Supplemental Table 1 Potential vaccine candidates selected for inclusion in the *Cryptosporidium* protein array

Name*	Gene ID (CryptoDB)			Refere	lgG	lgA
				nce	prevalence	prevalenc
0.05000	17 400			(00.00)		
CpGP900	cgd7_402 0	Chro.704 47	CmeUKMEL1_0 3740	(30, 28)	(see Table 1)	
gp15/gp40	cgd6_108 0	Chro.601 38	CmeUKMEL1_04 910	(30)(36) (27) (26) (25)	(see Table 1)	
cp23	cgd4_362 0	Chro.404 14	CmeUKMEL1_08 080	(29)	(see Table 1)
cp20	cgd7_128 0	Chro.701 53	CmeUKMEL1_10 725	(30)	72	55
P2	Cgd2_130	Chro.200 20	CmeUKMEL1_09 185	(32, 33)	5	10
CpMuc4	cgd2_420	Chro.200 49	CmeUKMEL1_09 045	(24)	41	15
CpMuc5	cgd2_430	Chro.200 50	CmeUKMEL1_09 040	(24)	18	13
UDP-GlcNAc	cgd7_183 0	Chro.702 13	CmeUKMEL1_04 435	(22)	13	6
PFP	cgd3_140 0	Chro.301 72	CmeUKMEL1_02 790	(23)	13	3
Apyrase	cgd6_157 0	Chro.601 94	CmeUKMEL1_04 670		3	2
profilin	cgd3_157 0	Chro.301 89	CmeUKMEL1_02 865	(20)	12	4
cp15	cgd4_233 0	Chro.402 63	CmeUKMEL1_02 290		20	3
cp21	cgd2_257 0	Chro.202 74	CmeUKMEL1_16 905	(21)	20	11
ср47	cgd6_159 0	Chro.601 96	CmeUKMEL1_04 660	(21)	5	3
EF-1α	cgd6_399 0	Chro.604 59	CmeUKMEL1_10 355	(19)	20	15
Cp2	cgd6_541 0	Chro.606 23	CmeUKMEL1_05 715	(18) 36		3
Cpa135/ CpSUB	cgd7_173 0	Chro.702 03	CmeUKMEL1_04 490	(17) (14)	20	6
TRAP-C1	cgd5_342 0	Chro.500 29	CmeUKMEL1_16 195	(16)	45	27
CpMIC1/TSP 1	cgd6_780	Chro.601 02	CmeUKMEL1_05 055	(13)	13	4
LCFAS	cgd4_340 0	Chro.403 86	CmeUKMEL1_07 975	(74)	9	117
P30	cgd6_233 0	Chro.602 72	CmeUKMEL1_12 950	(75)	11	11

CSL	cgd3_234 0 cgd3_930	GY17_00 002458 GY17_00 002617	CmeUKMEL1_12 035 CmeUKMEL1_02 560	(76)	0	1	
*Table derived from Bouzid et al (31)							

Supplemental Figure 1

Frequency of new *Cryptosporidium* infections over the first three years of life. Positive samples (Cq values <40) were grouped into one infection if collected at < 65-day intervals. The day when the first positive sample was collected was used for tabulation purposes and reported as the child's age in days. The number of new infections (diarrheal or sub-clinical) in each 30.4 days window is displayed on the Y axis. On the X axis is the child's age

Supplemental Figure 2 Final Cryptosporidium Protein Microarray Design

The array included 522 conserved antigens derived from proteins (n=376) that contained a signal peptides (*C. parvum*: antigens 382; *C. hominis*: 155 antigens (134 derived from the *C. hominis* orthologues of "high value" *C. parvum* proteins already on the array); *C. meleagridis*: 6 antigens (also represented by other orthologues on the array) Additional antigens from proteins (n=327) without a signal peptide, but which nevertheless had a transmembrane domain, were included on the array (total antigens: 457; *C. parvum* antigens: 365; *C. hominis* antigens: 90 (66 were derived from the *C. hominis* orthologues of *C. parvum* proteins already on the array); *C. meleagridis* 2 (both also represented by other orthologues on the array). The *Cryptosporidium* parasites have a complex life cycle. Within the host life-stages are either extracellular or intracellular, and differ in their protein repertoire

Proteins expressed in the sporozoite/oocyst life stages *Cryptosporidium* proteome (mass spectrometry data) number of proteins represented on array: 451; reactive proteins: IgG: n=64; IgA: n=28) (38, 77). Differentially expressed transcripts were included in the array design although antigens may only be translated and interact with the host immune system in the successive life stages (41, 78).

Transcriptional changes in C. parvum oocyst/sporozoites: total number of proteins represented on array: 409; reactive antigens: IgG: n=34; IgA: n=22

Transcriptional data Meront/trophozoites enriched (24h after infection) (total number of proteins represented on array: 248; reactive antigens: IgG: n= 29; IgA: n= 29) Merozoite enriched (48h after infection) (total number of proteins represented on array: 548; reactive antigens: IgG: n= 62; IgA: n= 39)

Gametocytes (in vivo and in vitro female gamonts)(37) (total number of proteins represented on array: 544; reactive antigens: IgG: n= 62; IgA: n= 42).

Supplemental Figure 3 Selection criteria for *C. parvum* antigens from proteins containing either a Signal Peptide and/or a Transmembrane Domain. The final array included 382 conserved *C .parvum* antigens from proteins that contained a signal peptides. An additional 365 *C. parvum* antigens included on the array were from proteins without a signal peptide, but which nevertheless had a transmembrane domain. Due to both the technical challenges and the limitations on space on the array 71 of the proteins meeting these criteria were not included on the array

Supplemental Figure 4. Normalization of the signal from the IgG antibodies binding to the

C. hominis antigen encoded by the *gp60* gene. A) The density plot shows the distribution of the array normalized fluorescence signal intensity (SI) values of each antigen on the X-axis. Red line: Gaussian distribution of negative signals determined by mixture model; Green line: Gaussian distribution of positive signals determined by mixture model; Blue line: antigen specific seropositivity cut-off value determined using the mean plus 3 standard deviations of the background (red line); Yellow line: high intensity signal representing signals 4-fold higher than the entire array background. B) The ROC graph compares the ability of different background cut-off values to predict which children had been previously infected (fecal DNA positive using a diagnostic qPCR assay). Dotted lines indicate the performance of the threshold cut-off values predicted by mixture model (Mx-Mdl) and median signal intensity (median).

Supplemental Figure 5. **Correlation between and within IgG and IgA responses**. The correlograms show Spearman's correlation coefficients on a color scale for antibody responses between reactive Cryptosporidium antigens. Antigens are ordered using hierarchical clustering. The color scale for Spearman's correlation coefficients is located below each correlogram with red values indicating negative correlation and blue values indicating positive correlations. A) antigens reactive against IgG (n=176); B) antigens reactive against IgA (n=93); C) antigens reactive against both IgG and IgA (n=36).

Supplemental Figure 6 **T-SNE plot of antigen responsiveness overlaid with biomarkers of immune function**. A) The overlaid color indicates child HAZ score at the end of three years as described in the figure legend. Square boxes indicated children with cryptosporidiosis. The HAZ score was not linked to any particular immunological profile. Correlation was also not observed between the immune profile and any of the biomarkers of inflammation measured in the child's plasma at one year of age B) sCD14 C) IL-1b D) CRP or E) IL-4 the biomarker of the activation of the subpopulation of T-cells which are the most biologically active helper cells for B-cells (values indicated by the appropriate figure legend).

Supplemental Figure 7

Discordant results evidenced by the IVTT spot on the array. Antibody signals are shown for the antigen encoded by the IbA9G3a allele of the *gp60* gene. The left Y-axis shows the signals obtained from the IgA antibodies (blue points). The right Y-axis shows the signals obtained with the IgG antibodies (black spots). The X-axis shows the *gp60* genotypes of the parasites known to have infected the child prior to blood collection (IbA9G3a genotype in bold with*): 1-8 laA18R3; 9; laA19R3; 10-16 laA25R3; 17-20 lbA9G3R28; 21-29 ldA15G1; 30 lfA13G1; 31-34 *C. parvum* lldA15G1R1.

Supplemental Figure 8. Random Forest analysis for selection of important antigen variables and analysis of risk. A, C, E) The scatter plots represents antigens and clinical variables ranked by variable importance ("VIMP") scores in random forest ("RF") using 1,000 trees constructed per model. Models were fit to survival data during (A) one year of follow-up after sampling on all seropositive and seronegative children in the cohort, (C) two years of follow-up in children that had all been previously infected with Cryptosporidium, and (E) two years of follow-up in all children in the cohort. Each model was repeated 100 times, and the VIMP score was averaged across all runs. For each antigen, the percentage of runs where VIMP was greater than 0 (i.e., important to the model) was calculated. The red horizontal dashed lines represent the mean of all VIMP scores plus one standard deviation. The vertical dashed red lines represent antigens with at least 80% positive VIMP scores. The upper right guadrants shows the antigens selected as important variables in the model. B, D, F) The horizontal bar plots represents VIMP scores for each variable with at least 80% positive VIMP scores. The vertical red dashed lines represents the cutoff for selection of important variables (equivalent to the horizontal lines in A, C, E, respectively). Hazard ratios calculated in the survival analysis were shown as protective (HR < 1) or not (HR > 1). Only protective antigens with at least 80% positive VIMP scores and VIMP scores above the importance cutoff were selected for specific antigen analysis (Figure 7C).

Supplemental Figure 9. Survival analysis of all antibodies against all reactive antigens. The volcano plots display the log hazard ratio ("HR") of multivariable Cox proportional hazards models of each reactive Cryptosporidium antigen (IgG or IgA seropositive vs. seronegative antibody responses) associated with time until Cryptosporidium infection (All Children) or reinfection (among subset of children with gPCR+ stool samples collected during the first year of life; "Yr0-1 gPCR+" Children) during the 1 year or 2 year follow-up periods after sampling at 1 year of age. Points represent antigens, and triangles represent antigens that have been identified as important variables associated with risk of infection in random forest analysis for each of the four survival analyses: (A) 1 year follow-up in previously infected children, (B) 1 year follow-up in all children in the cohort, (C) 2 year follow-up in previously infected children, and (D) 2 year follow-up in all children in the cohort. Values below 0 represent a reduction in risk (HR < 1), whereas values above 0 represent an increase in risk with seropositive antibody responses (HR > 1). The y-axis shows -log10 p-values from the Cox models adjusted for demographic and environmental variables. The horizontal red line represents a raw p-value of 0.05. The gene IDs of the proteins identified in each respective random forest analysis, as well as proteins that had raw p-values < 0.05, are labeled next to respective points. Among the antigens not identified in random forest analysis, no p-values remained significant after correction for the false discovery rate when adjusting for all a comparisons.

Children with qPCR-verified <i>Cryptosporidium</i> infection prior to sampling at 1 yr			Risk Reinf	ection 1 Yr.	Risk Re	Risk Reinfection 2 Yr.	
Gene*	Speci es	Descriptio n	Seroprevalen ce	IgA	lgG	IgA	lgG
cgd4_1 970	parvu m	Un- characteri zed trans membran e Protein	lgA: 34.6% [36/104]; lgG: 60.6% [63/104]	β=0.56 [0.3-1.05] P=0.071 (P _{FDR} =0.9 2)	β=0.57 [0.32-1.01] P=0.054 (P _{FDR} =0.56)	N.S.	β=0.6 [0.37- 0.96] P=0.031 (P _{FDR} =0.5
cgd5_1 490	parvu m	Un- characteri zed secreted Protein	lgA: 6.7% [7/104]; lgG: 29.8% [31/104]	N.S.	N.S.	N.S.	β=0.53 [0.32- 0.88] P=0.015 (P _{FDR} =0.3 7)
cgd6_4 870	parvu m	Un- characteri zed protein	IgA: 9.6% [10/104]; IgG: 1.9% [2/104]	N.S.	N.S.	β=0.43 [0.17- 1.07] P=0.0 7 (P _{FDR} = 0.62)	N.S.
cgd8_3 520	parvu m	secreted protein with cysteine rich repeats and a mucin like threonine rich repeat, signal peptide	lgA: 3.8% [4/104]; IgG: 49% [51/104]	N.S.	N.S.	N.S.	β=0.65 [0.41- 1.02] P=0.061 (P _{FDR} =0.6 1)
cgd3_1 130	parvu m	Un- characteri zed protein, TM domain	lgA: 12.5% [13/104]; lgG: 31.7% [33/104]	N.S.	β=0.38 [0.19-0.75] P=0.006 (P _{FDR} =0.4)	N.S.	N.S.
cgd1_6 50	parvu m	Un- characteri zed secreted Protein (CpLSP	lgA: 10.6% [11/104]; lgG: 21.2% [22/104]	N.S.	N.S.	N.S.	β=0.47 [0.24- 0.91] P=0.025 (P _{FDR} =0.4 9)

Supplemental Table 2. Other antibody responses potentially associated with protection from *Cryptosporidium* reinfection

		gene family)					
cgd8_6 60	parvu m	Un- characteri zed protein	lgA: 6.7% [7/104]; lgG: 23.1% [24/104]	N.S.	N.S.	N.S.	β=0.54 [0.3-0.97] P=0.04 (P _{FDR} =0.5 4)

Analysis using only the 104 children in the cohort known to be infected prior to year one by qPCR of stool samples. *Gene ID from CryptoDB; N.S.: Not significant; FDR: false discovery rate.

All children		0		Risk I	nfection 1 Yr.	Risk Infe	ction 2 Yr.
Gene*	Specie s	Description	Seroprevalenc e	lgA	lgG	IgA	lgG
cgd4_197 0	parvu m	Uncharacteri zed transmembr ane Protein	lgA: 13.6% [59/435]; lgG: 22.1% [96/435]	N.S.	N.S.	N.S.	β=0.63 [0.45-0.89] P=0.008 (PFDR=0.3 6)
cgd5_149 0	parvu m	Uncharacteri zed Secreted Protein	lgA: 2.8% [12/435]; lgG: 11.5% [50/435]	N.S.	β=0.57 [0.34- 0.95] P=0.03 (P _{FDR} =0. 58)	N.S.	β=0.61 [0.41-0.91] P=0.016 (P _{FDR} =0.36)
cgd6_487 0	parvu m	Uncharacteri zed protein	lgA: 10.3% [45/435]; IgG: 0.7% [3/435]	N.S.	N.S.	β=0.69 [0.46- 1.04] P=0.073 (P _{FDR} =0. 99)	N.S.
cgd7_215 0**	parvu m	transmembr ane protein secreted	lgA: 2.1% [9/435]; IgG: 11.3% [49/435]	N.S.	β=0.57 [0.34- 0.96] P=0.034 (P _{FDR} =0. 59)	N.S.	β=0.58 [0.39-0.88] P=0.009 (P _{FDR} =0.36)
cgd8_352 0	parvu m	protein with cysteine rich repeats and a mucin like threonine rich repeat, signal peptide	lgA: 1.6% [7/435]; IgG: 20% [87/435]	N.S.	N.S.	N.S.	β=0.71 [0.52-0.98] P=0.04 (P _{FDR} =0.5)
cgd3_720	parvu m	very large probable mucin, 11700 aa long protein with signal peptide and pronounced Thr repeat (308 aa long)	IgA: 4.8% [21/435]; IgG: 14% [61/435]	N.S.	N.S.	N.S.	β=0.65 [0.45-0.94] P=0.023 (P _{FDR} =0.39)

Supplemental Table 3. Other antibody responses potentially associated with protection from *Cryptosporidium* infection among all children in the cohort

cgd2_120 0**	parvu	Ubiquitin domain- containing Steroid reductase	lgA: 23.7% [103/435]; lgG: 11.7% [51/435]	N.S.	N.S.	N.S.	β=0.65 [0.44-0.95] P=0.026 (P _{FDR} =0.39
U ^{~~}	т	reductase	[51/435])

Analysis using all the children in the cohort (n=435). *Gene ID from CryptoDB; N.S.: Not significant; FDR: false discovery rate.

Supplemental Figure 10. Correlation between protective antibodies identified in random forest analysis and antibodies associated with higher risk of reinfection. The correlogram shows the correlation between signals for antigens with IgG responses associated with protection (hazard ratio < 1) and those associated with increased risk of infection (hazard ratio > 1) that were identified as important variables in random forest analysis. Protective antibodies: Gp60, Cp23, Gp900, CpSMP. Antibodies associated with increased risk: cgd4_1910, Chro.10174, cgd8_3610 and cgd3_4190. The X-axis shows normalized IgG signals for the antigen above the column, and the Y-axis shows the normalized IgG signals for the antigen to the right of the row. Data points are colored by children that had qPCR+ stool samples during the first year of life (Yr0-1 qPCR+, purple) and those without qPCR+ stool samples (Yr0-1 qPCR-, green). A smooth line is shown for all of the samples in red.

Supplemental Figure 11. Correlation of protective antibodies and antibodies associated with increased risk of reinfection with inflammatory and T cell activation markers for B cell help. The correlogram shows the Spearman's correlation coefficients for the comparisons between antibody levels against antigens identified in random forest analysis and HAZ scores, IL4, CRP, IL1β and sCD14 levels. Protective antigens: Gp60, Cp23, Gp900 and CpSMP; antigens associated with increased risk of subsequent infection: cd4_1910, Chro.10174, cgd8_3610 and cgd3_4190.

Supplemental Figure 12. Antigens associated with a delay in infection in the survival analysis but not selected by random forest analysis. The Kaplan-Meier curves show associations of seropositivity to cryptosporidial antigens with a delay in *Cryptosporidium* infection during the 1 year and 2 year follow-up periods following plasma sampling at 1 year of age. The X-axis shows days after the end of year one (when the assayed plasma sample was collected). The Y-axis shows the proportion of children who remained uninfected as defined by qPCR+ clinical or surveillance stool samples during follow-up. The tables below the graphs indicate the number of children in the seropositive (blue lines) or seronegative (red lines) category at select time points. Antigens are indicated at the top of each panel, along with the follow-up period and the antibody isotype associated with risk of infection. Hazard ratios (β), confidence intervals (CI), P-values and P-values adjusted for the false discovery rate (BH) are shown in each graph from univariate models and multivariable models adjusted for covariates (β_{adj} , Cladj, Padj and BH Padj).

