Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
iPSC–derived retinal pigmented epithelial cells from patients with macular telangiectasia show decreased mitochondrial function
Kevin T. Eade, … , Paul S. Bernstein, Martin Friedlander
Kevin T. Eade, … , Paul S. Bernstein, Martin Friedlander
Published May 1, 2023
Citation Information: J Clin Invest. 2023;133(9):e163771. https://doi.org/10.1172/JCI163771.
View: Text | PDF
Research Article Ophthalmology Article has an altmetric score of 1

iPSC–derived retinal pigmented epithelial cells from patients with macular telangiectasia show decreased mitochondrial function

  • Text
  • PDF
Abstract

Patient-derived induced pluripotent stem cells (iPSCs) provide a powerful tool for identifying cellular and molecular mechanisms of disease. Macular telangiectasia type 2 (MacTel) is a rare, late-onset degenerative retinal disease with an extremely heterogeneous genetic architecture, lending itself to the use of iPSCs. Whole-exome sequencing screens and pedigree analyses have identified rare causative mutations that account for less than 5% of cases. Metabolomic surveys of patient populations and GWAS have linked MacTel to decreased circulating levels of serine and elevated levels of neurotoxic 1-deoxysphingolipids (1-dSLs). However, retina-specific, disease-contributing factors have yet to be identified. Here, we used iPSC-differentiated retinal pigmented epithelial (iRPE) cells derived from donors with or without MacTel to screen for novel cell-intrinsic pathological mechanisms. We show that MacTel iRPE cells mimicked the low serine levels observed in serum from patients with MacTel. Through RNA-Seq and gene set enrichment pathway analysis, we determined that MacTel iRPE cells are enriched in cellular stress pathways and dysregulation of central carbon metabolism. Using respirometry and mitochondrial stress testing, we functionally validated that MacTel iRPE cells had a reduction in mitochondrial function that was independent of defects in serine biosynthesis and 1-dSL accumulation. Thus, we identified phenotypes that may constitute alternative disease mechanisms beyond the known serine/sphingolipid pathway.

Authors

Kevin T. Eade, Brendan Robert E. Ansell, Sarah Giles, Regis Fallon, Sarah Harkins-Perry, Takayuki Nagasaki, Simone Tzaridis, Martina Wallace, Elizabeth A. Mills, Samaneh Farashi, Alec Johnson, Lydia Sauer, Barbara Hart, M. Elena Diaz-Rubio, Melanie Bahlo, Christian Metallo, Rando Allikmets, Marin L. Gantner, Paul S. Bernstein, Martin Friedlander

×

Figure 6

MacTel iRPE cells have reduced mitochondrial function.

Options: View larger image (or click on image) Download as PowerPoint
MacTel iRPE cells have reduced mitochondrial function.
Bioenergetic anal...
Bioenergetic analysis of iRPE cells measuring mitochondrial respiration (A, B, E, and F) and glycolysis (C, D, G, and H). (A–D) Comparison between control (n = 5 donors) and MacTel (n = 8 donors) iRPE cells. (E–H) Comparison between donor 11 iRPE cells (Donor 11 PHGDH Het, n = 4 clones) and donor 11 iRPE cells with the PHGDH G228W variant CRISPR corrected to WT (Donor 11 PHGDH WT, n = 3 clones). (A and E) OCR measurement traces. (B and F) Basal OCR represents the time point prior to Olig treatment, maximal OCR represents the time point following the second FCCP treatment, and spare OCR represents the difference between the basal and maximal time points. (C and G) ECAR measurement traces. (D and H) Basal ECAR represents the time point prior to Olig treatment, maximal ECAR represents the third time point following Olig treatment, and spare ECAR represents the difference between the basal and maximal time points. (B and D) Donor 11 is represented by a red dot. (A–D) Data are represented as the mean of the donors ± SEM. (A–D) Each individual donor represents the average of at least 2 independent clones, each run in 15–22 technical replicates. *P < 0.05 and **P < 0.01, by mixed linear modeling. (E–H) Data are represented as the mean of the clones ± SEM. Each individual clone is the average of 12–16 technical replicates. Statistical significance was determined by 2-tailed Student’s t test.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 2 X users
7 readers on Mendeley
See more details