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Functional imaging of immune cell subpopulations  
in the tumor microenvironment: clinical implications

In cancer, peripheral blood immune 
monitoring remains an ineffective strat-
egy for assessing immunotherapeutic 
response, since it does not interrogate 
immune cell function within the immu-
nosuppressive tumor microenvironment 
(TME). Tumor immune cells can infiltrate 
at a high frequency without imposing 
antitumor activity. Thus, window-of-op-
portunity clinical trials are an ongoing 
strategy to characterize the immune cells 
in the TME. Longitudinal assessments 
based on the analysis of multiple patient 
tumor samples collected at several time 
points would help precisely define a 
patient’s response to immunotherapy, 
but in many instances these are unavail-
able. Furthermore, immune reactivity in 
the TME can be markedly heterogenous, 
and limited sampling of the TME can 
yield misleading results. Therefore, there 
is a clear clinical need for a noninvasive 
approach that longitudinally interrogates 
immune effector responses in the TME. 
The PET imaging described by Zhou et al. 
offers such an approach (1).

Prior attempts at imaging TME 
inflammatory responses with PET have 
relied on proliferative indicators as a sur-
rogate for activation. For example, [18F]- 
labeled 3′-fluoro-3′-deoxy-thymidine was 
administered to patients with metastatic 
melanoma undergoing dendritic cell ther-
apy. Immune responses were visualized 
in treated lymph nodes soon after ther-
apy and persisted for several weeks (2). 
Additional PET approaches for tracing 
activated T cells and quantifying the num-
ber of T cells have used [18F]F-AraG (3) 

and 89Zr-Df-IAB22M2C (4), respectively. 
Attempts to develop PET imaging of gran-
zyme B have been ongoing (5, 6), but the 
study by Zhou et al. is the first to demon-
strate its clinical utility (1).

Granzyme B PET could be used to 
assess various intrinsically induced anti-
tumor immune responses as well as extrin-
sically administered immune products. 
For the latter, clinicians could ascertain 
the status of cytotoxic function and the 
distribution of adoptively transferred NK 
cells, T cells, and chimeric antigen recep-
tor T cells within the TME. Granzyme B 
PET could also be used to determine the 
response kinetics of immuno-oncology 
agents such as bispecific T cell engag-
ers, immunomodulatory aptamers, and 
immune checkpoint inhibitors, and thus 
help define the timing for combination 
therapy regimens. PET imaging with 
improved spatial resolution could also 
identify tumor regions with a high degree 
of immune infiltration for follow-up pro-
filing analysis.

With the evolution of any strategy, 
there will be challenges. For example, 
NK cells use granzyme B–mediated cyto-
toxicity early during activation but later 
use death receptor–mediated cell killing. 
Furthermore, granzyme B is expressed 
in immune cell populations not typically 
associated with proinflammatory respons-
es, such as regulatory B cells, and in Tregs. 
In cancers for which B cells and Tregs are 
rare tumor-infiltrating populations, their 
presence may not necessarily confound 
PET scan interpretation. Still, with these 
limitations considered, the current study 

provides a clear clinical path for interro-
gating immunological reactivity in the 
TME using granzyme B PET imaging. 
The refinement of this imaging approach 
should improve our understanding of 
responses to a variety of immunotherapies 
in patients with cancer.
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