

Supplemental Figure 1. Parental determination of the remaining allele in NESP-ICR deleted

hESCs and HCT116 cells.

(A) SNPs utilized for allelic determination in NESP-ICR in hESCs. Genomic sequencing results of an SNP within exon H (rs3787497, left) and another SNP in *GNAS* exon 5 (rs7121, right) are shown.

(B-F) Sanger sequencing results of *GNAS*-derived transcripts. Each *GNAS*-derived transcript was amplified from hESC-derived cDNA using a specific forward primer in each exon and a common reverse primer in *GNAS* exon 7. (B-E) *GNAS* exon 5 SNP (rs7121) in NESP55 (B), A/B (C), Gsa (D), XLas (E), and exon H (F). (G) Exon H SNP (rs3787497) in the exon H-containing transcript. (H) The genotyping workflow for NESP-ICR deleted hESCs. (Left) An SNP within exon H (rs3787497), which generates a FokI site only on the maternal allele, was used to determine parental alleles. (Right) PCR-restriction fragment length polymorphism for the parental determination of the remaining NESP-ICR allele. The exon H-surrounding region in NESP-ICR was PCR-amplified from genomic DNA, followed by FokI digestion. Digested PCR products indicate maternally remaining (paternally deleted) clones. A representative gel is shown.

(I) The genotyping workflow for NESP-ICR deleted HCT116 cells. (Left) The NESP55surrounding region in NESP-ICR is paternally methylated. BsrFI, a CpG methylation-sensitive restriction enzyme, was used to digest the maternal allele. (Right) Following BsrFI digestion, the NESP55-surrounding region was PCR-amplified. The amplification from the BsrFI-digested genome indicates paternally remaining (maternally deleted) clones. A representative gel is shown.

Supplemental Figure 2. Bisulfite sequencing analysis of A/B DMR in NESP-ICR deleted hESCs.

(A-D) In the experiment of Fig. 2D to G, genomic DNA was purified at days 0 and 7 from WT and a NESP-ICR Δ Mat clone and was bisulfite-converted. The A/B DMR was PCR-amplified, and purified products were subjected to next-generation sequencing analysis. FASTQ data were aligned to reference sequences reflecting bisulfite-conversion except for the CpG dinucleotides. The methylation level at each CpG site is shown on the left panel. Total read counts of C (methylated) and T (unmethylated) are shown on the right panel. WT and Δ Mat clones were compared using the chi-square test.

(A) A/B upstream (UP), day 0. (B) A/B downstream (DOWN), day 0. (C) A/B UP, day 7. (D) A/B DOWN, day 7.

Supplemental Figure 3. Additional transcript and methylation analyses in NESP-ICR deleted hESCs.

(A) Expression levels of the Gs α transcript in WT, NESP-ICR paternally deleted (Δ Pat, three independent clones), and maternally deleted (Δ Mat, five independent clones) hESCs, quantified by qRT-PCR, normalized to β -actin.

(B) Sequencing of a GNAS exon 5 SNP (rs7121) in Gs α transcripts in NESP-ICR Δ Mat hESC clones. Four clones were analyzed, and a representative result is shown.

(C and D) Methylation analysis of WT, NESP-ICR paternally deleted (ΔPat, three independent clones), and maternally deleted (ΔMat, five independent clones) hESCs. Methylation levels at AS
(C) and XL (D) DMRs were calculated by MSRE-qPCR.

For (A), (C), and (D), each dot represents the result of an independent hESC clone; WT vs. Δ Mat or Δ Pat clones were compared using a one-sample t-test followed by Bonferroni correction for multiple comparisons; * p<0.05, ** p<0.01, ns, not significant.

WT hESCs were treated with 2 µM GSK3484862 for 2 days. Following the removal of GSK3484862, genomic DNA was purified at the indicated time points, and methylation levels at upstream (UP) and downstream (DOWN) of A/B DMR, *MCTS2*, *PEG10*, and *KCNQ10T1* were calculated by MSRE-qPCR.

Supplemental Figure 5. Allelic origin of the STX16 transcript in hESCs.

(A) Schematic location of the SNP (rs2296524) used for allelic determination. Exon numbering is based on the transcript NM_003763.6. STX16-ICR targeted by CRISPR/Cas9 is shown in blue highlight (GRCh37 chr20:57,243,339-57,245,500).

- (B) Genomic DNA sequencing of rs2296524 in WT hESCs.
- (C) Complementary DNA (cDNA) sequencing of rs2296524 in WT hESCs.

Supplemental Figure 6. Additional transcript and methylation analyses in STX16-ICR deleted hESCs.

(A) Sequencing of a *GNAS* exon 5 SNP (rs7121) in Gs α transcripts in STX16-ICR Δ G clones. Three clones were analyzed, and a representative result is shown.

(B and C) Methylation analysis of WT, STX16-ICR Δ A (three independent clones), and Δ G (four independent clones) hESCs. Methylation levels at AS (B) and XL (C) DMRs were calculated by MSRE-qPCR. Each dot represents the result of an independent hESC clone; WT vs. Δ A or Δ G clones were compared using a one-sample t-test followed by Bonferroni correction for multiple comparisons; ** p<0.01, ns, not significant.

Supplemental Figure 7. Genome Browser tracks of mouse *Stx16* region.

H3K27Ac ChIP-seq signals in murine embryonic stem cells are shown (mm9). Exon numbering

is based on the transcript NM_001102423.1.

Factors with ChIP-seq signal in STX16-ICR

GLIS3, BRD1, OCT4, BRD3, SMAD2/3, JUN, TP53, BRD4, GATA6, MED1, TBP, MORC2, ETS1, FOXP1, EP300, NANOG, LEF1, TEAD4, NIPBL, TBXT, SOX2, EOMES

С	STX16 exon 4	
Scale chr20: 57,243,000	1 kk h 17,244,500 57,244,500 57,245,500 57,245,500 57,246,000 57,246,5	500
H1-hESC	H1-hESC H3K27ac Histone Mode by ChIP-seq Signal from ENCODE/Broad	
HCT116	HCT-118 HSK27ac Hatore Modifications by ChIP-aeq Peaks from ENCODE/SYDH HCT-118 HSK27ac Hatore Modifications by ChIP-aeq Signal from ENCODE/SYDH	20
MCF7	MCF-7 H3K27ac Histone Modifications by ChIP-seq Pasials from ENCODE/SYDH MCF-7 H3K27ac Histone Modifications by ChIP-seq Sgnail from ENCODE/SYDH	- Þ
PANC-1	PANC-1 H0X27ac Histone Modifications by ChIP-Seq Peaks from ENCODE/SYOH PANC-1 H0X27ac Histone Modifications by ChIP-Seq Signal from ENCODE/SYOH	b
GM12878	GM12878 H3K27a: Histore Mods by ChIP-seq Signal from ENCODE/Broad	
K562	K562 H3K27ac Historie Mods by ChIP-seq Signal from ENCODE/Broad	
A549	AS49 DEX 100 nM H3K27ac Histone Mods by ChIP-seq Signal from ENCODE/Broad	
A549	A549 EIOH 0.02% H3K27ac Histone Mods by ChIP-seq Signal from ENCODE/Broad	
CD20+	CD20+ RO01794 H3K27ac Histone Mods by ChiP-seq Signal from ENCODE/Broad	-
HeLa-S3	HeLa-S3 H3K27ac Histone Mods by ChIP-seq Signal from ENCODE/Broad	
HepG2	HepG2 H3K27ac Histone Mods by ChIP-seq Signal from ENCODE/Broad	
HUVEC	HUVEC H3K27ac Histone Mods by ChIP-seq Signal from ENCODE/Broad	
CD14+	Monocytes CD14+ H3K27ac Histone Mods by ChIP-seq Signal from ENCODE/Broad	
Dnd41	Dnd41 H3K27ac Histone Mods by ChIP-seq Signal from ENCODE/Broad	
HMEC	HMEC H3K27ac Histone Mods by ChIP-seq Signal from ENCODE/Broad	
HSMM	HSMM H3K27ac Histone Mods by ChIP-seq Signal from ENCODE/Broad	
HSMM	HSMMtube H3K27ac Histone Mods by ChIP-seq Signal from ENCODE/Broad	
NH-A	NH-A H3K27ac Histone Mods by ChIP-seq Signal from ENCODE/Broad	
NHDF-Ad	NHDF-Ad H3K27ac Histone Mods by ChIP-seq Signal from ENCODE/Broad	
NHEK	NHEK H3K27ac Histone Mods by ChIP-seq Signal from ENCODE/Broad	
NHLF	NHLF H3K27ac Histone Mods by ChIP-seq Signal from ENCODE/Broad	
Osteobl	Osteoblasts HJK27ac Histone Mods by ChIP-seq Signal from ENCODE/Broad	+++
AG04450	AQ04450 H3K27ac Histone Mod ChiP-seq Raw Sig 1 from ENCODEUW	Ħ

Supplemental Figure 8. Transcription factor recruitment and H3K27Ac mark in STX16-ICR of human cells.

(A and B) Transcription factor ChIP-seq signals. A genome browser track of hESCs (A) and the list of recruited transcription factors (B) are shown.

(C) A genome browser track showing H3K27Ac ChIP-seq signals surrounding STX16-ICR in hESCs and several human somatic cells.

For (A) and (C), exon numbering is based on the transcript NM_003763.6.

			Chromosomal Deletion (GRCh37 chr20)			GNAS methylation status					
	Affected exons	Length	Centromeric breakpoint	Telomeric breakpoint	NESP AS XL A/B		Notes	PMID	Ref		
1	NESP55, exon H, AS exon 3-4	4.0 kb	57,413,845	57,417,875	(Matdel)	L	L	L		15592469	20
2	NESP55, exon H, AS exon 3-4	4.7 kb	57,413,445	57,418,131	(Matdel)	L	L	L		15592469	20
3	NESP55, exon H	19.0 kb	57,397,711	57,416,700	(Matdel)	Ν	Ν	L		22378814	58
4	NESP55	9.5 kb	57,406,458- 57,406,461	57,415,988- 57,415,991	(Matdel)		Ν	L		34157100	18
5 NESP		37.6 kb + 1.4 kb	57,380,466	57,418,062	(Matdel)	L	L	L		26479409	50
	NESF35, exon h, AS exon 3-5		57,418,522	57,419,948							59
6	Exon H, AS exon 3-4	4.2 kb	57,416,357	57,420,530	Н	L	L	L		20444925	38
\bigcirc	Exon H	40 bp	57,416,653	57,416,693	Н	L	L	L	#	25005734	60
8	Intron 1 of NESP55/exon H, intron 2 of AS	33 bp	57,418,256	57,418,290	N	L	L	L	§	25005734	60

Supplemental Table 1. Detailed information of microdeletions reported in AD-PHP1B patients with NESP-ICR deletion

(corresponding to Figure 1B).

Notes; #, Incomplete cosegregation of maternal deletion with GNAS methylation defects. §, Unknown inheritance, some AHO-like

features were present.

		Chromosomal Deletion (GRCh37 chr20)			GNAS	methy				
	Affected exons	Lenath	Centromeric	Telomeric	NESP	AS	XL	A/B	PMID	Ref
		5	breakpoint	breakpoint						
	STX16 even 1-6	3.0 kb	57,243,567-	57,246,545-	N	N N	N	1	14561710	19
		0.0 Kb	57,243,739	57,246,717				–		
0	STX16 exon 2-4	1.4 kb	57,240,483-	57,244,851-	N	N	N	L	15800843	27
Ľ	017/10 62011 2-4	4.4 Kb	57,240,485	57,244,853						
3	STX16 exon 2-8	24.6 kb	57,235,162	57,259,753	Ν	Ν	Ν	L	24438374	61
(A) Whole STV16 and MPER 1		87.5 kb deletion with	57 215 808	57 301 636	N	N	N	I	32337648	62
4		28 bp insertion	57,215,090	07,001,000	IN IN			L	52557040	02
5	Whole STX16 and NPEPL1	206 kb	57,151,892-	57,289,120-	Ν		N	I	34157100	18
			57,289,110	57,358,140					34137100	10

Supplemental Table 2. Detailed information of microdeletions reported in AD-PHP1B patients with STX16-ICR deletion

(corresponding to Figure 1C).

MSRE-qPCR	A/B upstream		GATTTTTCGCGCTTCCCCTTC				
			GCCGACGCGACTGAGTG				
	A/D classification		TTTGGCGCTAACTCTTAGGCAGC				
	A/B downstream	Rv	CTTCATGGCCATCTTCAGCATGG				
	40		AGTGGGGCTAAAGGAGCTGAC				
	AS	Rv	TTGGGGTTTAATGCCGGTTTAG				
	VI		CAGAGAGACCCCCAGTTGAG				
	ÄL	Rv	ATCGGCAGCCTGGATCTCG				
	h A OTD		CACCCAGCACAATGAAGATC				
	HACID	Rv	GTCATAGTCCGCCTAGAAGC				
	NESP55	Fw	AAGAGTCGAAGGAGCCCAAGGAG				
	Exon H	Fw	AAAGTACCTGGGGGAAAGGTAG				
	XL	Fw	AGAAGCGCGCAGAGAAGAAACG				
	A/B	Fw	CTTGCGTGTGAGTGCACCTC				
qRI-PCR	Gsα exon1	Fw	CAGAAGGACAAGCAGGTCTACC				
	GNAS exon 2 (shared)	Rv	CCATTAAACCCATTAACATGCAG				
	8073		CTGCAGTACAACTCCATGACCAG				
	3072	Rv	TGCGAGTAGGACATGCTGTAGG				
	OCT4		TTCAAGAACATGTGTAAGCTGCG				
			ACTCGGTTCTCGATACTGGTTC				
	A/B upstream		AAAATTGGGAGGTAGGTTTGGGAG				
Pioulfite DCP			CCCCAACCTCTTCAAAAAACC				
Bisulfite PCR	A/D doursetseess		TTAATTTTTAGGTAGTTAGTTTAGTAGTT				
	A/D downstream	Rv	ΤΑΑΑCTTCATAACCATCTTCAACATAA				
	primer #1		TTAGACTTGGGTCCCATCCAGAATATCTC				
3C-PCR	primer #2		GGACCTGGTATTCCCTGACAAACATTG				
	primer #3		TGTGCGGAAAGTAATCTGAATGGG				
	STX16 intron 4 OCT4/SOX2		GAGCTGCTCTTCAATAGGTAAAAAGC				
			GGTTGTTATGCAAATATGTGGCTTTCAG				

Supplemental Table 3. Primer sequences.

References for supplementary materials

58. Richard N et al. A new deletion ablating NESP55 causes loss of maternal imprint of A/B *GNAS* and autosomal dominant pseudohypoparathyroidism type Ib. *J Clin Endocrinol Metab*. 2012;97(5):E863-867.

59. Takatani R et al. Analysis of Multiple Families With Single Individuals Affected by Pseudohypoparathyroidism Type Ib (PHP1B) Reveals Only One Novel Maternally Inherited *GNAS* Deletion. *J Bone Miner Res.* 2016;31(4):796–805.

60. Rezwan FI et al. Very small deletions within the NESP55 gene in pseudohypoparathyroidism type 1b. *Eur J Hum Genet*. 2015;23(4):494–499.

61. Elli FM et al. Autosomal dominant pseudohypoparathyroidism type Ib: a novel inherited deletion ablating STX16 causes loss of imprinting at the A/B DMR. *J Clin Endocrinol Metab*. 2014;99(4):E724-728.

62. Yang Y et al. A novel long-range deletion spanning *STX16* and *NPEPL1* causing imprinting defects of the *GNAS* locus discovered in a patient with autosomal-dominant pseudohypoparathyroidism type 1B. *Endocrine*. 2020;69(1):212–219.