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Introduction
Neurodegenerative diseases are a heterogeneous group of nervous 
system diseases, each marked by selected populations of polarized 
neurons undergoing synaptic retractions, axonal degeneration, 
and ultimately cell death. An early and unifying event in neurode-
generation is disruption of axonal transport, a constitutive process 
that is necessary for maintaining neuron survival.

Neurons are highly polarized, with their longest axons reaching 
up to 1 meter in length in humans. This remarkable axonal length 
poses a substantial challenge to neurons to maintain homeosta-
sis. Most synthesis occurs in the cell body, and macromolecules 
necessary for axonal and synaptic function are transported from 
the cell body and targeted to their correct destination. Conversely, 
signaling complexes from the synapse and macromolecules and 
organelles destined to be degraded or recycled are transported 
from the presynaptic terminal to the cell body. Neurons utilize the 
ATPase motor proteins kinesin and dynein, which recognize the 
intrinsic polarity of microtubules, to carry and deliver organelles 
along microtubule tracks (Figure 1).

The kinesin superfamily is composed of 44 different genes and 
organized into 14 different subfamilies (1). Kinesin-1 (conventional 
kinesin) and kinesin-3 axonal transport properties have been the 
best characterized (2) and will be focused on in this Review. The 
conventional kinesin subfamily is the most studied and consists 
of three proteins: KIF5A, which is primarily expressed in neurons, 
and KIF5B and KIF5C, which are expressed ubiquitously. Kinesin is 
composed of two heavy chains (KHCs) and two light chains (KLCs). 
KHC binds microtubules and hydrolyzes ATP near the N-terminus, 
has a long stalk region with two coiled-coiled domains, and asso-
ciates with the cargo-binding KLCs at the C-terminus (1). Within 
axons, kinesin exclusively transports cargoes anterogradely along 
microtubules from the cell body to the periphery (1).

Cytoplasmic dynein, on the other hand, transports cargoes in 
the retrograde direction along the axon to the cell body. Cytoplas-
mic dynein is a large, 1.4 MDa multimeric complex composed of 
dimerized heavy chains (DHCs), two intermediate chains (DICs), 
two light intermediate chains (DLICs), and additional light chains. 
DHC binds microtubules and hydrolyzes ATP at its C-terminal 
head, and binds cargo via interaction with other dynein subunits 
at its N-terminal tail (1).

Regulation of axonal transport
Axonal transport is a highly regulated process that can be modi-
fied by adaptors, by phosphorylation of motor proteins and their 
regulators, by posttranslational modification of microtubules, 
and by organelle-specific interactions. Both kinesin and dynein 
are autoinhibited at baseline and require activation to traffic along 
microtubules. Kinesin autoinhibition occurs by folding of the 
KHC tail to block the KHC motor from binding to microtubules 
(1). Dynein, on the other hand, is autoinhibited via dimerization 
of the motor domains, forming a structure termed the phi-parti-
cle (3). Non-dimerized dynein is in an open form that has a high-
er affinity for binding to microtubules but requires binding with 
dynactin and cargo adaptors to activate motor activity, likely by 
modifying the orientation of motor domains to allow processive 
movement along microtubules (3).

Adaptors. The best-characterized adaptor is dynactin, a cofac-
tor for dynein-mediated axonal transport. Dynactin is a large, 
multi-subunit 1.1 MDa complex that interacts with dynein and 
microtubules and is essential for the initiation and activation of 
dynein-mediated transport (4–6). Other adaptors that function 
in concert with dynactin to activate dynein-mediated transport 
include bicaudal D proteins (7), the Hook protein family (8, 9), and 
spindly (10). Certain adaptors, such as TRAK2 (11), Hook3 (12), 
Jip1 (13), and HAP1 (14), can bind to both kinesin and dynein to 
regulate their trafficking (1).

Phosphorylation. Phosphotransferase activity regulates motor 
protein function (Figure 2). For example, the kinase glycogen syn-
thase kinase-3β (GSK3β) phosphorylates KHC to inhibit axonal 
transport and also phosphorylates KLCs to release cargoes (15, 
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(HDAC6) and sirtuin-2 (SIRT2) (25). Acetylation weakens the 
lateral interactions between protofilaments, thought to confer 
flexibility and stabilization of microtubules (26–28). Reduction of 
ATAT1 led to a loss of microtubule acetylation and disruption of 
axonal transport (29, 30). On the other hand, increasing microtu-
bule acetylation via increasing ATAT1 or preventing deacetylation 
by HDAC6 rescued axonal transport deficits in disease models 
(see below) (31, 32).

Adaptors selectively regulate organelle transport. Axonal trans-
port regulation is tightly linked to organelle endocytosis, matura-
tion, signaling, and degradation, indicating that axonal transport 
may play a role as a “hub” for integrating different cellular pro-
cesses. To achieve specificity in this process, certain adaptors bind 
to distinct populations of cargoes, as extensively reviewed in ref. 1.  
For example, endolysosomal trafficking is highly regulated via 
specific adaptors and Rab GTPases that function as switches. For 
example, Rab5 controls early endosome trafficking, while Rab7 
regulates late endosome maturation, motility, and fusion with 
lysosomes (33). Endosomal trafficking is mediated by the Hook1/
dynein/dynactin complex for early endosomes, and the adaptors 
RILP, SKIP, and BORC for late endosomes and lysosomes (34–37).

A well-characterized population of retrogradely trafficked 
organelles are signaling endosomes containing neurotrophins and 
their receptors. Signaling endosomes are initially formed at the syn-
apse with neurotrophin binding to receptors, and then internalized 
and transported to the soma for neurotrophic signaling. Signaling 
endosomes are specifically targeted to dynein via interactions with 
adaptors, including HAP1, which is important for internalization of 
certain neurotrophins (38); Hook1, which comigrates with signal-
ing endosomes in the distal axon (34); and BICD1, which directs 
certain neurotrophins to lysosomes for degradation (39).

Lysosome transport in axons is also extensively regulated. A 
commonly used marker for lysosomes is LAMP1, which also labels 
autophagosomes and endosome pathway intermediates. A small-
er percentage of LAMP1-labeled organelles in axons have acid 
hydrolase activity, indicating that most degradation likely occurs 
in or near the soma (40). Lysosomes are anterogradely transported 
via interactions with ARL8B and SKIP, the same adaptors that reg-
ulate anterograde transport of late endosomes, while retrograde 
transport is driven by the adaptors JIP3 and JIP4 (41). Autophago-
some maturation and axonal trafficking are highly interlinked, as 
autophagosomes are generated in the distal axon and mature into 
autolysosomes as they are retrogradely transported (42). Autopha-
gosome transport is regulated by the adaptors JIP1, JIP3, HTT, and 
HAP1 in a sequential manner as autophagosomes mature (13, 43).

Mitochondria trafficking, on the other hand, is bidirectional 
and is regulated via interactions between the mitochondrial outer 

16). Studies using perfusion of kinases and their inhibitors into 
squid axoplasm showed that the stress-activated protein kinases 
c-Jun N-terminal kinase 3 (JNK3) and p38 mitogen-activated pro-
tein kinase (p38 MAPK) directly phosphorylate KHCs to inhibit 
anterograde transport (17, 18). Additionally, perfusion of active 
casein kinase 2 (CK2) in the squid axoplasm reduced bidirectional 
axonal transport velocities (18).

Dynein-mediated trafficking is also regulated by phosphor-
ylation. Several studies have indicated that the phosphorylation 
of DICs can alter dynein-mediated trafficking. The kinase casein 
kinase 1 (CK1) phosphorylates DICs to regulate dynein-dependent 
transport (19). Additionally, the kinase GSK3β phosphorylates 
DICs to reduce DIC interaction with the adaptor NDel1, which 
regulates dynein motility (20). Notably, phosphorylation of DIC 
reduced the amount of in vitro binding of dynein to dynactin, 
indicating that phosphorylation may regulate interaction with this 
important cofactor (21).

Microtubule regulation. Microtubules are cytoskeletal compo-
nents shaped like hollow tubes. They are composed of α- and β-tu-
bulin, which dimerize and then polymerize into parallel protofila-
ments to form a microtubule. Microtubules run the entire length 
of the axon and form the “tracks” along which kinesin and dynein 
carry cargo, with the plus end oriented toward the distal axon and 
the minus end oriented toward the cell body. Microtubule function 
is highly regulated by posttranslational modifications (PTMs), 
such as detyrosination, polyglutamylation, and acetylation (Fig-
ure 2). This Review will focus on the latter two, as they play a role 
in axonal transport and have been linked to neurodegeneration.

Evidence for the role of polyglutamylation in neurodegenera-
tion comes from Purkinje cell degeneration (pcd) mutant mice, which 
have neurodegeneration due to loss of function of cytosolic car-
boxypeptidase 1 (CCP1), a tubulin deglutaminase (22). Increasing 
microtubule polyglutamylation inhibits axonal transport (22–24).

Microtubule acetylation is another important regulator of axo-
nal transport. Microtubules are acetylated by α-tubulin N-acetyl-
transferase (ATAT) and deacetylated by histone deacetylase 6 

Figure 1. Axonal transport in neurons. Neurons are compartmentalized, 
with long axons. Delivery of organelles in the axon is performed via the 
motor proteins kinesin and dynein, which carry cargoes along microtubule 
tracks. Kinesin is responsible for anterograde transport of organelles, from 
the soma to the presynaptic terminal. Dynein is responsible for retrograde 
transport of organelles from the presynaptic terminal to the cell body. 
Dynein processivity is enhanced via binding to the essential cofactor dyn-
actin and a cargo adaptor.
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of disease. In fact, genetic evidence summarized below demon-
strates that proper functioning of axonal transport is essential to 
maintain neuronal health.

Mutations in motor proteins cause 
neurodegeneration
Underscoring the importance of fastidious regulation of axonal 
transport in maintaining neuronal health is that mutations in motor 
proteins cause neurodegeneration. For example, mutations in the 
KHC gene KIF5A cause inherited neuropathies (57), hereditary 
spastic paraplegia (57, 58), and amyotrophic lateral sclerosis (ALS) 
(59, 60). KIF5A mutations causing hereditary spastic paraplegia 
and Charcot-Marie-Tooth disease (CMT), a heterogeneous group 
of inherited peripheral neuropathies, are primarily missense muta-
tions clustered in the N-terminal motor domain, whereas muta-
tions causing ALS occur in the C-terminal cargo-binding domain, 
suggesting that disruption of different aspects of kinesin function 
underlies specificity of distinct neurodegenerative diseases (59).

Mutations in dynein have also been linked to neurodegener-
ation. A missense mutation in cytoplasmic dynein 1 heavy chain 1 
(DYNC1H1) is associated with an axonal form of CMT (61). Addi-
tionally, pathogenic mutations in the DCTN1 gene, encoding the 
major dynactin subunit p150Glued, cause neurodegeneration. A 
G59S mutation in DCTN1 was first discovered to cause hereditary 
motor neuropathy 7B (62). Additional mutations in DCTN1, most-
ly in the CAP-Gly domain important for binding to microtubules 
and initiating retrograde axonal transport (5, 6), have been identi-
fied that lead to ALS (63, 64) and Perry syndrome (65), a rare dis-
ease characterized by parkinsonism, psychiatric manifestations, 
central hypoventilation, and weight loss.

A common link between neurodegenerative diseases is dis-
ruption of axonal transport. Below we discuss mechanisms for 
axonal transport disruption in specific neurodegenerative diseas-
es, shown in Figure 3 and summarized in Table 1. Methods com-
monly used to assess axonal transport are detailed in Table 2.

Alzheimer’s disease
Alzheimer’s disease (AD) is the most common cause of dementia, 
and pathologic hallmarks in the brain include abnormal accumu-
lation of extracellular amyloid-β (Aβ) and intraneuronal neuro-
fibrillary tangles (NFTs) composed of hyperphosphorylated and 
aggregated tau. To make Aβ, the amyloid precursor protein (APP) 
is cleaved first by β-secretase (BACE) and then by the protein com-
plex γ-secretase to release Aβ fragments. Presenilin-1 (PSEN1) and 
PSEN2 are transmembrane proteins that compose the catalytic 

membrane protein Miro and the motor adaptors TRAK proteins 
and metaxins (11, 44). Synaptic vesicle precursors are primari-
ly trafficked anterogradely from the soma to the synapse, where 
they are released as mature synaptic vesicles, and are regulated via 
the KIF1A adaptor MADD, which activates the Rab3 GTPase on 
synaptic vesicles (45). Finally, dense core vesicles, which antero-
gradely transport neuropeptides and hormones and then undergo 
retrograde transport for recycling, are regulated by Arl8, Hook3, 
and the tyrosine phosphatase PTPN21 (45, 46).

Axonal transport and injury signaling. A key discovery in axo-
nal degeneration research is the SARM1 pathway, an enzymat-
ic pathway that uses sterile α and Toll/interleukin-1 receptor 
motif–containing protein 1 (SARM1) as a sensor of nicotinamide 
adenine dinucleotide (NAD) and its upstream activator nico-
tinamide mononucleotide (NMN) to drive programmed axon 
degeneration via NAD degradation. A key regulator of this 
pathway is nicotinamide mononucleotide adenylyltransferase 2 
(NMNAT2), which converts NMN to NAD. NMNAT2 is synthe-
sized in the cell body and transported into the axon. In the event 
of an axonal injury leading to disruption of NMNAT transport, 
NMN levels rise while NAD levels decrease in the axon, which 
activates SARM1 to induce programmed axonal degeneration 
(47, 48). In this way, continued anterograde axonal transport of 
NMNAT2 promotes axonal survival.

Disruption of axonal transport and 
neurodegeneration
Although neurodegenerative diseases have diverse clinical pheno-
types, a common link on a cellular level is the selective vulnera-
bility of distinct populations of polarized neurons with elongated 
axons. In fact, across different neurodegenerative diseases, syn-
aptic retractions and axonal degeneration are key early events 
compared with cell death (49–56). One major question regarding 
the role of axonal transport in neurodegeneration is whether dis-
rupted axonal transport is an epiphenomenon of neurodegenera-
tion, or whether dysregulation of axonal transport is a key initiator 

Figure 2. Regulation of axonal transport. Axonal transport is regulated 
via phosphotransferase activity. The kinases GSK3β and casein kinase 2 
(CK2) inhibit anterograde axonal transport via phosphorylation of kinesin 
light chains, while the kinases JNK and p38 MAPK (p38) inhibit antero-
grade axonal transport via phosphorylation of kinesin heavy chains. GSK3β 
phosphorylates dynein intermediate chains to inhibit retrograde axonal 
transport, while CK1 phosphorylates dynein intermediate chains to acti-
vate retrograde axonal transport. Inset: Posttranslational modifications of 
microtubules. Microtubules are composed of α- and β-tubulin. α-Tubulin 
can be modified via acetylation, detyrosination, and polyglutamylation, 
while β-tubulin is modified by polyglutamylation.
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ic processing of APP, thought to induce rerouting of APP into the 
endolysosomal pathway and disruption of lysosomal trafficking 
(74). Thus, different AD pathways converge on regulation of auto-
phagolysosomal maturation and transport to specifically disrupt 
autophagy in axons.

Parkinson’s disease
Parkinson’s disease (PD) is a neurodegenerative disease that 
prominently affects the dopaminergic cells of the substantia nig-
ra pars compacta, leading to tremors, bradykinesia, and rigidity. 
α-Synuclein (αSyn), a presynaptic protein that undergoes axonal 
transport, is misfolded and aggregated in this disease, forming 
Lewy bodies. Postmortem studies and animal models have shown 
early axonal dysfunction, loss of presynaptic termini, and loss of 
motor proteins (52, 53).

There is some evidence for microtubule alterations in PD. For 
example, LRRK2 mutations are the most common known genetic 
cause of PD and a risk factor for sporadic PD (31). In an overex-
pression model, mutant LRRK2 formed filamentous structures 
that interacted with deacetylated microtubules and disrupted 
axonal transport of mitochondria in rat cortical neurons and Dro-
sophila (31). Restoring microtubule acetylation inhibited LRRK2 
filament binding, restored axonal transport, and rescued fly loco-
motor deficits. However, treating primary neurons from mutant 
LRRK2-G2019S knockin mice with a kinase inhibitor to increase 
LRRK2 microtubule binding did not disrupt microtubule dynam-
ics or axonal transport, suggesting that these filamentous struc-
tures may not alter axonal transport at endogenous levels (75).

αSyn has been shown to colocalize with microtubules both in 
vitro and in vivo (76, 77). In fact, αSyn promotes the formation of 
short microtubules, which are associated with anterograde trans-
port of dynein. PD-associated αSyn prevented this generation of 
short microtubules, indicating altered direct interactions with 
microtubules (76). Mutant αSyn also led to a reduction of acetyl-
ated tubulin and of Kif5 within neurites (78), showing an effect on 
tubulin PTM as well.

Organelle-specific dysregulation. Loss-of-function mutations in 
Parkin and PINK1 have been identified as causing familial PD (79, 
80). PINK1 and Parkin both regulate mitophagy, the autophagic 
degradation of mitochondria. PINK1, a serine-threonine kinase, 
accumulates on damaged mitochondria, and in order to regulate 
mitophagy, PINK1 mRNA is cotransported with mitochondria 
along axons for local translation in response to mitochondrial 
damage (81). Parkin is an E3 ubiquitin ligase that is recruited to 
mitochondria and phosphorylated by PINK1. Upon activation, 
Parkin ubiquitinates mitochondrial outer membrane proteins to 

subunits of the γ-secretase complex. Axonal transport disruption 
is an early event in AD. Dystrophic axons and axonal swellings, 
areas of expanded axons with accumulation of cargoes and motor 
proteins, are found in early pathologic stages of postmortem AD 
brains and in an AD mouse model (49). Mouse models with famil-
ial AD mutations show axonal pathology and synaptic dysfunction 
before Aβ plaque formation or NFT formation (50, 51), supporting 
the role of early axonal dysfunction in AD. Multiple mechanisms 
cause impaired axonal transport in AD, including altered kinase 
activity and organelle-specific dysregulation.

Altered kinase activity. Evidence has emerged for hyperactivity 
of GSK3β kinase activity in AD (66), and GSK3β phosphorylates 
KLCs to inhibit anterograde transport (18). In AD models, perfu-
sion of pseudophosphorylated tau into squid axoplasm to mimic 
hyperphosphorylated tau activated GSK3β and impaired antero-
grade axonal transport, implicating a role for tau phosphorylation 
in modulation of axonal transport (67). In fact, it was recently 
shown that treating primary hippocampal neurons with Aβ oligo-
mers led to impaired KIF1A motility independent of tau, and this 
could be rescued by a GSK3β inhibitor (68). This indicates that 
GSK3β activation through multiple AD pathways can alter axonal 
trafficking of both kinesin-1 and kinesin-3.

Organelle-specific dysregulation. Postmortem AD tissue and 
AD mouse models have a marked increase of autophagic vacuoles 
and immature lysosomes within dystrophic neurites (69, 70). In 
addition to AD-related proteins such as APP and BACE1, axonal 
swellings contain marked accumulations of immature lysosomes 
(70). Furthermore, Aβ1–42 binding to DIC, resulting in disruption 
of the coupling between dynein and its adaptor Snapin, has been 
shown to impair axonal transport of amphisomes, autophagic 
intermediates resulting from fusion of autophagosomes with late 
endosomes (71). The adaptor JIP3 has also been implicated in reg-
ulating the accumulation of immature lysosomes in AD models 
(72). Additionally, loss of PSEN1 function impaired the acidifica-
tion of amphisomes, activating JNK-mediated phosphorylation 
of DIC and inhibiting retrograde trafficking (73). Another pro-
posed mechanism for lysosomal accumulation in axons in AD is 
impaired proteasome activity. Inhibiting proteasome activity in 
primary mouse neuronal cultures led to increased amyloidogen-

Figure 3. Dysregulation of axonal transport in neurodegenerative dis-
eases. Neurodegenerative diseases disrupt axonal transport via multiple 
mechanisms, including motor protein regulation via phosphorylation, 
adaptor binding, and impaired microtubule regulation. Each neurodegener-
ative disease has different altered patterns of axonal transport disruption, 
which may contribute to disease specificity. AD, Alzheimer’s disease; ALS, 
amyotrophic lateral sclerosis; HD, Huntington’s disease; HSP, hereditary 
spastic paraplegia; IPN, inherited peripheral neuropathy; PD, Parkinson’s 
disease; PS, Perry syndrome.
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Table 1. Impaired axonal transport in neurodegenerative diseases

Neurodegenerative disease Proposed axonal transport defect References
Motor proteins
Kinesin ALS Mutations of the C-terminus cargo-binding domain 59, 60

HSP Inhibition of kinesin binding to MTs 58
IPN Inhibition of kinesin binding to MTs 57

Dynein ALS Destabilization of dynein complexes 127
IPN Impaired interactions between dynein motor and stem domains; impaired dynein processivity 61

Adaptors
Dynactin PS Impaired initiation of retrograde transport 5, 6

IPN Impaired initiation of retrograde transport 5, 6
Huntingtin HD Disruption of HTT/HAP1 complex 106
Kinases
GSK3β AD Phosphorylation of kinesin light chains to release cargo 18
JNK HD Phosphorylation of kinesin heavy chains to inhibit kinesin binding to MTs 18
p38 MAPK ALS Phosphorylation of kinesin heavy chains to inhibit kinesin binding to MTs 135–137
NEK6 ALS Phosphorylation of axonal transport regulators 139
MTs

IPN Mutations in TUBB3 disrupt MT dynamics 151
PD Mutant α-synuclein prevents generation of short MTs 76
ALS Dipeptide repeats formed in C9orf72 ALS associate with MTs to cause motor pausing or detachment 143

MT posttranslational modifications
MT acetylation AD Altered MT acetylation 177, 178

PD Mutant LRRK2 interacts with MTs to inhibit MT acetylation 31
HD Postmortem brains have reduced tubulin acetylation 187
HSP Mutant SPAST and mutant SPG11 lead to reduced tubulin acetylation in patient-derived cells 116, 119
ALS Increased MT acetylation in SOD1 mutant ALS models; reduced MT acetylation  

in FUS mutant ALS models
132, 190

IPN Mutant GARS disrupts glycyl-tRNA synthetase and HDAC6 interactions,  
reducing MT acetylation

156

MT polyglutamylation HSP Mutant SPAST has impaired polyglutamylated MT severing, leading to longer MTs and increased 
polyglutamylation of MTs

118

IPN Mutations in TUBB3 increase MT polyglutamylation 151
Organelles
APP vesicles AD Impaired proteasome activity disrupts APP trafficking 74
Endosomes PD α-Synuclein fibrils trap organelles, sequester Rab proteins, and cause impaired sorting of endosomes 90, 91, 191

ALS TDP-43 mutations may cause changes to axon proteome or signaling that inhibit signaling 
endosome axonal transport

146

IPN RAB7 mutations cause excess activation and altered Rab7 activity to impair endosomal transport 169, 170
Autophagosomes AD Aβ oligomers compete with dynein-Snapin coupling to prevent dynein-mediated transport  

of autophagic vacuoles
71

PD Mutant LRRK2 recruits JIP4 to autophagosomes to activate kinesin to reduce retrograde transport 75
Lysosomes AD Extracellular Aβ causes accumulation of lysosomes in axons that contact amyloid plaques 70

HSP Mutant SPG15 disrupts lysosome reformation and leads to enlarged lysosomes that are less motile 192
ALS The C9orf72 hexanucleotide repeat causes an increase in expanded and static lysosomes in axons; 

ANXA11 mutations disrupt tethering of RNA granules to lysosomes
142, 149

Mitochondria AD Aβ oligomers disrupt calcium signaling to impair mitochondrial trafficking 193
PD Loss-of-function mutants PINK1 and Parkin impair mitophagy in axons and alter Miro regulation  

of mitochondria axonal transport
84, 85, 87

ALS SOD1 mutations reduce Miro1 to impair mitochondrial transport 141
IPN MFN2 and TRPV4 cause dysregulation of Miro-regulated axonal transport of mitochondria;  

HSPB1 mutations cause imbalance in mitochondrial redox; GAN mutations disrupt intermediate 
filament regulation of mitochondrial trafficking; NEFL mutations impair neurofilament  

regulation of mitochondrial dynamics

156, 158–160, 162, 
163, 167

Synaptic vesicles HSP Mutant SPG11 disrupts initiation of synaptic vesicle transport 116, 194

AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; HD, Huntington’s disease; HSP, hereditary spastic paraplegia; IPN, inherited peripheral 
neuropathy; MT, microtubule; PD, Parkinson’s disease; PS, Perry syndrome.
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focally remove damaged components, promote biogenesis, or, 
in more severe cases of mitochondrial damage, recruit adaptor 
proteins for mitophagy (82). In vitro studies have shown that Par-
kin-dependent mitophagy occurs locally in distal neuronal axons 
(83). Moreover, PINK1 phosphorylates Miro, a regulator of mito-
chondria axonal transport, to activate Parkin-dependent degra-
dation and release mitochondria from kinesin, leading to reduced 
axonal transport of mitochondria (84, 85). LRRK2 gain-of-func-
tion mutations, on the other hand, lead to an increased phosphor-
ylation of Rab10 on depolarized mitochondria, disrupting mito-
phagy (86). Additionally, loss-of-function mutations of PINK or 
Parkin, or a gain-of-function mutation of LRRK2, led to resistance 
of the Miro1 isoform to proteasomal degradation and delayed 
mitophagy (87), implicating impaired mitophagy as a unifying 
mechanism for these PD-causing mutations. While mitophagy 
has been difficult to assess within in vivo mature neurons, tech-
niques such as electron microscopy and the development of mito-
phagy reporter mice have aided evaluation of in vivo mitophagy 
in neurons (88). For example, mitophagy reporter mice express-
ing the LRRK-G2019S mutation have impaired basal mitophagy 
in dopaminergic tissues (89).

Additionally, trafficking of autophagosomes and endosomes 
is disrupted in PD models. For example, treatment of primary neu-
rons with preformed αSyn fibrils caused an axonal accumulation of 
αSyn fibrils, which specifically impaired axonal transport of endo-
somes and autophagosomes (90). Further, expression of mutant 
LRRK2 in primary neurons reduced retrograde autophagic vesicle 
trafficking and impaired autophagosome maturation via recruit-
ment of the kinesin adaptor JIP4 to increase kinesin association 

with autophagosomes to alter coordination of axonal trafficking 
(75). Intriguingly, while autophagosomes and endosomes are usu-
ally retrogradely transported in separate populations, pathogenic 
αSyn increased the overlap between these populations, indicating 
that PD may impair sorting of endosomes and autophagosomes as 
they undergo axonal trafficking (91).

Huntington’s disease
Huntington’s disease (HD) is an autosomal dominant neurodegen-
erative disorder caused by CAG repeat expansions in the hunting-
tin gene (HTT), leading to degeneration initially in the striatum that 
spreads to cortical areas in the brain. Signs of HD include hyperki-
netic movements such as chorea, abnormal saccades, psychiatric 
symptoms, and cognitive decline. HD is thought to be caused by 
gain-of-function and dominant-negative effects of mutant Htt, in 
addition to loss of wild-type Htt function (92). Axonal dysfunction 
and loss of axons occur early in HD before symptom onset (54, 55). 
Htt acts as a scaffold for axonal transport and plays critical roles in 
synaptic transmission and autophagy. Mutant Htt disrupts axonal 
transport in multiple experimental models (93–95).

Underscoring the importance of adaptors for proper regu-
lation for axonal transport is the finding that Htt itself acts as 
an adaptor for axonal transport by binding to DIC to facilitate 
dynein-mediated transport (96). In fact, Htt has been implicated 
in axonal transport of a broad range of vesicles (43, 97–105) and 
has been suggested to promote axonal transport (94, 103, 106). 
Htt interacts with another adaptor, huntingtin-associated protein 
1 (HAP1), which interacts with the p150Glued subunit of dynactin, 
DLIC, KIF5C, and KLC to regulate axonal transport (1, 14). Mutant 

Table 2. Methods to evaluate axonal transport

Method Strengths Weaknesses References
In vivo –Physiologic conditions more preserved –Can be technically challenging
Radiolabeling –Precursors and transported particles difficult to differentiate

–Precursors often taken up by neighboring cells
–Used for global transport rates, did not distinguish between 

individual populations
195

Fluorescent labeling –Genetic expression of fluorescently tagged organelles allows 
analysis of specific populations of organelles

–Often results in overexpression of tagged particle, which may alter 
its transport properties

–Fluorescent tags may alter transport properties
–Endogenous and small tags have recently been developed to 

overcome this, i.e., HaloTag
–Anesthetics can alter axonal transport properties

195

Ex vivo –Able to preserve physiologic conditions within a squid giant axon –Axoplasm from squid giant axon removed from the animal, 
extracellular cues not present

Squid axoplasm –Does not require genetic manipulation, fluorescent tags, or dyes
–Video-enhanced DIC microscopy has historically given superior 

resolution

–Used for global transport rates, does not distinguish between 
individual populations

196

In vitro
Live imaging in  
cultured neurons

–Can use genetic expression of fluorescently tagged organelles or 
dyes to analyze specific organelle populations

–Can isolate and align axons with microfluidic devices to improve 
ease of measuring axonal trafficking

–Newer confocal microscope technology has been developed with 
superresolution and improved speed for sensitive organelle tracking

–Nanobodies have been developed that are highly specific to single 
domains of proteins, can distinguish between conformational states

–Inducible and reversible systems under development
–New technology using induced pluripotent stem cells allows human 

models of disease

–Physiologic conditions less preserved, which may alter regulation of 
axonal transport

–Overexpression of tagged proteins and tags themselves may alter 
transport properties (although new technologies such as HaloTags 
can address these concerns)

195
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Htt disrupts function of the Htt/HAP1 complex (106) to impair 
axonal transport (94, 103, 106).

Additionally, Htt is regulated via PTMs, and altered PTM reg-
ulation of mutant Htt may play an important role in HD pathogen-
esis. Htt is phosphorylated by the kinase Akt at S421 to promote 
anterograde trafficking of APP, and this Akt/Htt pathway has been 
shown to be downregulated in HD brains (107). Furthermore, Htt 
is dimethylated by protein arginine methyltransferase 6 (PRMT6) 
to facilitate axonal transport, and S-adenosylhomocysteine, which 
regulates PRMT6, is downregulated in HD models. Overexpressing 
PRMT6 in mutant Htt cell culture and fly models was able to rescue 
phenotypes, indicating that decreased dimethylation of mutant Htt 
may alter Htt’s regulation of axonal transport in HD (108).

Hereditary spastic paraplegia
Hereditary spastic paraplegia (HSP) is a group of inherited dis-
eases with progressive spasticity in the legs due to axonal degen-
eration of upper motor neurons and dorsal columns (109). Muta-
tions in over 73 genes have been described that cause HSP (110). 
These genes have been implicated in multiple pathways, including 
axonal transport, metabolic pathways, ER dynamics, vesicle for-
mation, myelination, and autophagy (110). In fact, close to 10% 
of patients with HSP have KIF5A mutations, most of which are in 
the motor domains, leading to reduced kinesin motility (58, 111, 
112). Other HSP-causing mutations, including mutations in SPAST 
(which encodes spastin), SPG11 (encoding spatacsin), and ZYFE26 
(encoding spastizin), also impair axonal transport, showing that 
this is likely a common mechanism for HSP (113–116).

The most common autosomal dominant cause of HSP is 
mutations in SPAST, encoding spastin, an AAA ATPase that sev-
ers polyglutamylated microtubules, forming shorter microtubule 
fragments (117). Depletion of SPAST led to longer microtubules, 
increased polyglutamylation, and reduction of kinesin-mediat-
ed axonal transport (118). SPAST mutations also reduced tubu-
lin acetylation in patient-derived stem cell models (119). In fact, 
mutant spastin models showed impaired axonal transport of mul-
tiple organelles (113, 120–122), indicating that spastin-mediated 
severing of microtubules likely affects axonal transport function. 
Further, loss of spastin caused reduced microtubule dynamics and 
density, underscoring its importance in axonal transport (123–125).

Amyotrophic lateral sclerosis
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative dis-
ease of upper and lower motor neurons, leading to progressive 
weakness, spasticity, and hyperreflexia. Early pathologic studies 
of postmortem tissue showed axonal swellings and neurofila-
ment accumulation, consistent with axonal transport defects (56). 
While close to 90% of ALS is sporadic, mutations in over 25 genes 
cause familial ALS. Underscoring impaired axonal transport as a 
pathogenic mechanism is that mutations in genes encoding mul-
tiple motor proteins, including the kinesin gene KIF5A, the dyn-
actin gene DCTN1, and the dynein gene DYNC1H1, cause ALS 
(59, 63, 64, 126, 127). Axonal transport defects have been further 
identified across multiple models of genetic forms of ALS (128). 
For example, axonal transport is perturbed by mutations in SOD1 
(encoding superoxide dismutase 1) that cause ALS (129–131). Like-
wise, ALS-causing mutations of FUS and TDP-43 also alter axonal 

transport (132–134). Potential mechanisms for these impairments 
are discussed below.

Altered kinase activity regulating axonal transport. Mutant FUS, 
mutant SOD1, and oxidized SOD1 inhibited axonal transport 
in squid axoplasm via activation of the stress-activated protein 
kinase p38 MAPK, which phosphorylated KHCs to release kinesin 
from microtubules (135–137). Impairment of axonal transport was 
rescued by inhibition of p38 MAPK in squid axoplasm, primary 
neurons, and mouse models of SOD1-mutant ALS (135, 136, 138).

A CRISPR/Cas9 screen identified NEK6, a kinase known to 
regulate the microtubule-based mitotic spindle, as a mediator 
of poly-proline-arginine toxicity (139). Depletion of NEK6 was 
sufficient to rescue axonal transport deficits in cortical neurons 
derived from C9orf72 patient induced pluripotent stem cells 
(139). Knocking down NEK6 altered phosphorylation of multiple 
proteins associated with axonal transport, indicating that NEK6 
activity modulates axonal transport via phosphorylation of axonal 
transport regulators (139).

Organelle-specific dysregulation. ALS mutations have varied 
effects on vesicle trafficking. First, mitochondria transport was 
impaired in mutant SOD1 models of ALS (140). SOD1 mutations 
led to a reduction of Miro levels; overexpression of Miro1 was 
able to rescue impaired axonal transport in mutant SOD1 corti-
cal and motor neurons (141). Disrupted mitochondrial traffick-
ing as a pathogenic mechanism has also been proposed for ALS 
caused by a GGGGCC hexanucleotide repeat expansion (HRE) 
in the C9orf72 gene, which is the most common genetic cause 
of ALS. A pathogenic mechanism for C9orf72 ALS is via repeat- 
associated non-AUG translation of the HRE transcripts, creating 
aggregation-prone and neurotoxic dipeptide repeat (DPR) pro-
teins, including poly-glycine-arginine (poly-GR) and poly-proline- 
arginine (poly-PR). Although mitochondrial trafficking was not 
altered in motor nerves in a third-instar larva Drosophila model of 
C9orf72 ALS (142), another recent study found reduced mitochon-
drial trafficking in aged, induced pluripotent stem cell–derived 
(iPS-derived) motor neurons and adult Drosophila neurons (143). 
Single-molecule tracking showed that poly-GR and poly-PR DPRs 
associated with the C-terminal tubulin tails of microtubules and 
caused motor pausing or detachment to reduce axonal transport 
(143). It is plausible that disrupted mitochondrial trafficking may 
be an age-related phenomenon in C9orf72 ALS.

Intriguingly, even at a young age, in vivo motor neurons in Dro-
sophila had markedly impaired autophagosome biogenesis, late 
endosome trafficking, and an accumulation of static lysosomes, 
indicating that early disruption in the axonal autophagolysosomal 
pathway may be a key pathogenic event in C9orf72 ALS (142, 144). 
While there is more evidence for a toxic gain of function by C9orf72 
HRE, loss of function of C9orf72 due to the HRE may also contrib-
ute to pathogenesis. Indeed, C9orf72 localizes with Rab5-positive 
early endosomes, and loss of function of C9orf72 disrupted early 
endosomal maturation and trafficking in iPS motor neurons (145). 
Other evidence for certain ALS mutations having specific effects 
on axonal transport is in vivo analysis showing impaired axonal 
transport of signaling endosomes specifically in mutant TDP-43 
mice but not mutant FUS mice (146). Finally, there has been grow-
ing interest in how axonal transport of mRNA, which is important 
for local translation in axons, is impaired in ALS. In fact, TDP-43 is 
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(encoding neurofilament light chain) led to impaired trafficking of 
both neurofilament light chains and mitochondria (159, 166–168). 
Finally, again showing the important link between endosomal 
maturation and axonal transport are CMT-causing mutations in 
RAB7, which encodes the Rab7 GTPase on late endosomes that 
regulates trafficking. These CMT-causing Rab7 mutations caused 
impaired axonal transport of endosomes; biochemical assays 
revealed that these disease-causing mutations led to excess acti-
vation and misregulation of Rab7 activity (169–171).

Axonal transport–directed therapeutics
Attention has been turned to targeting aberrant kinase activity to 
treat neurodegeneration. Of the kinase inhibitors shown to mod-
ify axonal transport discussed above, clinical trials to evaluate 
GSK3β and p38 MAPK in neurodegeneration have been initiated. 
Two GSK3β inhibitors have been used in clinical trials for AD. A 
pilot study of Tideglusib treatment in AD showed a positive trend 
in cognition without significance (172), but a phase II clinical trial 
in AD did not show clinical benefit (173). A phase I clinical trial 
of the GSK3β inhibitor AZD1080 showed target engagement, but 
no further clinical trials evaluating AZD1080 in neurodegenera-
tive disease have been published (174). p38 MAPK inhibitors have 
also been targeted as treatment for neurodegenerative disease. 
A phase IIa study of the p38 MAPKα inhibitor neflamapimod in 
patients with early AD showed a significant improvement in epi-
sodic memory (175). However, a subsequent phase II trial with 
24-week treatment with neflamapimod (REVERSE-SD) did not 
replicate these results (176).

HDAC6 inhibitors have also been considered as a thera-
peutic target to increase microtubule acetylation and promote 
axonal transport. Thus far, there have been conflicting reports 
regarding the extent of microtubule acetylation defects in neu-
rodegeneration. For example, in AD, there have been reports of 
either increased or decreased α-tubulin acetylation (177, 178). 
Additionally, while it has been shown that tubulin acetylation 
is decreased in HD, correcting this defect in a mouse model did 
not alter disease progression (179). However, HDAC6 inhibitors 
to increase microtubule acetylation have been shown to rescue 
phenotypes across models of multiple neurodegenerative dis-
eases with impaired axonal transport, such as AD, PD, HD, ALS, 
and CMT (31, 132, 154, 156, 180–188). Note that besides α-tubu-
lin, HDAC6 has other cytosolic targets, including tau, heat shock 
protein 90, cortactin, peroxiredoxin, and heat shock transcription 
factor-1, and the development of inhibitors to solely affect micro-
tubule acetylation in the future will allow for greater specificity 
(180, 189). The HDAC6 inhibitor vorinostat is currently in a phase 
Ib study for patients with AD (ClinicalTrials.gov NCT03056495), 
and the HDAC6 inhibitor nicotinamide is currently in a phase II 
trial for AD (NCT03061474).

Conclusions
While axonal transport is clearly disrupted in neurodegenera-
tion, major questions still remain. One is whether disruption of 
axonal transport is an epiphenomenon in the setting of diseased 
neurons, as opposed to a key pathogenic event. There is stronger 
evidence for disrupted axonal transport as a key pathogenic event 
in peripheral neuropathies and motor neuron diseases, as genetic 

cotransported with messenger ribonucleoprotein granules (com-
prising nontranslating mRNA and bound proteins), indicating 
that TDP-43 may regulate this process (147). Disruption of mRNA 
axonal transport has been associated with annexin A11 (ANXA11) 
mutations causing ALS (148). ANXA11 tethers RNA granules to 
trafficking lysosomes; ALS-causing ANXA11 mutations disrupted 
these interactions to reduce ANXA11 binding to RNA granules and 
to lysosomes (149).

Inherited peripheral neuropathies
Inherited peripheral neuropathies are characterized by pro-
gressive degeneration of the peripheral nerves. CMT, one of the 
most common inherited neurologic diseases, is a heterogeneous 
group of peripheral neuropathies with progressive distal weak-
ness, numbness, and atrophy. Over 100 causative genetic muta-
tions have been discovered thus far (150), including mutations in 
DCTN1, implicating impaired axonal transport as an underlying 
mechanism (62). Other genetic mutations impair axonal transport 
via alterations in microtubules and their PTMs, as well as via dis-
ruption of axonal trafficking of specific organelles.

Mutations in the TUBB3 gene, which encodes β-tubulin iso-
type III, cause a hereditary axonal polyneuropathy; mouse models 
of disease-causing TUBB3 mutations had impaired microtubule 
dynamics with an increase of microtubule polyglutamylation 
and acetylation (151). Additionally, certain mutations in HSPB1 
cause CMT2F and distal hereditary motor neuropathy (152). 
These mutations had an increased binding to tubulin and micro-
tubules, leading to altered microtubule dynamics via stabilization 
of microtubules (153). HSPB1 also impairs microtubule acetylation 
and axonal transport; inhibiting HDAC6 to increase microtubule 
acetylation improved axonal transport deficits (154, 155). Further, 
a CMT-linked dominant mutation of GARS led to aberrant inter-
actions between glycyl-tRNA synthetase and HDAC6, leading to 
a decrease in microtubule acetylation; treating with an HDAC6 
inhibitor restored this deficit (156).

Organelle-specific dysregulation. Several CMT-causing muta-
tions impair axonal transport of mitochondria. Mitofusin 2 (MFN2) 
is a mitochondrial outer membrane protein important for mito-
chondrial fusion, and CMT-causing mutations in MFN2, which 
encodes MFN2, are the most common cause of axonal CMT (157). 
These mutations induce impaired axonal transport of mitochon-
dria, likely through direct interactions with Miro, a mitochondrial 
protein that regulates attachment of mitochondria to the motor 
proteins in a calcium-dependent manner (158–160). Additionally, 
CMT-causing mutations in the cation channel transient receptor 
potential vanilloid 4 (TRPV4) led to an increase in intracellular 
calcium and impaired mitochondrial trafficking via dysregulation 
of Miro (161, 162). Further, expression of mutant HSPB1 in primary 
motor neurons induced mitochondrial abnormalities and disrupt-
ed axonal trafficking of mitochondria to a greater extent than other 
organelles (163). Another CMT-linked gene that has been related 
to impaired mitochondrial trafficking is GAN, encoding gigaxo-
nin, an E3 ligase adaptor that regulates intermediate filaments. 
Intermediate filament aggregation caused by mutant GAN led to 
impaired mitochondrial motility, possibly due to impaired inter-
mediate filament regulation of mitochondrial distribution (164, 
165). Additionally, CMT-causing mutations in the NEFL gene 
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axonal transport likely acts as a signaling hub to coordinate organ-
elle maturation and trafficking to affect diverse cellular processes, 
giving credence to the importance of axonal transport to maintain 
homeostasis in the axon. It is plausible that treatment of neurode-
generation will require a multimodal approach, targeting different 
aspects of cellular function to protect neurons. Directing thera-
peutics at axonal transport may be crucial to stabilize axonal func-
tion in conjunction with other disease-modifying therapies. Thus 
far, clinical trials using kinase inhibitors and HDAC6 inhibitors 
to treat neurodegeneration have begun, although their treatment 
efficacy remains to be determined. Continued, detailed assess-
ments of precise mechanisms underlying axonal transport deficits 
will be beneficial for further development of therapeutic targets.
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mutations in motor proteins themselves cause these diseases. It is 
difficult to exclude the possibility that these mutations may exert 
deleterious effects outside of axons, for example on organelle traf-
ficking in the soma or dendrites. However, peripheral nervous sys-
tem neurons have the longest axons in the body, and are thus par-
ticularly reliant on axonal transport for homeostasis. Supporting 
this hypothesis is that disruption of axonal trafficking via certain 
chemotherapeutic drugs such as paclitaxel causes peripheral neu-
ropathies, demonstrating the importance of proper functioning of 
axonal transport in preventing neurodegeneration.

Axonal transport regulation is complex and regulated through 
multiple synergistic mechanisms, and alterations in axonal trans-
port in specific diseases are likely due to different patterns of 
dysregulation of specific components including motor proteins, 
microtubules, and cargoes. As axonal transport declines with age, 
it is plausible that initially neurons are able to compensate for 
defects in axonal transport. However, as axonal transport declines 
and more targets are dysregulated, neurons become unable to 
compensate for these defects, leading to axonal degeneration. 
Thus, targeting therapies at early stages of axonal transport dis-
ruption would be important to prevent the subsequent pathogenic 
cascade in neurodegeneration.

Additionally, while axonal transport has clearly been shown to 
be disrupted in neurodegeneration, other cellular functions such 
as autophagy and nucleocytoplasmic transport are also impaired 
in neurodegeneration. Evidence continues to emerge that these 
distinct cellular processes are extensively interconnected. In fact, 
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