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Introduction
Circadian rhythms are essential to nearly all life, coordinating 
behavior and compartmentalizing physiological processes that gov-
ern energy balance over a 24-hour period (1). Self-sustaining and 
cell-autonomous, circadian rhythms serve to synchronize metab-
olism across active and inactive phases (2), including transitions 
between feeding and fasting, which is key for glucose regulation (3). 
Circadian disruption is linked to metabolic syndrome (4), and glu-
cose dysregulation is a hallmark of the disease (5, 6). Gluconeogen-
esis (GNG), the endogenous production of glucose, is critical during 
periods of prolonged fasting (7). Along with the influence of endog-
enous hormones (8), both circadian rhythms and gut microbes 
drive GNG, and disruption of either leads to aberrant hepatic GNG 
(9, 10). Few mechanistic insights explain how these consequences 
arise; thus, understanding how these systems function in the con-
text of metabolic homeostasis is of utmost importance.

The circadian clock molecular components are expressed in 
nearly all cells, forming an elegant feedback loop that organiz-
es gene expression. Bmal1 and Clock constitute the positive arm 
that activates gene transcription, including 2 cryptochrome genes 
(Cry1–2) and 3 period genes (Per1–3), which serve as the negative 
arm to repress Bmal1 and Clock. This results in reduced expres-

sion of Cry1–2 and Per1–3, allowing the positive arm to resume 
expression (11). Following genetic disruption of clock genes, met-
abolic networks become imbalanced, leading to disorders such 
as glucose intolerance and insulin resistance. While the central 
brain clock serves as the master regulator, peripheral tissue clocks 
exhibit unique oscillations and their disruption results in differen-
tial metabolic outcomes (reviewed in ref. 12). For instance, mice 
deficient in hepatic Bmal1 uniquely display increased fasted glu-
cose clearance, altered expression of hepatic GNG genes, and 
reduced functionality of mitochondria.

The gut microbiome is a key regulator of global host metabo-
lism. Microbes vitally contribute to digestion and play a significant 
role in programming host energy balance (13–15). Their impor-
tance in metabolic homeostasis is established through the use of 
germ-free (GF) mice raised in complete absence of microbes (16). 
Environmental changes, such as diet, can rapidly affect microbial 
composition and functions that affect the host (13, 17). Disturbanc-
es in sleep also alter gut microbiome composition in both mouse 
and human models (18–20). Indeed, gut microbes are essential 
for normal energy balance and liver metabolic function, including 
hepatic GNG and glucose tolerance (9, 21, 22).

Gut microbes provide critical inputs that drive host circadian 
rhythms and metabolism, and exposure to high-fat diet disturbs 
these rhythms and functionality in mice (23, 24). High-fat diet also 
disrupts diurnal oscillations of microbial abundance and metabo-
lite levels, while timed feeding can somewhat recover this effect 
(23, 25). Mice with global genetic mutations in circadian clock 
genes exhibit significantly altered microbial community profiles 
and loss of oscillations in specific taxa (18, 26, 27). Conversely, 
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CircWave revealed only WT mice, regardless of microbial status, 
exhibited significant oscillation of blood glucose levels, indicating 
that diurnal circulating blood glucose is driven by the liver clock 
and not gut microbes.

Given previous work by Lamia et al. (31), we performed an 
oral glucose tolerance test (GTT) and observed that male GF 
mice exhibited more rapid glucose clearance than their SPF coun-
terparts (AUC, P < 0.05) (Figure 1B). We also observed a geno-
type-driven effect in SPF conditions where LKO mice cleared glu-
cose significantly faster than WT mice. Circulating insulin levels 
during the GTT were not significantly different between WT and 
LKO mice in either SPF or GF conditions, suggesting that insulin 
secretion was not affected by liver clock functionality (Figure 1C). 
We next interrogated insulin sensitivity by intraperitoneal insulin 
tolerance test (ITT) on SPF and GF WT and LKO male mice and 
found no difference in insulin sensitivity between genotypes in 
either microbial condition (Supplemental Figure 1D), suggest-
ing that differences in male Bmal1-dependent glucose clearance 
are insulin independent.

These data suggest that the liver circadian clock imparts an 
insulin-independent effect on glucose clearance that is dependent 
on the presence of gut microbes.

Circadian clock– and microbiome-driven GNG is liver specific 
and requires in vivo signals. To interrogate the role of the liver clock 
on GNG, we performed an intraperitoneal pyruvate tolerance test 
(PTT). We found that GF mice exhibited significantly lower GNG 
rates than their SPF counterparts, regardless of genotype (Figure 
1D). We also observed that LKO mice exhibited reduced GNG in 
SPF conditions, while no differences between genotypes in GF 
conditions were evident, indicating that the liver clock mediates 
GNG via gut microbes.

To determine whether reduced GNG is liver clock–specific, we 
performed PTT on mice lacking a functional core brain clock by 
CamkIIa-cre forebrain-specific Bmal1 knockout, while peripheral 
clocks remain intact (32, 33) (Supplemental Figure 1A). We found 
no difference in GNG rates between WT and forebrain-Bmal1-KO 
mice (Supplemental Figure 1E), indicating that clock-mediated 
changes in GNG are specific to hepatic Bmal1 and the liver clock. 
This result corroborates previous evidence that the liver clock, 
specifically hepatic Bmal1, is somewhat autonomous from the core 
clock located in the brain (34).

Because both GNG and glycogenolysis are costimulated 
during periods of prolonged fasting, we measured glycogen levels 
in liver samples collected from each group every 4 hours over 24 
hours. We observed no difference between SPF groups at any time 
point, and glycogen content was only elevated in GF WT mice rel-
ative to LKO mice at zeitgeber time 22 (ZT22; 4 am) (Supplemen-
tal Figure 1F). In all groups, liver glycogen levels exhibited signif-
icant and remarkably similar oscillations over a 24-hour period, 
as evident by CircWave statistics. These data indicate that hepatic 
glycogenolysis is not a major contributor to either the microbe- or 
clock-mediated effect on the observed glucose homeostasis phe-
notype, further supporting that GNG is the major contributor.

Finally, we examined glucose production in primary hepato-
cytes isolated from SPF and GF WT and LKO mice ex vivo fol-
lowing stimulation with GNG-inducing substrates in glucose-free 
media. We found no difference in glucose production in media 

in absence of gut microbial cues, GF WT mice exhibit dampened 
rhythmicity in the expression of core circadian clock genes in both 
brain and liver, as well altered transcriptomic patterns in liver, 
small intestine, and white adipose tissue (23, 28). While the link 
among circadian rhythms, gut microbiota, and host metabolism 
is established, few mechanisms have been proposed to explain 
how these phenomena occur, how the circadian clock in specific 
metabolic organs such as the liver is involved, and how this affects 
global metabolic regulation. We hypothesized that hepatic GNG is 
driven by bidirectional interactions between the hepatic circadian 
clock and gut microbiota.

Here, using the liver-specific Bmal1-knockout mouse raised 
in both conventional and GF conditions, we demonstrated a 
hierarchy of signals between the gut microbiome and liver clock 
that coordinate hepatic GNG, fatty acid β-oxidation (FA β-Ox), 
and diurnal glucose homeostasis. We identified that regardless 
of microbial status, the liver clock is a primary driver of hepatic 
transcription, particularly of genes involved in the organization 
and function of key metabolic pathways. Additionally, the liver 
clock transduced timed signals from the gut microbiome to pro-
mote coordinated differential, oscillatory, and correlated tran-
scription patterns in glucose and lipid metabolic pathways. When 
either of these components (host clock or microbes) were absent 
or dysfunctional, we observed a significant gain in oscillating 
hepatic transcripts that were disorganized. The absence of a func-
tional clock also resulted in expansion of oscillations in specific 
fecal microbial abundances. Altogether, we revealed interactions 
between the liver circadian clock and gut microbes that aid in glu-
cose and lipid homeostasis that governs whole-body metabolism 
and fuel utilization.

Results
Gut microbes are essential for liver circadian clock regulation of 
insulin-independent glucose clearance. To assess the effects of a 
dysfunctional liver clock and gut microbes on mammalian host 
metabolism, we utilized male and female mice with liver-specific 
deletion of Bmal1 gene expression generated by crossing Bmal1fl/fl  
mice with Albumin-cre mice (LKO mice), compared with control 
Bmal1fl/fl (WT) mice (29, 30). We confirmed Bmal1 deletion in the 
liver, while expression in the brain remained intact (Supplemental 
Figure 1A; supplemental material available online with this arti-
cle; https://doi.org/10.1172/JCI162515DS1). To assess the role of 
microbiota, we maintained both WT and LKO mice in convention-
al, specific-pathogen free (SPF) or GF conditions.

SPF LKO male mice exhibited significantly increased body 
weight compared with that of SPF WT mice, while, in contrast, GF 
LKO mice exhibited a slight, but nonsignificant trend of decreased 
body weight relative to GF WT mice (Supplemental Figure 1B, left). 
This difference in body weight could not be explained by changes 
in gross liver or fat pad tissue weight (Supplemental Figure 1C). 
Weekly caloric consumption revealed similar patterns; SPF LKO 
mice ate slightly, but significantly, more than WT mice, while GF 
LKO mice ate slightly, but significantly less, than their WT coun-
terparts (Supplemental Figure 1B, right). We then measured rest-
ing blood glucose levels every 4 hours over a 12:12 light/dark (LD) 
cycle and found that overall levels were not drastically different 
between groups in male mice (Figure 1A). However, analysis by 
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difference in diurnal blood glucose (Supplemental Figure 2B). Addi-
tionally, GTT in female mice revealed no significant differences in 
AUC (Supplemental Figure 2C), suggesting that liver clock–medi-
ated glucose clearance is in part driven by sex. We also performed 
PTT of female SPF WT and LKO mice and observed no difference in 
GNG (Supplemental Figure 2D). Given these results indicating that 
liver clock–mediated glucose clearance and GNG are male specific, 
we proceeded with only male mice for the duration of the study.

Overall, we found a microbiota-dependent effect of liver 
circadian clock–mediated GNG in male mice that requires real 
time in vivo signals.

between groups following GNG stimulation with a cell permeable 
cAMP analog (cPT-cAMP) (Supplemental Figure 1G). This sug-
gests that the cellular machinery to perform GNG is not affected 
by liver clock functionality or prior exposure to gut microbes and 
that additional in vivo signals are necessary for liver clock– and 
microbe-mediated GNG.

In addition to the above experiments performed using male 
mice, we also performed several of the same experiments using 
female mice to investigate the potential role of sex. Interestingly, we 
did not observe any differences between genotype in female mice 
for body weight or food intake (Supplemental Figure 2A) and little 

Figure 1. Gut microbes are essential for liver circadian clock–mediated glucose metabolism. (A) Resting blood glucose levels of SPF and GF WT and LKO 
male mice every 4 hours over 24 hours (n = 4-6/group/time point, SPF and GF groups also shown separately). CircWave statistics indicate significantly 
oscillating (P < 0.05) or not oscillating (P > 0.05) values. (B) GTT of SPF and GF WT and LKO male mice (n = 10–13/group). (C) Circulating insulin levels 
during GTT (n = 10–13/group). (D) PTT (n = 10–15/group) of SPF and GF WT and LKO male mice. Data are shown as the mean ± SEM. Lines in box plots 
represent the median, and whiskers represent the minimum and maximum, respectively. Two-tailed unpaired Welch’s t tests was performed between 2 
groups; Brown-Forsythe and Welch’s ANOVA followed by Dunnett’s tests was performed between 3 or more groups. *P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001, relative to SPF WT. Graphs represent AUC normalized to baseline glucose.
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AUC, closely resembling outcomes in GF mice (Figure 2A). This 
supports the hypothesis that gut microbial cues are essential for in 
vivo coordination of GNG mediated by the liver clock.

Next, we conventionalized adult GF C57BL/6J WT mice via 
fecal microbiota transplant from either WT or LKO SPF donor 
mice and performed PTT (Figure 2B). Here, we did not observe 
significant differences between recipient groups. This suggests 
that gut microbes selected by the presence or absence of a func-
tional liver clock alone were insufficient to transfer the GNG 

Gut microbes are necessary, but not sufficient, for liver clock–medi-
ated GNG. To investigate the role of gut microbes, we performed 
PTT in adult SPF WT and LKO mice both before (Pre-Abx) and 
after (Post-Abx) acute elimination of gut microbes via daily antibi-
otic treatment for 2 weeks. We also confirmed significant bacterial 
reduction, as determined by 16S gene copy number in Post-Abx 
stool via RT-PCR (Supplemental Figure 3A). While PTT of Pre-
Abx mice mimicked our SPF results in Figure 1D, we observed no 
differences in GNG between genotypes Post-Abx, as measured by 

Figure 2. Modulation of gut microbes can both eliminate and restore liver clock–mediated GNG. (A) PTT in WT and LKO male mice before (Pre-Abx) and 
after (Post-Abx) daily antibiotic treatment for 2 weeks (n = 12–13/group). The graph represents the AUC. (B) PTT in GF WT male mice conventionalized with 
fecal microbes from SPF WT or LKO male mice (n = 11–12/group). (C) PTT in GF WT and LKO male mice conventionalized with fecal microbes from SPF WT 
male mice (n = 15–16/group). Inset graphs represents AUC normalized to baseline glucose. Data points represent mean ± SEM. Lines in box plots represent 
the median, and whiskers represent the minimum and maximum, respectively. Two-tailed unpaired Welch’s t tests were performed between 2 groups; 
Brown-Forsythe and Welch’s ANOVA followed by Dunnett’s tests were performed between 3 or more groups. *P < 0.05, **P < 0.01, ***P < 0.001,  
****P < 0.0001, relative to Pre-Abx WT.
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due to the coprophagic tendencies of mice; therefore, we com-
pared SPF WT and LKO mice in a mixed housing scenario (WT 
+ LKO) with mice separated by genotype at weaning (WT + WT 
vs. LKO + LKO) (Supplemental Figure 3B) until 12 weeks of age. 
Regardless of housing, we detected no significant differences in 
relative abundance of 16S rRNA gene amplicon sequence variants 
(ASVs) belonging to either dominant phyla or less abundant phyla 
(Supplemental Figure 3, C and D) or in overall community mem-
bership via metrics of β-diversity (Supplemental Figure 3E).

Taken together, liver clock functionality does not impact 
overall gut microbiota community assemblage; however, the liver 

phenotype, implying that genotype is the primary driver of GNG. 
We then performed a different microbiota transplant in which we 
conventionalized GF WT or LKO recipient mice with identical 
WT donor fecal microbes (Figure 2C). We observed significantly 
reduced GNG in LKO mice relative to that in WT recipients, indi-
cating that restoration of the LKO SPF phenotype requires both 
gut microbes and genetic absence of a liver clock.

Given that gut microbes directly modulate GNG via the liver 
clock, we sought to determine whether loss of Bmal1 affects micro-
biota community membership. Cohousing animals can normalize 
microbiota differences and mask the effect of genotype, largely 

Figure 3. Liver circadian clock drives unique patterns of oscillations in microbial abundance. 16S rRNA gene sequencing of stool from SPF WT and LKO 
male mice every 6 hours over 48 hours via repeat collection (n = 7–8/group). (A) Proportion of nonoscillating (gray area) versus significantly oscillating 
(colored areas) amplicon sequence variants (ASVs) identified via eJTK (GammaBH < 0.05). Oscillating (Osc) ASVs were divided by taxonomic class. (B) 
Abundance counts of total versus oscillating ASVs within Bacteroidales and Clostridiales classes. (C) Number of oscillating Clostridiales ASVs at the family 
level in WT and LKO mice. (D) Abundance counts of total versus oscillating ASVs within Lachnospiraceae and Ruminococcaceae families. (E) R2 values of 
nonzero base sinusoidal fits of log ratios at each time point relative to ZT2. Data represent mean ± SEM. Lines in box plots represent the median, and 
whiskers represent the minimum and maximum, respectively. Two-tailed paired t test was performed.
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clock serves as the primary driver of GNG, while microbes are key 
secondary drivers. This suggests a concurrent interaction between 
gut microbes and the liver clock that requires real-time microbial 
signals to mediate GNG.

The liver clock drives oscillations of specific microbiota communi-
ty members. Global deletion of Bmal1 in mice has been previously 
shown to alter diurnal oscillations of fecal microbiota (26). Thus, we 
inquired whether liver clock functionality affected diurnal oscilla-
tions of microbiota in feces collected from WT and LKO male and 
female mice every 6 hours over 2 consecutive 24-hour light/dark 
periods (Supplemental Figure 4A). We found that absolute 16S gene 
copy number was similar between WT and LKO mice across all time 
points for both sexes (Supplemental Figure 4B and Supplemental 
Figure 5A). We next utilized empirical Jonckheere-Terpstra-Kendall 
CYCLE (eJTK) to identify significantly oscillating ASVs. Here, we 
discovered that male LKO mice exhibited nearly twice the number 
of oscillating ASVs compared with WT mice (Figure 3A and Supple-
mental Figure 4C). The influx of unique oscillating microbes in LKO 
mice was mostly attributed to ASVs identified to class Clostridiales. 
Conversely, we observed little difference in the number of oscillat-
ing Bacteroidales ASVs, suggesting that LKO mice may specifically 
impact diurnal oscillations of Clostridiales taxa. Interestingly, we 
observed little difference in the number of oscillating ASVs between 
female WT and LKO mice (Supplemental Figure 5, B and C).

Aside from proportion, the relative abundance of oscillating 
ASVs was also substantially greater in LKO relative to WT mice 
(Supplemental Figure 4D). We identified that while overall abun-
dance of total versus oscillating Bacteroidales and Clostridiales 
ASVs was not different between WT and LKO mice, only Clos-
tridiales exhibited increased abundance of oscillators in LKO 
mice (Figure 3B). We then examined oscillating Clostridiales at 
the family level and identified that Lachnospiraceae and Rumino-
coccaceae accounted for the gain of uniquely oscillating ASVs in 
LKO mice (Figure 3C). While the total abundance of either family 
was not different between genotypes, the abundance of individual 
oscillating ASVs greatly increased within LKO mice (Figure 3D). 
Interestingly, among the ASVs annotated to species, Lactobacillus 
murinus similarly appeared to gain oscillation in LKO mice, while 
total abundance remained constant (Supplemental Figure 4E).

In addition to the eJTK oscillation analysis, we also exam-
ined log ratios, which are not sensitive to microbial load and rely 
on more reproducible reference frames (35, 36). We generated 
and ranked log ratios for all ASVs at each time point relative to 
ZT2 (Supplemental Figure 6A). LOESS-fitting plots of the log 
ratios showed more robust oscillation patterns in LKO mice when 
grouped at the family level as compared with WT mice (Supple-
mental Figure 6B), particularly for Ruminococcaceae, Lachno-
spiraceae, and Lactobacillaceae, confirming our eJTK results. 
Other taxonomic groups also exhibited a more robust oscillation 
pattern in LKO mice compared with WT mice, including Muribac-
ulaceae and Erysipelotrichaceae. Finally, application of a nonze-
ro sinusoidal fit analysis identified that log ratios of ASVs in LKO 
mice exhibit a significantly greater sinusoidal fit than WT mice (P 
< 0.0001), further confirming our previous eJTK oscillation anal-
ysis of relative abundance data (Figure 3E).

Altogether, despite a lack of changes in overall microbial pro-
files, loss of a functional liver clock drives a signature of increased 

diurnal oscillations in specific stool microbiota community mem-
bers, particularly those belonging to the class Clostridiales.

The liver clock is the main driver of hepatic transcriptomes, sec-
ondarily influenced by gut microbes. Given that liver clock and gut 
microbes regulate GNG, we sought to determine whether this 
and other molecular metabolic pathways were effected. We per-
formed RNA-Seq of liver samples collected every 4 hours over a 
12:12 light/dark cycle from SPF and GF WT and LKO male mice. 
These data were analyzed using 3 approaches (Figure 4A). First, 
principle component analysis of pooled samples revealed distinct 
separation by genotype along PC1 and microbial status along PC2 
(49% and 12% of variance, respectively) (Figure 4B). Similar pat-
terns were observed when samples were divided by time point, 
demonstrating consistency across the 24-hour period (Supple-
mental Figure 7A). This suggests a hierarchy in which liver clock 
functionality (genotype) is the primary driver of the hepatic tran-
scriptome, while the gut microbiome serves as a secondary driver.

We next performed differential gene expression analysis via 
DESeq2 and fast gene set enrichment analysis (fGSEA) to iden-
tify molecular pathways affected by the liver clock and/or gut 
microbes (Figure 4A, approach 1). Analysis using Kyoto Encyclo-
pedia of Genes and Genomes (KEGG; https://www.genome.jp/
kegg/) revealed that nearly all differentially expressed metabolic 
pathways were downregulated in LKO compared with WT mice, 
regardless of microbial status (Figure 4C). However, GF condi-
tions exhibited more significantly downregulated metabolic path-
ways in LKO than SPF conditions. This may suggest that presence 
of gut microbes results in less permissive compensatory metabolic 
pathway transcriptional regulation in absence of Bmal1; that is, 
certain Bmal1-driven effects only emerge in absence of microbes. 
Differential analysis within collection time points revealed nearly 
identical patterns of overall downregulation of metabolic path-
ways to the fGSEA analysis (Supplemental Figure 7B). Important-
ly, “Glycolysis_Gluconeogenesis” was downregulated in SPF LKO 
mice compared with WT mice (Figure 4C, left), confirming our 
evidence that GNG was impaired in SPF LKO mice (Figure 1D). 
We also observed downregulation of GNG pathways, including 
“Pyruvate_Metabolism,” in GF LKO mice compared with WT 
mice (Figure 4C, right), while our physiological evidence revealed 
no difference in overall GNG output between GF WT and LKO 
mice (Figure 1D). This suggests that while differences in transcrip-
tion between genotypes are similar in GF and SPF conditions, lack 
of additional signals (presumably microbial) contribute to reduced 
GNG in GF conditions regardless of genotype.

Apart from GNG, we observed LKO resulted in downregula-
tion of several metabolic pathways involved in FA and lipid metab-
olism, including “Fatty_Acid_Metabolism,” “PPAR_Signaling_ 
Pathway,” “Peroxisome,” and “Biosynthesis_of_Unsaturated_Fatty_ 
Acids” (Figure 4C). This corroborates previous findings that lip-
id metabolic gene expression, as well as triglyceride, cholesterol, 
and steroid metabolism, is downregulated in liver clock–deficient 
mice compared with WT mice (34, 37–39). The regulation of GNG 
and FA metabolism are intricately tied; under fasting conditions, 
FA β-Ox is activated to provide acetyl-CoA to generate ATP, which 
sustains the conversion of pyruvate and other GNG substrates into 
glucose (40). Thus, the regulation of these two processes is closely 
linked and changes in one directly affect the other (41).
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Given this differential regulation, we plotted median-normal-
ized expression for all leading-edge transcripts within relevant 
pathways, confirming marked downregulation in LKO mice com-
pared with WT mice in both SPF and GF conditions (Figure 5A and 
Supplemental Figure 7C). We next examined expression of specif-
ic transcripts within these pathways, in particular key transcripts 
involved in FA metabolism (Figure 5B; aldehyde dehydrogenase 
3 family member A2 [Aldh3a2]; carnitine palmitoyltransferase 
1A [Cpt1a]), PPAR signaling (Figure 5C; Ppara; fatty acid binding 
protein 1 [Fabp1]), and GNG (Figure 5, D and E; fructose-bisphos-
phate 1 [Fbp1]; enolase 1 [Eno1]; phosphoenolpyruvate carboxylase 
1/2 [Pck1/2]). Expression was greatly reduced in many of these 
transcripts in LKO mice compared with that in WT mice regard-

less of microbiota status (Figure 5, B–D). However, expression of 
the key rate-limiting GNG enzymes Pck1 and Pck2 exhibited more 
nuanced patterns (Figure 5E). Pck1 revealed reduced expression 
in SPF LKO mice compared with WT mice, while both GF groups 
exhibited expression levels similar to SPF WT mice. Conversely, 
Pck2 was considerably reduced in SPF LKO mice compared with 
WT mice, and both GF groups were reduced compared with SPF, 
mirroring our PTT results (Figure 1D). Thus, Pck2 may be key for 
liver clock and microbially mediated effects on GNG, while Pck1 is 
important only under SPF conditions.

In summary, the liver clock is the primary driver of transcrip-
tome-wide differential regulation, particularly for key metabolic 
pathways, such as GNG, which are downregulated in absence of 

Figure 4. Metabolic pathway gene expression is downregulated in absence of a liver clock across time, regardless of microbial status. Transcriptome 
analysis of liver samples collected every 4 hours over 24 hours (ZT2, -6, -10, -14, -18, and -22) from SPF and GF WT and LKO male mice (n = 3/time point/
group). (A) Data analysis workflow, demonstrating 3 arms of analysis: 1, differential expression; 2, oscillation; and 3, network coexpression. (B) Principal 
component analysis of transcriptome profiles; all samples within each group were pooled. (C) Differentially regulated KEGG pathways between WT and 
LKO mice within SPF and GF groups; all samples within each group were pooled. Metabolic pathways are colored (see key),and nonmetabolic pathways 
are colored gray. Bars to the right of the midline plot represent pathways downregulated in LKO mice compared with WT mice; bars to the left represent 
pathways upregulated in LKO mice compared with WT mice.
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while many were uniquely oscillating in a single group. This emer-
gence of unique oscillators in the absence of a functional liver 
clock mirrored the pattern observed in ASV relative abundance in 
repeat-collected stool (Figure 3A). These data reveal that loss of 
key drivers (i.e., the liver clock or gut microbes) results in emer-
gence of unique oscillatory elements both in the hepatic transcrip-
tome and gut microbiota community, which may contribute to a 
loss in metabolic homeostasis in vivo.

We then compared oscillating gene expression patterns. 
While SPF WT transcripts exhibited clear diurnal patterns, oscil-

a liver clock. However, gut microbes provide additional cues to 
modulate expression, including LKO-driven expression of the 
rate-limiting GNG enzyme Pck2.

Liver clock and gut microbes drive unique hepatic transcriptome 
oscillations. Given previous findings (42), we identified all signifi-
cantly oscillating transcripts within each group via eJTK (Figure 
4A, approach 2). SPF LKO mice exhibited more oscillating tran-
scripts than WT mice (1,503 vs. 1,104), and GF LKO mice exhib-
ited a similar increase relative to GF WT mice (3,580 vs. 2,544) 
(Figure 6A). Only 155 transcripts were oscillating in all groups, 

Figure 5. Gut microbes work through the liver clock to impart unique expression patterns of key gluconeogenic genes. Diurnal transcriptome analysis of 
liver samples collected every 4 hours over 24 hours from SPF and GF WT and LKO male mice (n = 3/time point/group) maintained in 12:12 LD (ZT2, -6, -10, 
-14, -18, and -22). (A) WT-median-normalized expression of differentially expressed (DE) genes within identified KEGG pathways. (B–E) VST-normalized 
expression of leading-edge genes in FA metabolism (B), PPAR signaling (C), and GNG (D and E) D between SPF and GF WT and LKO mice, with the excep-
tion of Pck1 and Pck2 (E), which are only differentially expressed in the SPF group (SPF and GF groups shown separately). Data represent mean ± SEM.
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tions. For example, microbe-independent transcripts demon-
strated robust oscillation across GF groups, with clear dampening 
of oscillation across SPF groups. Interestingly, the only subset of 
transcripts that exhibited a unique pattern was the liver clock–
driven oscillating transcripts (Figure 6B, bolded box). Whereas 
both WT groups exhibited robust oscillations in liver clock–driv-
en transcripts, LKO groups exhibited severe dampening. Between 
LKO groups, the SPF LKO group displayed a more preserved orga-
nization of oscillating transcripts, while the highest level of disor-
ganization was observed in the GF LKO group relative to the WT 
group. This suggests that the liver clock and gut microbes impart 

lations were significantly dampened in LKO transcripts, regard-
less of microbial status (Supplemental Figure 8A). Conversely, the 
oscillation patterns were well-preserved in GF WT mice, reinforc-
ing that the liver clock is the main driver of core oscillating tran-
scripts. We next partitioned oscillating transcripts into categories 
reflecting those that are system driven (i.e., exhibit a significant 
oscillation regardless of liver clock or microbial status), liver clock 
driven, liver clock independent, microbe driven, and microbe 
independent (Figure 6, B and C). System-driven transcripts 
exhibited a conserved oscillation pattern across groups, while 
transcripts in the other categories exhibited dampened oscilla-

Figure 6. Liver clock and gut microbes drive unique hepatic transcriptome oscillations. Diurnal transcriptome analysis of liver samples collected every 4 
hours over 24 hours from animals maintained in 12:12 LD (ZT2, -6, -10, -14, -18, -22) from SPF and GF WT and LKO male mice (n = 3/time point/group). (A) 
Venn diagram of significantly oscillating transcripts across each group; total number of oscillating transcripts are under each group title. Oscillating tran-
scripts were identified via eJTK (GammaBH < 0.05). Bold numbers are visualized in Figure 5B. (B and C) Expression of significantly oscillating transcripts 
that are system driven, liver clock driven or independent, and microbe driven or independent (B). Expression was normalized by median, and transcripts 
were ordered by time of maximum expression and phase; the key indicates which transcripts are depicted with yellow (C).
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oscillating transcripts. This loss of oscillating pyruvate metab-
olism transcripts could contribute to the observed reduction in 
GNG output detected in SPF LKO and both GF groups (Figure 1D). 
KEGG “2-oxocarboxylic acid metabolism,” which includes pyru-
vate metabolism, also exhibited loss of enrichment in both LKO 
groups while WT groups exhibited enrichment (Figure 7).

In addition to glucose metabolism pathways, we also noted 
differential enrichment of lipid metabolism pathways (Figure 7). 
Reactome “Metabolism of lipids” was differentially enriched in 
all groups, where the SPF WT group exhibited the greatest enrich-
ment, the SPF LKO group was intermediate, and both GF groups 
exhibited the lowest enrichment. This signifies a deviation from 
normal (SPF WT) oscillation patterns in transcripts that are key 
mediators of lipid metabolism. Importantly, several FA pathways, 
including “Fatty acid metabolism,” “Biosynthesis of unsaturated 
fatty acids,” several linoleic acid-related pathways, “Peroxisome,” 
and “PPAR signaling pathway” lacked any significant enrichment 
in SPF LKO oscillating transcripts, with reduced or absent enrich-

combinatorial action on the temporal organization of specific liv-
er clock–driven diurnal hepatic gene expression.

Overall, the liver clock and gut microbes independently impart 
a unique effect on the oscillating transcriptome, and absence of both 
drivers results in further disorganization of oscillating transcripts.

Liver clock and gut microbes exhibit individual and combinatori-
al influences on hepatic GNG and FA metabolic pathway expression. 
Next, we applied Metascape (43) to statistically determine which 
pathways were significantly enriched in each group of oscillating 
transcripts (q < 0.05, summarized in Supplemental Table 1). In 
examining pathways enriched in SPF WT oscillating liver tran-
scripts relative to other groups, we observed that each factor (liver 
clock and gut microbiota) elicited similar levels, reduced levels, 
or total absence of enrichment (Figure 7). Both SPF and GF WT 
groups exhibited similar enrichment across many pathways, sup-
porting our finding that oscillating hepatic transcriptome patterns 
are primarily driven by the liver clock. However, we observed 
enrichment of Reactome “Pyruvate Metabolism” only in SPF WT 

Figure 7. Liver clock and gut microbes 
uniquely impact functional pathway 
enrichment of oscillating hepatic tran-
scripts. Diurnal transcriptome analysis 
of liver samples collected every 4 hours 
over 24 hours from SPF and GF WT and 
LKO male mice (n = 3/time point/group) 
maintained in 12:12 LD (ZT2, -6, -10, -14, 
-18, and -22). Reactome and KEGG path-
ways significantly enriched by oscillating 
transcripts within each group. A subset of 
pathways enriched in SPF WT oscillating 
genes (q < 0.05). A lack of bar indicates 
lack of significance for that group/path-
way (q > 0.05). Pathways marked with red 
star are addressed in the text.
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wise-comparisons of transcript reads over time to identify sig-
nificant co-occurrences for network visualization (Figure 8; net-
work statistics in Supplemental Figure 8B). This allowed for the 
identification of nodes (correlated transcripts, P < 0.001) and 
their corresponding edges (connections between nodes). The SPF 
LKO group exhibited a modest increase in total nodes relative to 
the WT group (6,116 vs. 5,603); however, the number of edges 
increased from 20,922 (WT) to 36,702 (LKO), which was visual-
ly recognized by the density of the SPF LKO network compared 
with the WT network (Figure 8). Conversely, the total number of 
nodes and edges did not vastly differ between the GF WT and LKO 
groups. Additionally, the overall density of GF networks, regard-
less of liver clock status, was greatly reduced in comparison to SPF.

Next, KEGG annotations were applied to significantly cor-
related nodes and edges. While the number of nodes annotated 
to Carbohydrate (KO09101), Lipid (KO09103), and Amino acid 
(KO09105) metabolic pathways was not vastly different between 

ment across both GF groups. The recurrence of altered FA meta-
bolic pathway enrichment, alongside altered pathways associated 
with GNG expression, supports our previous claim of a need for 
concurrent and synchronized regulation of these two metabolic 
pathways that impart key effects on global glucose regulation.

Together, diurnal oscillations of hepatic gene transcription 
are significantly altered in absence of a functional liver clock, gut 
microbes, or both. Although LKO and GF mice exhibited increased 
and unique oscillating transcripts, the normal enrichment of key 
GNG and FA metabolic pathways is reduced or lost in LKO and GF 
mice, further supporting the impaired efficiency of these metabol-
ic processes in vivo.

Gut microbes affect liver clock–driven network coexpression of 
transcripts. We examined whether liver clock or gut microbes 
imposed an effect on transcript-to-transcript correlations over 
time using coexpression network analysis (Figure 4A, approach 
3). We calculated Spearman’s correlation coefficients via pair-

Figure 8. Hepatic transcriptome coexpression over time is differentially affected by the liver clock and gut microbes. Network transcriptome analysis of 
liver samples collected every 4 hours over 24 hours from SPF and GF WT and LKO male mice (n = 3/time point/group) maintained in 12:12 LD (ZT2, -6, -10, 
-14, -18, and -22). Network coexpression analysis of correlating transcripts over time within each group (P < 0.001). Network visualization and the number 
of correlating transcripts (nodes) and connections (edges) in each group. Red dots represent nodes, and gray lines represent edges.
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CO2 produced/O2 consumed). While no differences were detected 
between SPF genotypes during the active phase, we observed slight 
but significantly increased energy expenditure in SPF LKO mice 
compared with WT mice during the rest phase (Figure 9, A and B). 
These patterns were not evident in GF conditions. We then mea-
sured RER and found that SPF LKO mice exhibited significantly 
increased RER during the active period, implying a greater utiliza-
tion of carbohydrates and reduced utilization of lipids (Figure 9, C 
and D). This suggests that a dysfunctional liver clock drives reduced 
utilization of lipids for fuel when microbes are present, supporting 
our evidence that GNG is also reduced. Conversely, no difference 
in RER was detected in GF mice regardless of genotype during the 
active phase, supporting our evidence that LKO mice exhibited 
reduced GNG compared with WT mice in SPF, but not in GF, condi-
tions (Figure 1D). Interestingly, we observed decreased RER during 
the rest period only in GF LKO mice compared with GF WT mice, 
but not under SPF conditions (Figure 9, C and D), indicating that 
absence of both a liver clock and gut microbes may in fact enhance 
lipid oxidation relative to that observed in GF WT mice.

In summary, we found microbiota-dependent and -indepen-
dent effects on liver clock–mediated fuel utilization. A reduced 
reliance on lipids in SPF LKO mice may contribute to reduced 
GNG and alter global metabolic homeostatic outputs.

Discussion
Organismal-level coordination of molecular metabolism governed 
by the circadian clock is critical for the temporal separation of bio-
chemical processes to maintain energy demands over a 24-hour 
period. Dysregulation or improper partitioning of these key pro-
cesses can substantially contribute to metabolic diseases, such as 
obesity, nonalcoholic fatty liver disease, and type 2 diabetes. The 
liver is one of the most metabolically active organs, contributing 
to glucose and lipid homeostasis. Our data demonstrate a bidi-
rectional and cooperative relationship between diurnal patterns 
of gut microbes and the liver circadian clock that aids in coordi-
nation of GNG, lipid metabolism, and fuel utilization, as outlined 
in Figure 10. This highly complex, reciprocal dialogue results in 
refined shifts that drive metabolic homeostasis. We found that the 
liver clock serves as the primary driver of diurnal transcriptional 
networks essential for maintenance of whole-body metabolism, 
whereas gut microbes are a secondary, essential partner that 
translates environmental cues (e.g., what, when, and how much 
diet is consumed) to enhance temporal organization of clock- 
mediated hepatic gene expression. When either system is absent 

groups, SPF LKO exhibited a 2-fold increase in edges annotated to 
these pathways compared with SPF WT (Table 1 and Supplemen-
tal Figure 8, C–E), while no difference was observed between GF 
groups. Despite a modest influence of liver clock or gut microbes 
on the total number of connected transcripts, loss of a function-
al liver clock, specifically in the presence of microbes, resulted in 
significant increases of abnormal connections between transcripts 
belonging to key metabolic pathways involved in GNG regulation. 
This demonstrates the combinatorial action between gut microbes 
and liver clock in the overall organization of hepatic metabolic 
gene transcription over time.

These data suggest both the liver clock and gut microbes aid in 
maintaining temporal coexpression of critical metabolic function-
al outputs of hepatic transcripts. Loss of either driver results in the 
emergence of abnormal connections, specifically those involved 
in carbohydrate and lipid metabolic pathways.

Interactions between liver clock and gut microbes result in altered 
lipid versus carbohydrate fuel utilization. Given that absence of a 
liver clock and gut microbes alters glucose and lipid metabolism, 
we interrogated how behavior, fuel utilization, and fuel switching 
were affected in vivo via indirect calorimetry over 4 days via the 
Promethion High-Definition Multiplexed Respirometry System. 
First, we detected no differences in basal metabolic rate regard-
less of Bmal1 or microbial status (Supplemental Figure 9A). While 
we previously observed a small, but significant increase in food 
intake in male SPF LKO mice compared with WT mice (Supple-
mental Figure 1B, right), in the metabolic cage set-up, we observed 
no difference in overall food intake between genotypes (Supple-
mental Figure 9B). This discrepancy could be due to differences 
in cohort size, time scale, and method of measurement and food 
delivery. Plotting hourly food intake revealed that feeding onset 
was more robust in SPF LKO mice compared with WT mice, while 
no differences were evident in GF mice (Supplemental Figure 9C). 
The altered feeding bouts in SPF LKO mice could contribute to the 
observed increase in oscillating microbes over a 24-hour LD cycle, 
as shown in Figure 3A. Interestingly, ambulatory motion over the 
same period was not different in SPF mice; however, GF LKO mice 
exhibited increased total ambulatory motion relative to their WT 
counterparts (Supplemental Figure 9, D and E). This indicates the 
liver clock and microbes interact to influence feeding behavior, 
while shifts in ambulation due to a disrupted liver clock are exag-
gerated by a lack of gut microbes.

We next examined energy expenditure via oxygen consump-
tion (VO2) and fuel utilization via respiratory exchange ratio (RER; 

Table 1. Hepatic transcriptome coexpression of metabolic pathways is differentially affected by the liver clock and gut microbes

Nodes Edges
SPF WT SPF LKO GF WT GF LKO SPF WT SPF LKO GF WT GF LKO

Carbohydrate metabolism 127 146 119 113 755 1,900 662 700
Lipid metabolism 130 148 142 123 809 1,420 731 670
Amino acid metabolism 97 123 103 96 786 1,759 508 459

Network transcriptome analysis of liver samples collected every 4 hours over 24 hours from SPF and GF WT and LKO male mice (n = 3/time point/group) 
maintained in 12:12 LD (ZT2, -6, -10, -14, -18, and -22). Network coexpression analysis of correlating transcripts over time within each group (P < 0.001). 
Total number of nodes and edges in each group, annotated to carbohydrate, lipid, and amino acid metabolism by KEGG.
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the central clock located within the brain (Figure 1, B and D and 
Supplemental Figure 1E). While others have separately implicat-
ed gut microbes (9, 22, 44) or the liver circadian clock (31) in the 
regulation of GNG and glucose tolerance, respectively, we showed 
that these systems work in conjunction to drive host glucose 
homeostasis. This appears to be a GNG-specific effect, supported 
by our evidence that both insulin sensitivity and hepatic glycogen 
levels were largely unaffected by LKO or GF conditions (Supple-

or dysfunctional, disorganization and mistiming of normally coor-
dinated processes occurs and homeostatic mechanisms are lost. 
These findings provide an initial basis for the interrogations of the 
mechanistic underpinnings of key host-microbe circadian interac-
tions that direct metabolism in a tissue-specific manner.

A major finding of our study is that contributions of both gut 
microbes and the hepatic tissue-specific circadian network medi-
ated glucose homeostatic outcomes, which occur independent of 

Figure 9. Liver clock and gut microbes differentially alter diurnal patterns of energy expenditure and fuel utilization. Indirect calorimetry assessment of 
SPF and GF WT and LKO male mice, measured over 4 consecutive 12:12 LD cycles (n = 12–13). (A) Energy expenditure (EE) represented as VO2. (B) EE divided 
into active (dark) and rest (light) periods, summarized by EC50 values within each period. (C) Respiratory exchange ratio (RER) represented as VCO2/VO2. (D) 
RER during active (dark) and rest (light) phases, summarized by EC50 values. Data points represent mean ± SEM. Lines in box plots represent the median, 
and whiskers represent the minimum and maximum, respectively. ANCOVA was performed between 2 groups. *P < 0.05.
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ing (40, 46, 47). Thus, it is possible that our observations of liver 
clock–mediated GNG outputs under SPF and GF conditions may 
be a direct result of reduced hepatic FA β-Ox flux. Previous studies 
showed GF mice with a functional liver clock exhibit upregulation 
of FA β-Ox, even under high-fat diet–fed conditions (14); this could 
be due, in part, to differential regulation of hepatic PPAR signaling 
(48) and may provide protection against high-fat diet–induced obe-
sity. Our studies in GF WT and LKO mice suggest that gut microbes 
also interact with the liver clock to regulate lipid metabolism, 
yet the precise microbial component(s) driving these outcomes 
remains to be determined. Given the relationship between FA β-Ox 
and GNG, we must consider the potential effects that high-fat diet 
may have on the individual outputs of these pathways and their 
coregulation. For instance, a previous study revealed that high-fat 
dietary intake in Bmal1 liver–deficient mice resulted in increased 
body weight gain and disrupted mitochondria functional outputs 
compared with WT counterparts (49). We suspect that exposure 
to high-fat diet would impact the liver clock–microbiome relation-
ship, perhaps exacerbating the lipid and associated GNG outputs 
that we observe under grain-based, undefined chow-fed conditions 
in SPF mice. This will be a focus of future studies for our group.

In addition to the metabolic implications of gut microbes for 
the host, we demonstrate bidirectionality from the host liver clock 
to gut microbes. Here, functionality of the liver clock affects diur-
nal oscillations of fecal microbiota relative abundances. Loss of a 
primary hepatic driver, such as Bmal1, results in the emergence of 
downstream secondary microbiota oscillators that could directly 
feedback onto the host, disrupting proper feedback mechanisms. 
Previously, Liang et al. (26) showed that global loss of Bmal1 in mice 
abolished fecal microbial abundance rhythms compared with those 
in WT mice. In contrast, our work shows that absence of tissue- 
specific Bmal1 resulted in an almost 2-fold increase in oscillating 
ASVs, particularly within the families Lachnospiraceae and Rumi-
nococcaceae (Figure 3), which we further confirmed by log-ratio 

mental Figure 1, D and F). We found that gut microbes provide 
essential cues that mediate GNG, which can only be appropriately 
coordinated with the liver clock, a primary driver of maintaining 
metabolic partitioning. This engagement in microbiota-replete 
conditions underpins shifts between glucose and lipid metab-
olism for fuel utilization. By investigating these animals under 
GF conditions or following antibiotic-induced depletion of gut 
microbes in SPF mice (Figure 2), we were able to demonstrate that 
gut microbes contribute to these outcomes, serving in essence as a 
rheostat to impart signals in real time that fine-tune and modulate 
glucose and lipid metabolism. In the presence of gut microbes, 
gene-targeted deletion of the primary hierarchical driver, hepat-
ic Bmal1, results in reduced host metabolic processes, like GNG, 
that are essential to maintain metabolic homeostasis. Altogether, 
these data underscore a key role for liver clock–microbiota cross-
talk in maintaining circulating glucose levels, particularly during 
fasting conditions when GNG is critical. Whereas each system is 
greatly affected by environmental signals that influence metabolic 
outcomes, understanding their bidirectional dialogue is essential 
to comanipulate these systems in a meaningful and effective way.

In addition to differences in glucose homeostasis determined 
via direct measurements of GNG, we also identified that hepatic 
Bmal1 and gut microbes coordinate diurnal patterns in lipid metab-
olism and subsequent fuel utilization via transcriptome analysis 
and indirect calorimetry, respectively (Figures 7 and 9). These 
findings, particularly in GF animals, provide insights into the role 
of liver Bmal1 in these processes; previous work performed by our 
group and others in conventionally raised WT versus LKO mice 
showed the liver clock regulates lipid homeostasis via mechanisms 
involving AKT activation and m6A RNA methylation (37, 45). FA 
β-Ox imparts significant coregulation of GNG via several molec-
ular signals, such as Acetyl-CoA, which is formed during fatty acid 
oxidation and allosterically activates pyruvate carboxylase, as well 
as cAMP, which induces both FA β-Ox and GNG via PPAR signal-

Figure 10. Liver clock and gut microbes partition glucose and lipid metabolism. Model figure. In SPF conditions, the liver circadian clock drives normal 
GNG and FA β-Ox, fecal microbial abundance oscillations, and hepatic transcriptome oscillations. Following hepatic Bmal1 deletion, GNG and FA β-Ox are 
reduced, oscillating microbiota increase, and oscillating hepatic transcripts are not enriched for metabolic pathways, including GNG and FA β-Ox. In GF 
conditions, GNG is reduced, and oscillating hepatic transcripts are not enriched for GNG and FA β-Ox metabolic pathways regardless of liver clock func-
tionality. Green indicates upregulation, and red indicates downregulation. Solid arrows indicate intact communication, and dashed arrows indicate broken 
communication. The figure created using BioRender.
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Animals. All mice used in these studies were on a C57BL/6J back-
ground. SPF Bmal1fl/fl and Albumin-Cre male and female mice were 
purchased from The Jackson Laboratory and bred in The University 
of Chicago vivarium as previously described (31). SPF Bmal1fl/fl Alb-
Cre mice were rederived under GF conditions and maintained in flex-
ible film isolators (CBC Ltd.) in The University of Chicago Gnotobiot-
ic Research Animal Facility. To achieve forebrain-specific knockout 
of Bmal1, SPF Bmal1fl/fl mice were crossed with CamiCre mice, which 
were a gift from Joseph Takahashi with the Department of Neuro-
science and the Howard Hughes Medical Institute at University of 
Texas Southwestern Medical Center (33). All mice were maintained 
under 12:12 light/dark conditions (lights on at 6 am, ZT0) and fed 
autoclaved ad libitum JL Rat and Mouse/Auto 6F 5k67 (LabDiet) for 
at least 2 weeks prior to and throughout experiments. Body weight 
and food consumption were monitored weekly. At 10–14 weeks of 
age, mice were acclimatized to individual housing for 14 days, after 
which stool was collected every 6 hours for 48 hours. After 3 weeks, 
mice were sacrificed via CO2 asphyxiation followed by cervical dis-
location over a 24-hour period at 6 time points: ZT2 = 8 am, ZT6 = 
12 pm, ZT10 = 4 pm, ZT14 = 8 pm, ZT18 = 12 am, and ZT22 = 4 am. 
Immediately prior to sacrifice, basal blood glucose was measured 
from tail snip blood via Accu-Check Compact Plus Diabetes Monitor-
ing Kit and test strips (Roche Diagnostics) or OneTouch Ultra 2 Blood 
Glucose Monitoring System (LifeScan). Blood was collected via hep-
arin-coated microvette tubes (Sarstedt) for insulin measurement by 
the Ultra-sensitive Insulin ELISA (ALPCO). Liver, plasma, brain, and 
intestinal luminal contents were snap frozen in liquid nitrogen and 
stored at –80°C.

Conventionalization studies. Fresh stool from adult C57BL/6J male 
mice was resuspended in sterile PBS (100 mg stool/mL), vortexed, 
and spun briefly to remove debris. Individually housed GF Bmal1fl/fl 
or Bmal1fl/fl-AlbCre 11- to 13-week-old ad libitum–fed male mice were 
orally gavaged with 150 μL suspension. Body weights and food con-
sumption were monitored weekly.

Antibiotic treatment studies. For antibiotic treatment, SPF Bmal1fl/fl  
or Bmal1fl/fl-AlbCre 11- to 13-week-old male mice were administered an 
antibiotic cocktail consisting of vancomycin (0.5 mg/mL), neomycin 
(1 mg/mL), and cefoperazone (0.5 mg/mL) prepared in autoclaved 
water and sterile filtered through a 0.2 μM filter. The protocol involved 
using a combination of daily gavage for 7 days followed by incorpora-
tion and ad libitum delivery in drinking water for 1 additional week. 
Body weights were monitored daily.

Primary hepatocyte isolation and culture. Isolation and culture of 
primary hepatocytes were performed as described in Mouse Liver 
Cells (http://mouselivercells.com). 15-week-old SPF and GF Bmal1fl/fl 
and Bmal1fl/fl-AlbCre male mice were anesthetized (90 mg ketamine/
kg body weight, 6 mg xylazine/kg body weight), perfused via portal 
vein cannulation with Collagenase Type IV (Worthington Biochem-
ical) in situ, digested in low-glucose DMEM (Corning), and isolated 
in high-glucose DMEM (Gibco). Live hepatocytes were seeded at 
600,000 hepatocytes in 6-well collagen-coated plates (Thermo Fish-
er Scientific) and cultured in low-glucose DMEM (Corning) for 2 days 
with daily media change prior to assay.

Oral glucose, intraperitoneal pyruvate, and intraperitoneal ITTs. For 
GTT and PTT, 12- to 16-week-old male GF and SPF mice were fasted 
overnight for 14 hours, starting at ZT12. For ITT, mice were fasted for 
5 hours, starting at ZT22. Baseline blood glucose was measured via tail 

analysis (Supplemental Figure 6). This indicates that the tissue- 
specific liver clock is a key player in maintaining normal rhythmicity 
of specific oscillating gut microbiota. Others have shown that these 
bacteria families positively correlate with and contribute to second-
ary bile acid metabolism (50, 51), as well as circadian rhythm regu-
lation and metabolism (52, 53). Furthermore, previous studies have 
revealed that PPAR signaling is linked to bile acid synthesis and reg-
ulation (54, 55). In fact, we observed reduced levels of transcripts 
involved in PPAR signaling in hepatic Bmal1-deficient mice. Wheth-
er the observed gain in oscillating ASVs in LKO SPF mice contrib-
utes to altered circulating bile acid pools that impact glucose metab-
olism remains to be investigated. Gains in oscillation have been 
previously identified in the context of microbiota-relative abun-
dances and associated metabolites in metabolic disease (23, 56), yet 
their precise meaning remains unclear. Importantly, not only did we 
observe a gain in oscillations of gut microbiota, but we also found 
an increase in oscillations of the host liver transcriptome in absence 
of either a functional liver clock or gut microbes (Figure 6A). These 
gains of rhythmicity confer differential enrichment of key metabol-
ic pathways compared with SPF WT mice (Figure 7). This finding 
corresponds to previous observations that the emergence of unique 
oscillations can significantly alter functional transcriptome enrich-
ment that affects metabolic homeostasis (42, 57).

Our study underscores that gut microbiota play a key role in 
mammalian metabolic homeostasis mediated through interac-
tions and coordination with primary drivers of hepatic circadian 
networks. Molecular signals derived from the gut microbiome that 
impart liver clock–mediated GNG and overall metabolic organiza-
tion remain undefined, and their identification will be an essen-
tial next step to gain further insights. In preliminary investiga-
tions, we examined short-chain fatty acids (SCFAs) as a potential 
mediator of this interaction; however, absence of a liver clock did 
not appear to alter either SCFA levels or diurnal dynamics in SPF 
WT versus LKO mice (data not shown). Another mediator candi-
date that may mechanistically link these systems is glucagon-like 
peptide 1 (GLP-1), an incretin produced by intestinal L cells that 
induces insulin secretion and glucose uptake. Not only does GLP-1 
exhibit robust diurnal patterns that are required for normal glu-
cose homeostasis, but its secretion is also significantly induced 
by loss of gut microbes (22, 58); additional experiments will be 
required to investigate this thoroughly. Due to the complex nature 
of host-microbe interactions, it is possible that a single mediator 
is not responsible; instead there is a possibility that a combination 
of factors contributes to the mutual and temporal regulation of 
these systems. Future studies aimed at understanding how these 
microbial mediators interact with circadian networks, particu-
larly in humans, will be an important step in the field. Together, 
our physiological and multi-omic data highlight key communica-
tion between the host hepatic circadian clock and gut microbiota, 
underscoring the importance of proper diurnal coordination of 
these two systems. These findings could have broader translation-
al implications for how these two systems might be targeted to 
improve metabolic homeostasis in humans.

Methods
Specific catalog numbers for antibodies, animals, and reagents are 
listed in Supplemental Table 2.
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the High-Throughput Genome Analysis Core (part of the Institute for 
Genomics and Systems Biology, Argonne National Laboratory [Lem-
ont, Illinois, USA]). Paired-end reads were imported into Quantitative 
Insights Into Microbial Ecology version 2 (QIIME2) software suite (61) 
(https://qiime2.org) and demultiplexed using Dada2 (62). Filtering 
steps were performed, including filtering out samples containing less 
than 1.5 times the standard deviation from the mean of sample read 
counts across all samples within the experiment and filtering out fea-
tures that appear in less than 10 samples across the experiment. To 
maximize sampling depth while prioritizing equal retention of sam-
ples across groups, 10,598 (Figure 3 and Supplemental Figures 4 and 5; 
48-hour fecal collection) or 15,578 (Supplemental Figure 3; cohousing 
vs. separate housing fecal collection) reads were included per sample, 
determined by the mean subtracted by 1.5 times standard deviation of 
sample read counts across all samples within the experiment. Taxono-
my was compiled using the classify-sklearn plugin with Silva database 
version 132 2020.8 (63, 64). β-Diversity analyses and permutational 
multivariate ANOVA statistics were performed via QIIME2.

Liver RNA extraction, sequencing, and analysis. Total RNA was iso-
lated by homogenizing bulk liver tissue in TRIzol (Ambion) followed 
by chloroform extraction, as previously described (23). RNA quality 
and quantity were assessed using the Agilent bioanalyzer, and RNA-
SEQ libraries were generated using the Illumina Stranded mRNA Prep 
at The University of Chicago Genomics Core Facility. Sequencing 
of mRNA directional, single-end 50 base pair reads was performed 
on the HiSEQ4000 with Illumina reagents and protocols. Data was 
demultiplexed using the Illumina bcl2fastq software. All 72 samples 
were run on 6 lanes, and fastq files were concatenated. Quality control 
was performed using FastQC v0.11.5 and MultiQC v1.10.1. Sequence 
alignment was performed by STAR version 2.6.1b by mapping to the 
mm10 whole genome (65). Gene transcript counts were determined 
by Subread:featurecounts v2.0.0.

Differential analysis was performed via DESeq2, both on all time 
points pooled and within each individual time point of variance-stabi-
lizing transformation (VST) data. Protein coding genes were identified 
via biomaRt (version 2.40.5) using GRCm39 mouse genes. Two-way 
analysis for each pair of experimental groups were performed. The 
Wald statistic, calculated via DESeq2, was used to build a ranked list 
of genes for each comparison for each time point. fGSEA (version 
1.10.1) was utilized to identify differentially regulated pathways (with 
parameter nperm = 10,000) within multiple annotated gene sets from 
Molecular Signatures Database (MSigDB, version 7.0; https://www.
gsea-msigdb.org/gsea/msigdb). Significantly identified pathways 
were filtered by adjusted P < 0.05 and subsequently binned into cat-
egories via custom R script. fGSEA was utilized to calculated normal-
ized enrichment score and identify leading edge genes.

For oscillation analysis, feature counts were normalized by VST 
in DESeq2 (version 1.24.0). VST-normalized data were used for prin-
cipal component analysis. VST-normalized data were analyzed to 
identify significantly oscillating transcripts via empirical JTK_CYCLE 
(66). Heatmaps were generated from VST-normalized data, ordered 
by time of peak expression, normalized by the median value for each 
transcript within each group over time, and visualized using Orange3 
(https://orangedatamining.com). Metascape was utilized to identify 
statistically enriched pathways from each list of oscillating transcripts 
(43) (http://metascape.org), which were then binned into categories 
via a custom R script.

snip using a hand-held glucometer. Mice were administered an oral 
bolus of 20% dextrose (Hospira) in sterile water solution (2 g/kg body 
weight), an intraperitoneal injection of sterile-filtered sodium pyru-
vate (Sigma-Aldrich) in PBS (2 g/kg body weight), or an intraperito-
neal injection of 0.1 U/mL Humulin R Insulin (Eli Lilly) in PBS (1 U/
kg body weight). For GTT and PTT, blood glucose was measured at 1, 
30, 60, and 120 minutes after gavage or injection. For ITT, blood glu-
cose was measured at 15, 30, 60, 90, and 120 minutes after injection. 
During GTT, insulin levels were determined at baseline, 30, 60, and 
120 minutes in blood collected in heparin-coated microvette tubes 
(Sarstedt) using the Ultra-sensitive Insulin ELISA (ALPCO). AUC was 
calculated using GraphPad Prism v9.

Western blot. Liver and brain tissue (5–10 mg) were collected at 
ZT16 and placed in 250–500 μL ice-cold RIPA lysis buffer (Thermo 
Fisher Scientific RIPA Lysis and Extraction Buffer, cOmplete Mini Pro-
tease Inhibitor Cocktail, 100 μM PMSF). Protein concentrations were 
determined via Bicinchoninic Acid Protein Assay (Thermo Fisher Sci-
entific), and 30 μg protein was separated on 4%–20% Mini-PROTEAN 
gel (Bio-Rad) and transferred to a PVDF membrane (Millipore). Mem-
branes were blocked with 5% nonfat milk in Tris-buffered saline (TBS) 
(20 mM Tris pH7.6, 150 mM NaCl) and incubated overnight at 4°C in 
5% nonfat milk in TBS-Tween (TBS-T) (20 mM Tris pH7.6, 150 mM 
NaCl, 0.1% Tween-20) containing primary antibodies: anti-BMAL1 
(1:1,000; Abcam, ab93806) or anti-GAPDH (1:100,000; Invitrogen, 
AM4300). Membranes were washed 6 times for 5 minutes in TBS-T 
and incubated for 1 hour at room temperature in TBS-T containing 5% 
nonfat milk and either anti-mouse or anti-rabbit secondary antibody 
(1:10,000; Abcam, 7076S and 7074S). Membranes were washed again, 
developed with SuperSignal West Pico PLUS Chemiluminescent Sub-
strate (Thermo Fisher Scientific), and exposed using the Chemi-Doc 
MP Imaging System (Bio-Rad Laboratories).

Primary hepatocyte glucose production assay. Cultured mouse 
hepatocytes were serum-starved overnight and washed with PBS with 
MgCl2 and CaCl2 (Sigma-Aldrich). Hepatocytes were exposed to glu-
cose-free DMEM (Sigma-Aldrich) (20 mM sodium lactate, 2 mM sodi-
um pyruvate, 2 mM L-glutamine, 15 mM HEPES) with or without 0.1 
mM pCPT-cAMP (Sigma-Aldrich) for 11 hours. Media was collected 
and glucose concentrations were measured via Autokit Glucose enzy-
matic assay (FUJIFILM Medical Systems Inc.) and normalized to pro-
tein content determined via Bicinchoninic Acid assay.

Glycogen assay. Frozen liver samples were weighed, and glycogen 
measurement was performed using the Glycogen Assay Kit II (Colori-
metric) (Abcam) following the manufacturer’s instructions.

Bacterial gene quantification. 16S rRNA gene copy number was 
determined in stool as previously described (23, 59, 60). The 16S 
rRNA gene was quantified using a standard curve for gene copy num-
ber using primer sequences cloned into a PCR4-TOPO plasmid (see 
Supplemental Table 2, for primer sequences).

16S DNA extraction, sequencing, and analysis. Stool was bead beat-
en using 0.1 mm diameter zirconia/silica beads (BioSpec Products) as 
previously described (23). Supernatants were extracted using equal 
volumes of phenol:chloroform:isoamylalcohol (25:24:1; Ambion), 
and DNA was precipitated using an equal volume of 100% isopropa-
nol. DNA concentration was measured using the Quant-iT PicoGreen 
dsDNA Assay kit (Invitrogen) and diluted to 1–20 ng/μL. The V4–V5 
region of the 16S rRNA encoding gene was amplified using standard 
Earth Microbiome Project protocols. Sequencing was performed at 
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tify significantly correlated gene expression over time with P < 0.001 
and r < 0.95. fGSEA was used to identify significantly enriched path-
ways from differential gene expression analysis with adjusted P (padj) 
< 0.05 and nperm = 10,000. CircWave V1.4 (http://clocktool.org) or 
empirical JTK_CYCLE (66) were used to identify significantly oscil-
lating data by P < 0.05 (CircWave) or GammaBH < 0.05 (P value was 
calculated from gamma fit of empirical null distribution, adjusted for 
Benjamini-Hochberg false discovery rate, via eJTK). Log-ratio analyses 
for 16S data were performed via Songbird using methodology outlined 
in Morton et al. (36). In addition to default parameters, the equation 
was set to “C(Time, Treatment(‘Two’), pmin of feature counts set to 0, 
epochs set to 40,000, learning rate set to 0.0001, and trainer samples 
set to 3. The resulting log ratios were sorted hierarchically in a heatmap, 
plotted over time via LOESS fitting, and fitted for nonzero base sinu-
soidal fits. Statistical outliers were identified as 2 standard deviations 
± mean and removed from the analysis. Metabolic cage statistical out-
liers were removed based on Sn values (71) using the R package robust-
base (https://robustbase.r-forge.r-project.org). A consistency factor of 
1.1926 was used to calculate the Sn value for each channel within each 
cycle, and outliers were defined as ± 3 times the Sn value from the medi-
an. Python v3.7.5 and R v3.6.3 were used.

Study approval. All animal protocols and experimental procedures 
were approved by The University of Chicago Institutional Animal 
Care and Use Committee.

Data availability. 16S rRNA sequences are available for download 
at the NCBI Sequence Read Archive (accession PRJNA815335). RNA 
sequences are available for download at the NCBI Gene Expression 
Omnibus (accession GSE184303).
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Network coexpression analysis was performed using RNA-Seq raw 
transcript abundance counts. Transcripts with low abundance counts 
(<50 counts in all samples or genes with 0 counts in more than 2 sam-
ples per time point) were removed. Spearman’s correlation values for 
comparisons between pairs of transcripts were calculated within each 
genotype. Transcript count values were randomly selected from 1 of 
the 3 samples for a given time point, and then correlation P and r values 
between transcripts over time were calculated in R and repeated over 
500 permutations (‘dplyr’, ‘rcorr’, ‘Hmisc’). Correlation matrices for the 
permutations were averaged to generate a single matrix of transcript 
correlation values. The matrix was flattened into a network-importable 
table format in R (‘cormat’, ‘pmat’): flatCorrMatrix < -function(cor-
mat,pmat){ut < -upper.tri(cormat)data.frame(row = rownames(cor-
mat)[row(cormat)[ut]],column = rownames(cormat)[col(cormat)
[ut]],cor = (cormat)[ut],p = pmat[ut]). Correlations were filtered for P < 
0.001 and Spearman’s r > 0.95, and all self-relationships removed. This 
filtered correlation table was used for network visualization in Cytos-
cape (67) (https://cytoscape.org) as well as for downstream analyses 
of node connectivity and centrality. Annotations from the KEGG were 
added (https://www.ensembl.org) and utilized to identify transcript 
nodes in each network with specific functionally related pathways.

Metabolic cage studies. Mice were acclimatized to individual hous-
ing for 5 days prior to metabolic monitoring, which was conducted 
using the Promethion High-Definition Multiplexed Respirometry Sys-
tem for Mice (Sable Systems International). All measurements were 
recorded at 3-minute intervals across all cages. Food and water intake 
were recorded by gravimetric measurement. Physical movement was 
determined by infrared sensor beam breaks. Oxygen consumption, 
carbon dioxide production, and respiratory quotient were measured 
by indirect calorimetry. Energy expenditure (kcal/h) was calculated 
by the Weir equation (68).

Basal metabolic rate was measured on the first day of metabolic 
cage housing. Following transfer into metabolic cages at ZT3, food was 
immediately removed. Between ZT7 and ZT10, the lowest average 
postabsorptive energy expenditure value over a 5-minute period was 
identified as BMR (69). Food was returned at ZT10, mice were allowed 
to acclimatize for 2 days, followed by 4 days of resting metabolic rate 
measurements. For GF mice, validation of GF status was performed 
using 16S rRNA gene PCR on DNA extracted from fecal samples col-
lected before and after metabolic caging.

All data were recorded via IM3 software v21.0.2 and converted to 
XML via a custom Sable Systems macro. Data were cleaned in Python, 
including identification of each diurnal cycle using environmental lux 
values. Within each period, sum was calculated for beam breaks and 
movement, and range was calculated for food and water intake. EC50 
(70) was calculated for RER, VO2, and energy expenditure in R using 
nplr v.1-7. Analysis of covariance (ANCOVA) (body weight as covari-
ant) was performed for each measurement between 2 groups using R.

Statistics. Data are presented as mean ± SEM or box-and-whisker 
plots showing the median ± minimum/maximum. Statistical analysis 
was performed using either GraphPad Prism v9 software or R packag-
es. Two-tailed unpaired Welch’s t tests or ANCOVA were performed 
between 2 groups, and Brown-Forsythe and Welch’s 1-way ANOVA 
followed by Dunnett’s tests were performed among 3 or more groups.  
P < 0.05 was considered statistically significant. Metascape was used to 
identify significantly enriched pathways from oscillation transcriptome 
profiles with q < 0.05. Spearman’s correlation was performed to iden-
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