SUPPLEMENTAL MATERIAL FOR

SMAD4 maintains the Fluid Shear Stress set point to protect against Arterial-Venous Malformations

Kuheli Banerjee^{1†}, Yanzhu Lin^{1†}, Johannes Gahn^{1†}, Julio Cordero^{2,3}, Purnima Gupta¹, Islam Mohamed¹, Mariona Graupera⁴, Gergana Dobreva^{2,3}, Martin A. Schwartz⁵, Roxana Ola^{1*}

Supplemental Figure Legends

Supplemental Figure 1. SMAD4KD augments flow-induced gene expression.

(A) qPCR for the most 10 significant upregulated genes upon 24 hours 12 DYNES/cm² FSS in *CTRL* versus *SMAD4* siRNA HUVECs (n = 3/group): *ACKR4* (Atypical Chemokine Receptor 4); *APLNR* (Apelin receptor); *FBLN2* (EGF Containing Fibulin Extracellular Matrix Protein 2); *ITGB4* (Integrin Subunit Beta 4); *ELN* (Elastin); *MRAS* (Muscle RAS Oncogene Homolog); *PLCG2* (Phospholipase C Gamma 2); *KLF4* (Kruppel-Like Factor 4); *SLCO2A1* (Solute Carrier Organic Anion Transporter Family Member 2A1); *TNXB* (Tenascin XB). Data are represented as mean \pm SEM: ns- non-significant, **P*<0.05,***P*<0.01,****P*<0.001. One-way Anova.

Supplemental Figure 2. Loss of SMAD4 leads to dysregulated cell cycle in vitro and in vivo.

(A) Representative immunofluorescence staining of *CTRL* versus *SMAD4* siRNAs HUVECs grown in static versus 1 or 12 DYNES/cm² for EdU (green) and DAPI (blue). (B) Representative co-labeling of postnatal day 6 (P6) Tx induced *Smad4 fl/fl* and *Smad4^{iAEC}* retinas for EdU+ nuclei (green-upper panel), and EdU (green), ERG (white), and Isolectin B4 (IB4-red) (lower panel). (C) Quantification of the total number of ECs (ERG+) in representative images shown in **B**. (**D**) S-phase ratio (EdU+/ERG+) per total ECs (ERG+) in capillaries of *Smad4 fl/fl* and *Smad4^{iAEC}* retinas engaged or not in AVMs. (**E**) Representative co-labeling of postnatal day 6 (P6) Tx induced *Smad4 fl/fl* and *Smad4^{iAEC}* retinas engaged or not in AVMs. (**E**) Representative co-labeling of postnatal day 6 (P6) Tx induced *Smad4 fl/fl* and *Smad4^{iAEC}* retinas for phospho Histone 3 (PH3-blue) (upper panel) and PH3 (blue), ERG (white), and Isolectin B4 (IB4-red) (lower panel). Yellow arrowheads in **B** and **E** mark ECs+ for EdU and PH3, respectively in capillaries. Red/blue arrowheads in **B** mark the EdU+ ECs in arteries/veins. (**F**) M-phase ratio (PH3+/ERG+) per total ECs (ERG+) in capillaries of *Smad4 fl/fl* and *Smad4^{iAEC}* retinas engaged or not in AVMs. n=9 (3 images (200-600 cells/image)/retina/group). Scale Bars: 100µm in **A,B,E. a**: artery, **v**: vein. Data are represented as mean ± SEM. **P*<0.05,***P*<0.01,****P*<0.001. Oneway Anova (**C,D,F**).

Supplemental Figure 3. KLF4 regulates cell size but not VE Cadherin at cell junctions.

(A,B) Quantification of cell area in *CTRL*, *SMAD4*, *KLF4* and *SMAD4;KLF4* siRNAs HUVECs subject to 12 DYNES/cm² (A) and 1 DYNE/cm² (B) for 24 hours (n=8 images (70-140 cells/image) per 4 independent experiments/group). (C) Representative VE-Cadherin staining (negative images) of *CTRL*, *SMAD4*, *KLF4* and *SMAD4;KLF4* siRNAs HUVECs subject to 12 DYNES/cm² for 24 hours. (D) Quantification of VE-Cadherin labeling intensity from experiments in C (n=6 images per 3 independent experiments/group). Scale Bars: 100µm. Data are represented as mean \pm SEM. **P*<0.05,***P*<0.01,****P*<0.001, ns- non-significant. One-way Anova (A,B,D).

Supplemental Figure 4. Validation of KLF4 antibody in vivo.

(A) Representative images of the vascular plexus in retinas from Tx induced P6 *Klf4 fl/fl* and *Klf4*^{$i\Delta EC$} labelled for KLF4 (green) and IB4 (white). Scale Bars: 50 μ m.

Supplemental Figure 5. Increased PI3K signaling mediates EC aberrant responses in *Smad4*ECko.

(A) Representative WB for pAkt in HUVECs subject to 12 DYNES/cm² treated with PBS or Pictilisib (PI3Ki-75nM) for 4 hours (n=3/group). (B) Representative VE-Cadherin staining (negative images) of *CTRL* and *SMAD4* siRNAs HUVECs subject to 24 hours 12 DYNES/cm² and treated with PBS, PI3K inhibitor or with *AKT* siRNA. Flow direction: right to left. (C) Quantification of the length/width ratio (n=6 average of images (70-140 cells/image) per 3 independent experiments/group) and of EC alignment parallel to flow direction (%) (n=12 average of images (100-240 cells/image) per 3 independent experiments/group). (D) Representative images of retinas from P6 *Smad4 fl/fl* and *Smad4*^{iAEC} from pups treated with PBS or PI3K inhibitor labeled for ERG (white), GOLPH4 (red) and IB4 (green)-upper panel and ERG (white), GOLPH4 (red) and IB4 (green line)-lower panel. Yellow arrowheads mark the EC orientation within the AVMs. (E) Quantification of EC polarization: against or with flow and neutral (non-oriented) in capillaries and AVMs from P6 retinas of *Smad4 fl/fl* and *Smad4*^{iAEC} pups treated with PBS or PI3K (n=3 retinas/group). (F) S-phase ratio (EdU+/ERG+) per

total ECs (ERG+) in the vascular plexus of *Smad4*^{iAEC} retinas in PBS versus PI3Ki (Pictilisib) treated pups (n=8 (2 images (200-600 cells/image)/retina/group). (G) S-phase ratio (EdU+) per total DAPI+ cells in response to 24 hours 12 DYNES/cm² of *CTRL* and *SMAD4* siRNAs HUVECs treated with PBS versus PI3Ki (n=6 (2 images (200-300 cells/image)/experiment/group). (H,I) *KLF4* mRNA expression by qPCR in HUVECs subject to 12 DYNES/cm² and treated with PBS versus Pictilisib (H) (n=5/group) and in *CTRL*, *CD31*, *KDR*, and *CDH5* siRNAs HUVECs (I) (n=4/group). Scale Bars: 100µm in **D**. **a**: artery, **v**: vein. Data are represented as mean \pm SEM. **P*<0.05,***P*<0.01,****P*<0.001, ns- non-significant. One-way Anova (**C**,**E**,**G**), Mann-Whitney test (**F**,**H**,**I**).

Supplemental Figure 6. Klf4 inactivation restores arterial identity in Smad4^{iAEC} retinas

(A) qPCR for *CCNA2*, *CDKN1A* and *CDKN2D* in *CTRL* versus *SMAD4* siRNAs HUVECs grown in static versus subject to 12 DYNES/cm² (n=3/group). (B,D) Representative confocal images of labeled retinas for CX37 (white) (B), CX40 (green) (D) and IB4 (red) from Tx induced P6 *fl/fl*, *Smad4*^{iAEC}, *Klf4*^{iAEC} and *Smad4;Klf4*^{iAEC}. Yellow arrowheads indicate AVMs. Blue arrowheads indicate expression of arterial markers in arteries and arterioli. (C,E) Quantification of CX37 (C) and CX40 (E) signals in the vascular plexus from the indicated genotypes (n = 4 retinas/group). Scale Bars in B,D: 100µm. a: artery, v: vein. Data are represented as mean \pm SEM. n.s- non-significant, **P*<0.05, ***P*<0.01, ****P*<0.001. One-way Anova (A,C,E).

Supplemental Figure 7. Palbociclib reduces vascular density in *Smad4*^{iAEC} retinas.

(A) Representative WB images for the indicated proteins of whole lung lysates from pups treated with DMSO and Palbociclib (n = 3/group). (B) Confocal images of vascular front of P6 Smad4 *fl/fl* and *Smad4*^{iAEC} retinas treated with DMSO or Palbociclib labeled for IB4 (red) - upper panel, EdU (green) and ERG (white) -middle panel and IB4/ERG/EdU (lower panel) of the vascular front in indicated genotypes. (C) Quantification of the vascular density, the number of EdU+/ERG+ ECs per total number of ERG+ ECs (%) and of the total number of ERG+ ECs at the vascular front of *Smad4*^{iAEC} retinas

DMSO or Palbociclib treated. Scale Bars in **B**: 50 μ m. Data are represented as mean \pm SEM. n.s- non-significant, **P*<0.05, ***P*<0.01, ****P*<0.001. One-way Anova (**C**).

Supplemental Figure 1. SMAD4KD augments flow-induced gene expression.

(A) qPCR for the most 10 significant upregulated genes upon 24 hours 12 DYNES/cm² FSS in *CTRL* versus *SMAD4* siRNA HUVECs (n = 3/group): *ACKR4* (Atypical Chemokine Receptor 4); *APLNR* (Apelin receptor); *FBLN2* (EGF Containing Fibulin Extracellular Matrix Protein 2); *ITGB4* (Integrin Subunit Beta 4); *ELN* (Elastin); *MRAS* (Muscle RAS Oncogene Homolog); *PLCG2* (Phospholipase C Gamma 2); *KLF4* (Kruppel-Like Factor 4); *SLCO2A1* (Solute Carrier Organic Anion Transporter Family Member 2A1); *TNXB* (Tenascin XB). Data are represented as mean \pm SEM: ns- non-significant, **P*<0.05,***P*<0.01,****P*<0.001. One-way Anova.

Supplemental Figure 2. Loss of *SMAD4* leads to dysregulated cell cycle in vitro and in vivo. (A) Representative immunofluorescence staining of *CTRL* versus *SMAD4* siRNAs HUVECs grown in static versus 1 or 12 DYNES/cm² for EdU (green) and DAPI (blue). (B) Representative co-labeling of postnatal day 6 (P6) Tx induced *Smad4 fl/fl* and *Smad4^{iAEC}* retinas for EdU+ nuclei (green-upper panel), and EdU (green), ERG (white), and Isolectin B4 (IB4-red) (lower panel). (C) Quantification

of the total number of ECs (ERG+) in representative images shown in **B**. (**D**) S-phase ratio (EdU+/ERG+) per total ECs (ERG+) in capillaries of *Smad4 fl/fl* and *Smad4*^{i\DeltaEC} retinas engaged or not in AVMs. (**E**) Representative co-labeling of postnatal day 6 (P6) Tx induced *Smad4 fl/fl* and *Smad4*^{i\DeltaEC} retinas for phospho Histone 3 (PH3-blue) (upper panel) and PH3 (blue), ERG (white), and Isolectin B4 (IB4-red) (lower panel). Yellow arrowheads in **B** and **E** mark ECs+ for EdU and PH3, respectively in capillaries. Red/blue arrowheads in **B** mark the EdU+ ECs in arteries/veins. (**F**) M-phase ratio (PH3+/ERG+) per total ECs (ERG+) in capillaries of *Smad4 fl/fl* and *Smad4*^{i\DeltaEC} retinas engaged or not in AVMs. n=9 (3 images (200-600 cells/image)/retina/group). Scale Bars: 100µm in **A,B,E. a**: artery, v: vein. Data are represented as mean \pm SEM. **P*<0.05,***P*<0.01,****P*<0.001. One-way Anova (**C,D,F**).

Supplemental Figure 3. KLF4 regulates cell size but not VE Cadherin at cell junctions.

(A,B) Quantification of cell area in *CTRL*, *SMAD4*, *KLF4* and *SMAD4*; *KLF4* siRNAs HUVECs subject to 12 DYNES/cm² (A) and 1 DYNE/cm² (B) for 24 hours (n=8 images (70-140 cells/image) per 4 independent experiments/group). (C) Representative VE-Cadherin staining (negative images) of *CTRL*, *SMAD4*, *KLF4* and *SMAD4*; *KLF4* siRNAs HUVECs subject to 12 DYNES/cm² for 24 hours. (D) Quantification of VE-Cadherin labeling intensity from experiments in C (n=6 images per 3 independent experiments/group). Scale Bars: 100µm. Data are represented as mean \pm SEM. **P*<0.05,***P*<0.01,****P*<0.001, ns- non-significant. One-way Anova (A,B,D).

Supplemental Figure 4. Validation of KLF4 antibody in vivo. (A) Representative images of the vascular plexus in retinas from Tx induced P6 *Klf4 fl/fl* and *Klf4*^{$i\Delta EC$} labelled for KLF4 (green) and IB4 (white). Scale Bars: 50 µm.

Supplemental Figure 5. Increased PI3K signaling mediates EC aberrant responses in *Smad4*ECko.

(A) Representative WB for pAkt in HUVECs subject to 12 DYNES/cm² treated with PBS or Pictilisib (PI3Ki-75nM) for 4 hours (n=3/group). (B) Representative VE-Cadherin staining (negative images) of *CTRL* and *SMAD4* siRNAs HUVECs subject to 24 hours 12 DYNES/cm² and treated with PBS, PI3K inhibitor or with *AKT* siRNA. Flow direction: right to left. (C) Quantification of the length/width ratio (n=6 average of images (70-140 cells/image) per 3 independent experiments/group) and of EC alignment parallel to flow direction (%) (n=12 average of images (100-240 cells/image) per 3 independent experiments/group). (D) Representative images of retinas from P6 *Smad4 fl/fl* and *Smad4*^{iAEC} from pups treated with PBS or PI3K inhibitor labeled for ERG (white), GOLPH4 (red) and IB4 (green)-upper panel and ERG (white), GOLPH4 (red) and IB4 (green line)-lower panel. Yellow arrowheads mark the EC orientation within the AVMs. (E) Quantification of EC polarization: against or with flow and neutral (non-oriented) in capillaries and AVMs from P6 retinas of *Smad4 fl/fl* and *Smad4*^{iAEC} pups treated with PBS or PI3Ki (n=3 retinas/group). (F) S-phase ratio (EdU+/ERG+) per total ECs (ERG+) in the vascular plexus of *Smad4*^{iAEC} retinas in PBS versus PI3Ki (Pictilisib) treated

pups (n=8 (2 images (200-600 cells/image)/retina/group). (G) S-phase ratio (EdU+) per total DAPI+ cells in response to 24 hours 12 DYNES/cm² of *CTRL* and *SMAD4* siRNAs HUVECs treated with PBS versus PI3Ki (n=6 (2 images (200-300 cells/image)/experiment/group). (H,I) *KLF4* mRNA expression by qPCR in HUVECs subject to 12 DYNES/cm² and treated with PBS versus Pictilisib (H) (n=5/group) and in *CTRL*, *CD31*, *KDR*, and *CDH5* siRNAs HUVECs (I) (n=4/group). Scale Bars: 100µm in **D**. **a**: artery, **v**: vein. Data are represented as mean \pm SEM. **P*<0.05,***P*<0.01,****P*<0.001, ns- non-significant. One-way Anova (C,E,G), Mann-Whitney test (F,H,I).

Supplemental Figure 6. *Klf4* inactivation restores arterial identity in *Smad4*^{iAEC} retinas (A) qPCR for *CCNA2*, *CDKN1A* and *CDKN2D* in *CTRL* versus *SMAD4* siRNAs HUVECs grown in static versus subject to 12 DYNES/cm² (n=3/group). (B,D) Representative confocal images of labeled retinas for CX37 (white) (B), CX40 (green) (D) and IB4 (red) from Tx induced P6 *fl/fl*, *Smad4*^{iAEC}, *Klf4*^{iAEC} and *Smad4;Klf4*^{iAEC}. Yellow arrowheads indicate AVMs. Blue arrowheads indicate expression of arterial markers in arteries and arterioli. (C,E) Quantification of CX37 (C) and CX40 (E) signals in the vascular plexus from the indicated genotypes (n = 4 retinas/group). Scale Bars in B,D: 100µm. a: artery, v: vein. Data are represented as mean \pm SEM. n.s- non-significant, **P*<0.05, ***P*<0.01, ****P*<0.001. One-way Anova (A,C,E).

Supplemental Figure 7. Palbociclib reduces vascular density in *Smad4*^{iAEC} retinas. (A) Representative WB images for the indicated proteins of whole lung lysates from pups treated with DMSO and Palbociclib (n = 3/group). (B) Confocal images of vascular front of P6 Smad4 *fl/fl* and *Smad4*^{iAEC} retinas treated with DMSO or Palbociclib labeled for IB4 (red) - upper panel, EdU (green) and ERG (white) -middle panel and IB4/ERG/EdU (lower panel) of the vascular front in indicated genotypes. (C) Quantification of the vascular density, the number of EdU+/ERG+ECs per total number

genotypes. (C) Quantification of the vascular density, the number of EdU+/ERG+ ECs per total number of ERG+ ECs (%) and of the total number of ERG+ ECs at the vascular front of *Smad4*^{i\DeltaEC} retinas DMSO or Palbociclib treated. Scale Bars in **B**: 50µm. Data are represented as mean \pm SEM. n.s- non-significant, **P*<0.05, ***P*<0.01, ****P*<0.001. One-way Anova (C).

Supplemental Methods

Gene name	Forward Sequence	Reverse Sequence	
(Protein name)			
Primers for HUVECs			
ACKR4	GTTTTCGTCATTGGACTTGCAG	GCTACAGCCAAATTCAGGATGT	
(human-Atypical			
Chemokine Receptor 4)			
APLNR	CTCTGGACCGTGTTTCGGAG	GGTACGTGTAGGTAGCCCACA	
(human-Apelin Receptor)			
CCNA2	ACCCAGAAAACCATTGGTCC	CATTTAACCTCCATTTCCCTAAGGT	
(human-Cyclin A2)			
CCNB1	AATAAGGCGAAGATCAACATG	TTTGTTACCAATGTCCCCAAGAG	
(human-Cyclin B1)	GC		
CCNB2	CCGACGGTGTCCAGTGATTT	TGTTGTTTTGGTGGGTTGAACT	
(human-Cyclin B2)			
CDK1	AAACTACAGGTCAAGTGGTAGC	TCCTGCATAAGCACATCCTGA	
(human-CDK1)			
CDKNIA	TGICCGICAGAACCCATGC	AAAGICGAAGIICCAICGCIC	
(numan-p21)			
CDKN2A (human-n16)	CAACUCACCUAATAUTTACU	AUCACCACCAUCUTUTC	
CDKN2B	CACCGTTGGCCGTAAACTTAAC	TAATGAAGCTGAGCCCAGTCT	
(human-p15)			
GJA4	ACACCCACCCTGGTCTACC	CACTGGCGACATAGGTGCC	
(human- CX37)			
GJA5	CCGTGGTAGGCAAGGTCTG	ATCACACCGGAAATCAGCCTG	
(human-CX40)			
GJA1	GGTGACTGGAGCGCCTTAG	GCGCACATGAGAGATTGGGA	
(human-CX43)			
ELN (hormony Floridia)	GCAGGAGITAAGCCCAAGG	TGTAGGGCAGTCCATAGCCA	
(numan-Elastin)		ТСССТАТАСТАССАСТССТТСТС	
(human-Ephrin B2)	TATOCAGAACTOCGATTICCAA		
(numan-Ephrin B2)			
FBLN2	ACTGTGGGTTCTTACCACTGT	CCACCTGGGAAAATTCTGACTT	
(human-Fibulin 2)	TCCACCACCTACATCCCAAC		
FL14 (human VEGEP2)	IGCACGAGGIACAIGCCAAC	GUIGUICAAAGIUIUICAUGAA	
(IIIIIIIII-VEOFKS)	CTGGGCTACACTGAGCACC		
(human-GAPDH)	CIUddellACACIUADCACC	AAUTOUTCOTTOAOOOCAATO	
HPRT	GACCAGTCAACAGGGGACAT	CCTGACCAAGGAAAGCAAAG	
(human-Hypoxanthine			
Phosphoribosyltransferase			
1)			
ITGB4	CTCCACCGAGTCAGCCTTC	CGGGTAGTCCTGTGTCCTGTA	
(human-Integrin beta-4)			
KLF4	CCCACATGAAGCGACTTCCC	CAGGTCCAGGAGATCGTTGAA	
(human-KLF4)			

Supplemental Table1: List of mouse and human primers used in the study.

MRAS	TTCCTCATCGTCTACTCCGTC	AGGATCATCGGGGAATGACTCC	
(human-Ras-related protein			
M-Ras)			
PECAM-1	AAGTGGAGTCCAGCCGCATATC	ATGGAGCAGGACAGGTTCAGTC	
(human-PECAM1)			
PLCG2	CATCCTATATGGCACTCAGTTC	TCCTGGTGTAAGATTTTCAAGCC	
(human-PLCG2)	G		
SLCO2A1	TCGGTCTTCGGCAACATTAAG	GCTCTTGAAGTAGGCGCTGTA	
(human-SLCO2A1)			
SOX17	GTGGAACCGCACGGAATTTG	GGAGATTCACACCGGAGTTCA	
(human-SOX17)			
TEK	TTAGCCAGCTTAGTTCTCTGTGG	AGCATCAGATACAAGAGGTAGGG	
(human-TIE2)			
TNXB	GCCCTGCTCACTTGGACTG	GGAGCCGTGCATTGTAGGAG	
(human-TN-X)			
CDH5	QT00013244, Qiagen		
(human-VE-Cadherin)			
KDR	QT00069818, Qiagen		
(human-VEGFR2)			
SMAD4	QT00013174, Qiagen		
(human-SMAD4)			
Primers for mouse lung ECs			
Gapdh	AGGTCGGTGTGAACGGATTTG	TGTAGACCATGTAGTTGAGGTCA	
(mouse-GAPDH)			
Klf4	QT00095431, Qiagen		
(mouse-KLF4)			
Smad4	QT00130585, Qiagen		
(mouse-SMAD4)			