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Supplemental Figure 1. Parental determination of the remaining allele in NESP-ICR deleted 

hESCs and HCT116 cells. 
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(A) SNPs utilized for allelic determination in NESP-ICR in hESCs. Genomic sequencing results 

of an SNP within exon H (rs3787497, left) and another SNP in GNAS exon 5 (rs7121, right) are 

shown. 

(B-F) Sanger sequencing results of GNAS-derived transcripts. Each GNAS-derived transcript was 

amplified from hESC-derived cDNA using a specific forward primer in each exon and a common 

reverse primer in GNAS exon 7. (B-E) GNAS exon 5 SNP (rs7121) in NESP55 (B), A/B (C), Gsα 

(D), XLαs (E), and exon H (F). (G) Exon H SNP (rs3787497) in the exon H-containing transcript.  

(H) The genotyping workflow for NESP-ICR deleted hESCs. (Left) An SNP within exon H 

(rs3787497), which generates a FokI site only on the maternal allele, was used to determine 

parental alleles. (Right) PCR-restriction fragment length polymorphism for the parental 

determination of the remaining NESP-ICR allele. The exon H-surrounding region in NESP-ICR 

was PCR-amplified from genomic DNA, followed by FokI digestion. Digested PCR products 

indicate maternally remaining (paternally deleted) clones. A representative gel is shown. 

(I) The genotyping workflow for NESP-ICR deleted HCT116 cells. (Left) The NESP55-

surrounding region in NESP-ICR is paternally methylated. BsrFI, a CpG methylation-sensitive 

restriction enzyme, was used to digest the maternal allele. (Right) Following BsrFI digestion, the 
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NESP55-surrounding region was PCR-amplified. The amplification from the BsrFI-digested 

genome indicates paternally remaining (maternally deleted) clones. A representative gel is shown. 
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Supplemental Figure 2. Bisulfite sequencing analysis of A/B DMR in NESP-ICR deleted 

hESCs. 

(A-D) In the experiment of Fig. 2D to G, genomic DNA was purified at days 0 and 7 from WT and 

a NESP-ICR ΔMat clone and was bisulfite-converted. The A/B DMR was PCR-amplified, and 

purified products were subjected to next-generation sequencing analysis. FASTQ data were 

aligned to reference sequences reflecting bisulfite-conversion except for the CpG dinucleotides. 

The methylation level at each CpG site is shown on the left panel. Total read counts of C 

(methylated) and T (unmethylated) are shown on the right panel. WT and ΔMat clones were 

compared using the chi-square test. 

(A) A/B upstream (UP), day 0. (B) A/B downstream (DOWN), day 0. (C) A/B UP, day 7. (D) A/B 

DOWN, day 7. 
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Supplemental Figure 3. Additional transcript and methylation analyses in NESP-ICR 

deleted hESCs. 

(A) Expression levels of the Gsα transcript in WT, NESP-ICR paternally deleted (ΔPat, three 

independent clones), and maternally deleted (ΔMat, five independent clones) hESCs, quantified 

by qRT-PCR, normalized to β-actin. 

(B) Sequencing of a GNAS exon 5 SNP (rs7121) in Gsα transcripts in NESP-ICRΔMat hESC 

clones. Four clones were analyzed, and a representative result is shown. 
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(C and D) Methylation analysis of WT, NESP-ICR paternally deleted (ΔPat, three independent 

clones), and maternally deleted (ΔMat, five independent clones) hESCs. Methylation levels at AS 

(C) and XL (D) DMRs were calculated by MSRE-qPCR.  

For (A), (C), and (D), each dot represents the result of an independent hESC clone; WT vs. ΔMat 

or ΔPat clones were compared using a one-sample t-test followed by Bonferroni correction for 

multiple comparisons; * p<0.05, ** p<0.01, ns, not significant. 
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Supplemental Figure 4. GSK3484862-induced methylation changes at several imprinted loci 

in hESCs. 

WT hESCs were treated with 2 μM GSK3484862 for 2 days. Following the removal of 

GSK3484862, genomic DNA was purified at the indicated time points, and methylation levels at 

upstream (UP) and downstream (DOWN) of A/B DMR, MCTS2, PEG10, and KCNQ1OT1 were 

calculated by MSRE-qPCR. 
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Supplemental Figure 5. Allelic origin of the STX16 transcript in hESCs. 

(A) Schematic location of the SNP (rs2296524) used for allelic determination. Exon numbering is 

based on the transcript NM_003763.6. STX16-ICR targeted by CRISPR/Cas9 is shown in blue 

highlight (GRCh37 chr20:57,243,339-57,245,500). 

(B) Genomic DNA sequencing of rs2296524 in WT hESCs. 

(C) Complementary DNA (cDNA) sequencing of rs2296524 in WT hESCs. 
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Supplemental Figure 6. Additional transcript and methylation analyses in STX16-ICR 

deleted hESCs. 

(A) Sequencing of a GNAS exon 5 SNP (rs7121) in Gsα transcripts in STX16-ICRΔG clones. 

Three clones were analyzed, and a representative result is shown. 

(B and C) Methylation analysis of WT, STX16-ICRΔA (three independent clones), and ΔG (four 

independent clones) hESCs. Methylation levels at AS (B) and XL (C) DMRs were calculated by 

MSRE-qPCR. Each dot represents the result of an independent hESC clone; WT vs. ΔA or ΔG 

clones were compared using a one-sample t-test followed by Bonferroni correction for multiple 

comparisons; ** p<0.01, ns, not significant. 
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Supplemental Figure 7. Genome Browser tracks of mouse Stx16 region. 

H3K27Ac ChIP-seq signals in murine embryonic stem cells are shown (mm9). Exon numbering 

is based on the transcript NM_ 001102423.1. 
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Supplemental Figure 8. Transcription factor recruitment and H3K27Ac mark in STX16-ICR 

of human cells. 

(A and B) Transcription factor ChIP-seq signals. A genome browser track of hESCs (A) and the 

list of recruited transcription factors (B) are shown. 

(C) A genome browser track showing H3K27Ac ChIP-seq signals surrounding STX16-ICR in 

hESCs and several human somatic cells.  

For (A) and (C), exon numbering is based on the transcript NM_003763.6. 
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Length
Centromeric

breakpoint

Telomeric

breakpoint
NESP AS XL A/B

① NESP55, exon H, AS exon 3-4 4.0 kb 57,413,845 57,417,875 (Matdel) L L L 15592469 20

② NESP55, exon H, AS exon 3-4 4.7 kb 57,413,445 57,418,131 (Matdel) L L L 15592469 20

③ NESP55, exon H 19.0 kb 57,397,711 57,416,700 (Matdel) N N L 22378814 58

④ NESP55 9.5 kb
57,406,458-

57,406,461

57,415,988-

57,415,991
(Matdel) N L 34157100 18

57,380,466 57,418,062

57,418,522 57,419,948

⑥ Exon H, AS exon 3-4 4.2 kb 57,416,357 57,420,530 H L L L 20444925 38

⑦ Exon H 40 bp 57,416,653 57,416,693 H L L L # 25005734 60

⑧ Intron 1 of NESP55/exon H, intron 2 of AS 33 bp 57,418,256 57,418,290 N L L L § 25005734 60

59

Ref

L L 26479409(Matdel) L

GNAS  methylation status

Notes PMIDAffected exons

Chromosomal Deletion (GRCh37 chr20)

⑤ NESP55, exon H, AS exon 3-5
37.6 kb +

1.4 kb

 

Supplemental Table 1. Detailed information of microdeletions reported in AD-PHP1B patients with NESP-ICR deletion 

(corresponding to Figure 1B). 

Notes; #, Incomplete cosegregation of maternal deletion with GNAS methylation defects. §, Unknown inheritance, some AHO-like 

features were present. 
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Length
Centromeric

breakpoint

Telomeric

breakpoint
NESP AS XL A/B

① STX16  exon 4-6 3.0 kb
57,243,567-

57,243,739

57,246,545-

57,246,717
N N N L 14561710 19

② STX16  exon 2-4 4.4 kb
57,240,483-

57,240,485

57,244,851-

57,244,853
N N N L 15800843 27

③ STX16  exon 2-8 24.6 kb 57,235,162 57,259,753 N N N L 24438374 61

④ Whole STX16  and NPEPL1
87.5 kb deletion with

28 bp insertion
57,215,898 57,301,636 N N N L 32337648 62

⑤ Whole STX16  and NPEPL1 206 kb
57,151,892-

57,289,110

57,289,120-

57,358,140
N N L 34157100 18

RefAffected exons

Chromosomal Deletion (GRCh37 chr20) GNAS  methylation status

PMID

 

Supplemental Table 2. Detailed information of microdeletions reported in AD-PHP1B patients with STX16-ICR deletion 

(corresponding to Figure 1C). 
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Fw GATTTTTCGCGCTTCCCCTTC

Rv GCCGACGCGACTGAGTG

Fw TTTGGCGCTAACTCTTAGGCAGC

Rv CTTCATGGCCATCTTCAGCATGG

Fw AGTGGGGCTAAAGGAGCTGAC

Rv TTGGGGTTTAATGCCGGTTTAG

Fw CAGAGAGACCCCCAGTTGAG

Rv ATCGGCAGCCTGGATCTCG

Fw CACCCAGCACAATGAAGATC

Rv GTCATAGTCCGCCTAGAAGC

NESP55 Fw AAGAGTCGAAGGAGCCCAAGGAG

Exon H Fw AAAGTACCTGGGGGAAAGGTAG

XL Fw AGAAGCGCGCAGAGAAGAAACG

A/B Fw CTTGCGTGTGAGTGCACCTC

Gsα exon1 Fw CAGAAGGACAAGCAGGTCTACC

GNAS  exon 2 (shared) Rv CCATTAAACCCATTAACATGCAG

Fw CTGCAGTACAACTCCATGACCAG

Rv TGCGAGTAGGACATGCTGTAGG

Fw TTCAAGAACATGTGTAAGCTGCG

Rv ACTCGGTTCTCGATACTGGTTC

Fw AAAATTGGGAGGTAGGTTTGGGAG

Rv CCCCAACCTCTTCAAAAAACC

Fw TTAATTTTTAGGTAGTTAGTTTAGTAGTT

Rv TAAACTTCATAACCATCTTCAACATAA

TTAGACTTGGGTCCCATCCAGAATATCTC

GGACCTGGTATTCCCTGACAAACATTGC

TGTGCGGAAAGTAATCTGAATGGG

Fw GAGCTGCTCTTCAATAGGTAAAAAGC

Rv GGTTGTTATGCAAATATGTGGCTTTCAG

A/B upstream

A/B downstream

XL

AS

MSRE-qPCR

3C-PCR

STX16 intron 4 OCT4/SOX2CUT&RUN qPCR

hACTB

primer #1

primer #2

primer #3

qRT-PCR

SOX2

OCT4

A/B upstream

A/B downstream

Bisulfite PCR

Supplemental Table 3. Primer sequences.  
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