12   | 0      |
| 20140753 | Female | 68  | 2     | 1     | 2     | 1             | 12   | 0      |
| 20140721 | Male   | 52  | 3     | 3     | 3     | 2             | 3    | 1      |
| 20140620 | Male   | 64  | 3     | 3     | 3     | 2             | 41   | 0      |
| 20140507 | Male   | 68  | 3     | 3     | 3     | 2             | 17   | 0      |
| 20131381 | Male   | 55  | 2     | 2     | 3     | 2             | 17   | 1      |
| 20130760 | Female | 32  | 2     | 3     | 3     | 2             | 11   | 1      |
| 20130738 | Male   | 43  | 4     | 3     | 4     | 2             | 11   | 0      |
| 20130538 | Male   | 59  | 4     | 3     | 4     | 2             | 8    | 1      |
| 20130399 | Male   | 40  | 2     | 1     | 3     | 2             | 12   | 1      |
| 20130339 | Male   | 32  | 2     | 1     | 2     | 1             | 35   | 1      |
| 20120695 | Male   | 64  | 2     | 3     | 3     | 2             | 12   | 1      |
| 20110927 | Male   | 56  | 2     | 1     | 2     | 1             | 28   | 0      |
| 20110731 | Male   | 66  | 3     | 1     | 3     | 1             | 33   | 0      |
| 20150656 | Female | 55  | 1     | 1     | 3     | 2             | 16   | 0      |
| 20150282 | Male   | 53  | 3     | 3     | 3     | 1             | 14   | 1      |
| 20111017 | Male   | 49  | 2     | 1     | 2     | 1             | 46   | 0      |
| 20151029 | Male   | 62  | 1     | 1     | 1     | 0             | 11   | 0      |
| 20141592 | Male   | 60  | 3     | 3     | 3     | 2             | 20   | 0      |
| 20141389 | Male   | 57  | 4     | 3     | 4     | 3             | 8    | 0      |
| 20141166 | Male   | 55  | 1     | 1     | 1     | 0             | 18   | 0      |
| 20151032 | Male   | 42  | 2     | 3     | 2     | 0             | 60   | 0      |
| 20150630 | Female | 57  | 2     | 1     | 2     | 0             | 60   | 0      |
| 20150522 | Female | 35  | 3     | 3     | 3     | 1             | 12   | 1      |

Supplemental Table 2: The demographic, pathologic, and clinical information of HS-SYSU cohort.

Supplemental Table 3: MS-iTRAQ analysis results.

| Protein_ID            | Protein_Qscore | PepIsUnique             | Abundance   |
|-----------------------|----------------|-------------------------|-------------|
| sp P56545 CTBP2_HUMAN | 17.86634503    | 1;1;1;1;1;0             | 12967607.68 |
| sp Q14011 CIRBP_HUMAN | 6.890291984    | 1;1                     | 379747.0682 |
| sp P27695 APEX1_HUMAN | 17.91180731    | 1;1;1;1;1               | 3778713.687 |
| sp P67809 YBOX1_HUMAN | 15.22498509    | 1;1;1;1                 | 2262219.914 |
| sp P07948 LYN_HUMAN   | 8.866021122    | 1;1;1                   | 2089401.448 |
| sp P33176 KINH_HUMAN  | 11.10673706    | 1;1;1                   | 229891.1317 |
| sp P45974 UBP5_HUMAN  | 10.33543798    | 1;1;1                   | 502698.3195 |
| sp P23368 MAOM_HUMAN  | 10.38090025    | 1;1;1                   | 1833122.697 |
| sp Q8WZ19 BACD1_HUMAN | 8.10862357     | 1;1;1                   | 3194754.538 |
| sp Q9H4Z3 CAPAM_HUMAN | 10.73844642    | 1;1;1                   | 1328905.234 |
| sp Q9NVI7 ATD3A_HUMAN | 9.697053732    | 1;1;1                   | 923787.4745 |
| sp Q15758 AAAT_HUMAN  | 5.760216524    | 1;1                     | 421909.419  |
| sp Q5SRE5 NU188_HUMAN | 6.398600768    | 1;1                     | 1148988.37  |
| sp P00441 SODC_HUMAN  | 7.931684669    | 1;1                     | 1353921.824 |
| sp Q8TAQ2 SMRC2_HUMAN | 6.25190774     | 1;1                     | 148498.573  |
| sp P42126 ECI1_HUMAN  | 7.239305003    | 1;1                     | 1796565.063 |
| sp O00154 BACH_HUMAN  | 5.61752421     | 1;1                     | 1683605.09  |
| sp P50579 MAP2_HUMAN  | 5.894361572    | 1;1                     | 523174.510  |
| sp Q13724 MOGS_HUMAN  | 6.571218094    | 1;1                     | 78383.7416  |
| sp Q9H307 PININ_HUMAN | 5.253760558    | 1;1                     | 365813.6693 |
| sp Q9BZF1 OSBL8_HUMAN | 5.094780556    | 1;1                     | 135865.745  |
| sp O43169 CYB5B_HUMAN | 6.024484338    | 1;1                     | 16630637.0  |
| sp Q13057 COASY_HUMAN | 6.25190774     | 1;1                     | 26947.8601  |
| sp P04114 APOB_HUMAN  | 4.846351637    | 1;1                     | 611653.267  |
| sp P12236 ADT3_HUMAN  | 4.486538677    | 1;0;0;0                 | 98910.2658  |
| sp P47755 CAZA2_HUMAN | 3.04436838     | 1;0                     | (           |
| sp P52789 HXK2_HUMAN  | 2.068699384    | 0;1;0                   | 551969.0673 |
| sp Q9UKA9 PTBP2_HUMAN | 2.953454776    | 0;1                     | 487717.859  |
| sp P61981 1433G_HUMAN | 7.931684669    | 0;0;1;0;0;1             | 4565818.9   |
| sp P36873 PP1G_HUMAN  | 2.07558123     | 0;0;1                   | 302466.867  |
| sp Q13838 DX39B_HUMAN | 2.953454776    | 0;0;0;0;0;0;0;1         | 50594.79353 |
| sp P48668 K2C6C_HUMAN | 3.175052389    | 0;0;0;0;0;0;0;0;0;1;0;0 | 363046.5312 |
| sp Q13098 CSN1_HUMAN  | 3.445145992    | 1                       | 1605362.882 |
| sp Q9H299 SH3L3_HUMAN | 4.486538677    | 1                       | 137774.435  |
| sp Q15166 PON3_HUMAN  | 3.04436838     | 1                       | 445861.0693 |
| sp Q96P48 ARAP1_HUMAN | 2.752766326    | 1                       | 2240570.59  |
| sp 094925 GLSK_HUMAN  | 3.445145992    | 1                       | 16461.60924 |
| sp O43148 MCES_HUMAN  | 3.445145992    | 1                       | 150083.852  |
| sp Q10471 GALT2_HUMAN | 2.141325781    | 1                       |             |
| sp Q8TC12 RDH11_HUMAN | 3.445145992    | 1                       | 43406.9645  |
| sp Q9BVJ6 UT14A_HUMAN | 3.445145992    | 1                       | (           |
| sp Q71RC2 LARP4_HUMAN | 3.445145992    | 1                       | (           |

| sp O75964 ATP5L_HUMAN | 3.445145992 | 1 | 227381.9831 |
|-----------------------|-------------|---|-------------|
| sp P24534 EF1B_HUMAN  | 3.445145992 | 1 | 1826131.028 |
| sp Q9UNL2 SSRG_HUMAN  | 3.445145992 | 1 | 1282396.013 |
| sp P16298 PP2BB_HUMAN | 3.445145992 | 1 | 113746.7435 |
| sp P48729 KC1A_HUMAN  | 3.445145992 | 1 | 278827.9722 |
| sp Q9Y3B4 SF3B6_HUMAN | 4.486538677 | 1 | 15454.5462  |
| sp Q9HD45 TM9S3_HUMAN | 3.445145992 | 1 | 65643.29429 |
| sp Q14690 RRP5_HUMAN  | 4.486538677 | 1 | 526524.6327 |
| sp P51649 SSDH_HUMAN  | 2.547807344 | 1 | 498139.8743 |
| sp P41240 CSK_HUMAN   | 3.445145992 | 1 | 29553.84945 |
| sp Q8WX92 NELFB_HUMAN | 3.445145992 | 1 | 0           |
| sp O95754 SEM4F_HUMAN | 2.198412574 | 1 | 504079.5662 |
| sp Q9NPD3 EXOS4_HUMAN | 3.04436838  | 1 | 315197.1307 |
| sp Q96C86 DCPS_HUMAN  | 2.752766326 | 1 | 266981.2115 |
| sp Q96G03 PGM2_HUMAN  | 2.305521309 | 1 | 3064058.832 |
| sp P48637 GSHB_HUMAN  | 2.953454776 | 1 | 61628.63901 |
| sp Q99436 PSB7_HUMAN  | 2.953454776 | 1 | 173654.3687 |
| sp Q15582 BGH3_HUMAN  | 2.806761748 | 1 | 170539.6011 |
| sp Q8TC07 TBC15_HUMAN | 2.467420355 | 1 | 64515.74859 |
| sp Q8NCW5 NNRE_HUMAN  | 2.256252121 | 1 | 3883.422477 |
| sp P24752 THIL_HUMAN  | 3.445145992 | 1 | 112000.9648 |
| sp Q9H9S4 CB39L_HUMAN | 2.953454776 | 1 | 5679.497968 |
| sp P35080 PROF2_HUMAN | 4.486538677 | 1 | 1042761.605 |
| sp Q16666 IF16_HUMAN  | 2.579338346 | 1 | 185629.7297 |
| sp Q12765 SCRN1_HUMAN | 3.445145992 | 1 | 207724.0141 |
| sp Q8IXB1 DJC10_HUMAN | 3.445145992 | 1 | 0           |
| sp Q9NS69 TOM22_HUMAN | 3.445145992 | 1 | 61752.56106 |
| sp P05386 RLA1_HUMAN  | 4.486538677 | 1 | 346115.1222 |
| sp P69905 HBA_HUMAN   | 3.445145992 | 1 | 55431.68174 |
| sp Q9H0A0 NAT10_HUMAN | 2.172378218 | 1 | 286442.6441 |
| sp Q9NZP5 O5AC2_HUMAN | 2.579338346 | 1 | 75440.86844 |
| sp O75976 CBPD_HUMAN  | 3.04436838  | 1 | 3992392.55  |
| sp P62308 RUXG_HUMAN  | 4.486538677 | 1 | 4053927.384 |
| sp Q86YZ3 HORN_HUMAN  | 3.445145992 | 1 | 0           |
| sp P35251 RFC1_HUMAN  | 2.953454776 | 1 | 0           |
| sp Q9H1E3 NUCKS_HUMAN | 2.655999298 | 1 | 4626423.663 |
| sp Q9Y606 TRUA_HUMAN  | 2.579338346 | 1 | 1023803.297 |
| sp Q5TA45 INT11_HUMAN | 3.445145992 | 1 | 13444.26123 |
| sp P45973 CBX5_HUMAN  | 2.07558123  | 1 | 225493.8538 |
| sp P41567 EIF1_HUMAN  | 3.445145992 | 1 | 1892859.831 |
| sp Q9HCY8 S10AE_HUMAN | 2.467420355 | 1 | 26954.99102 |
| sp P48651 PTSS1_HUMAN | 3.445145992 | 1 | 0           |
| sp P13807 GYS1_HUMAN  | 2.953454776 | 1 | 490729.0189 |
| sp P54840 GYS2_HUMAN  | 2.22565399  | 1 | 0           |
|                       |             |   |             |

| 0           | 1 | 2.953454776 | sp Q96EK6 GNA1_HUMAN  |
|-------------|---|-------------|-----------------------|
| 13869.36359 | 1 | 2.184592397 | sp O00217 NDUS8_HUMAN |
| 0           | 1 | 2.579338346 | sp O60502 OGA_HUMAN   |
| 17430115.03 | 1 | 2.068699384 | sp Q96HU8 DIRA2_HUMAN |
| 0           | 1 | 2.467420355 | sp O60678 ANM3_HUMAN  |
| 0           | 1 | 2.305521309 | sp P04196 HRG_HUMAN   |
| 4278643.519 | 1 | 2.485411303 | sp P14324 FPPS_HUMAN  |
| 894629.9894 | 1 | 3.445145992 | sp P56134 ATPK_HUMAN  |
| 0           | 1 | 3.445145992 | sp P82673 RT35_HUMAN  |
| 650589.3265 | 1 | 3.445145992 | sp Q13243 SRSF5_HUMAN |
| 351257.301  | 1 | 2.122609745 | sp P49406 RM19_HUMAN  |
| 107631.7671 | 1 | 2.953454776 | sp Q8IXI1 MIRO2_HUMAN |
| 123222.2421 | 1 | 2.953454776 | sp Q15428 SF3A2_HUMAN |
| 0           | 1 | 3.445145992 | sp Q9BXB4 OSB11_HUMAN |
| 437995.9409 | 1 | 3.445145992 | sp P53985 MOT1_HUMAN  |
| 483649.9964 | 1 | 3.445145992 | sp P63220 RS21_HUMAN  |
| 0           | 1 | 4.486538677 | sp Q9NXG2 THUM1_HUMAN |

Supplemental Table 4: Primer and oligonucleotides sequences.

| Oligonucleotides        | sequence                       |  |  |
|-------------------------|--------------------------------|--|--|
| h-TET2-Forward Primer   | 5'- GATAGAACCAACCATGTTGAGGG-3' |  |  |
| h-TET2-Reverse Primer   | 5'-TGGAGCTTTGTAGCCAGAGGT-3'    |  |  |
| h-GAPDH-Forward Primer  | 5'-AGATCCCTCCAAAATCAAGTGG-3'   |  |  |
| h-GAPDH- Reverse Primer | 5'- GGCAGAGATGATGACCCTTTT-3'   |  |  |
| si-TET2                 | 5'-CCAUCACAAUUGCUUCUUU-3'      |  |  |
| sg-PCIF1-1              | 5'- CACCTAGCGGTAAAGGAGCCACTG-3 |  |  |
| sg-PCIF1-2              | 5'- CACCCGGTTGAAAGACTCCCGTGG-3 |  |  |
| sg-CTBP2-1              | 5'- CACCCGGTTGAAAGACTCCCGTGG-3 |  |  |
| sg-CTBP2-2              | 5'- CGTCGACTGCGCGTCACAGA-3     |  |  |