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Introduction
Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis 
that is due, at least in part, to its late stage at diagnosis, with almost 
90% of patients presenting with metastasis (1, 2). Although the 
genomic alterations that accumulate during early pancreatic tum-
origenesis are well characterized (3–6), the molecular alterations 
driving metastatic spread are incompletely understood. The lack of 
metastasis-specific mutations in driver genes when comparing pri-
mary to metastatic PDACs suggests that metastasis is not controlled 
by genetic alterations (7). In recent years, transcriptomic characteri-
zation of PDAC has led to the proposal of various molecular subtyp-
ing schemes in order to capture the transcriptomic and proteomic 

heterogeneity of PDAC (8–14). Synthesis of these studies suggests 
2 distinct transcriptomic subtypes of PDAC, frequently termed 
classical and basal, with the basal subtype associated with a poorer 
outcome (8, 9). Although the basal subtype is enriched in metastatic 
lesions compared with primary tumors (8), the role of transcriptom-
ic alterations in driving metastasis remains unclear.

Local invasion is the earliest stage in the multistep process of 
metastatic dissemination (15–17). Traditionally, local invasion was 
thought to occur via epithelial-mesenchymal transition (EMT), in 
which carcinoma cells acquire mesenchymal characteristics and dis-
seminate as single cells via activation of a mesenchymal transcrip-
tional program, including Snail, Twist, and Zeb (17, 18). However, an 
emerging body of evidence suggests an alternate mode of invasion, 
collective invasion, in which cancer cells retain their epithelial fea-
tures and disseminate as multicellular clusters (19, 20). While this 
phenomenon has been challenging to recapitulate in traditional in 
vitro or in vivo models, recent advances in 3-dimensional organoid 
models have enabled a real-time observation of collective invasion 
of carcinomas of the breast and pancreas (21–24). When clusters of 
freshly harvested PDAC cells are cultured as organoids in collagen 
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genes occurred in 3 or fewer patients (i.e., ARID1A and ARID1B) 
(Supplemental Table 3).

To quantitatively compare the 2 distinct invasion patterns and 
assess the degree of invasiveness, we counted the number of inva-
sive protrusions in each imaged organoid and traced the borders 
of each organoid to calculate an inverse circularity score for each 
organoid culture (defined as log2[1/circularity]). A high inverse cir-
cularity score indicates a deviation from a perfectly round organ-
oid and is a metric of invasiveness. The mesenchymal organoids 
had a higher mean number of invasive protrusions per organoid 
compared with the collective organoids (5.3 vs. 2.6, P = 7 × 10–6). In 
addition, the mean inverse circularity score of the mesenchymal 
organoids was significantly higher than that of the collective organ-
oids (1.6 vs. 1.0, Wilcoxon’s P = 2 × 10–4) (Figure 1C). These results 
demonstrate morphometric differences between mesenchymal 
and collective organoids and underscore the qualitatively and quan-
titatively distinct invasion patterns in our human PDAC organoid 
model, highlighting this system as a potentially powerful tool for 
molecular interrogation of PDAC invasion.

A heatmap of the sample-to-sample distances in the RNA-seq 
data (Figure 2A) shows that invasive and noninvasive organoids 
from the same PDAC clustered most closely together, demonstrating 
shared transcriptomic features in organoids from the same tumor. 
However, a secondary pattern was observed where organoids from 
PDACs with the same invasive morphology also clustered together, 
suggesting some shared transcriptomic features based on invasive 
morphology in addition to patient-specific effects. The same pattern, 
with close clustering of organoids from the same PDAC but also clus-
tering of organoids from PDACs with the same invasive morphology, 
was observed on a principal component analysis (PCA) plot of gene 
expression data from all profiled organoid samples (Supplemental 
Figure 1). To identify shared transcriptomes in collective and mesen-
chymal organoids, we performed differential gene expression analy-
sis comparing the 12 samples of invasive organoids to the 11 samples 
of noninvasive organoids derived from the same primary tumors 
(Supplemental Table 4). Differential gene expression analysis iden-
tified 553 genes that were differentially expressed in invasive organ-
oids (FDR < 0.05) (Figure 2B). Notably, among these 553 genes, 393 
genes were upregulated in the invasive organoids, including MMP8, 
OLR1, COL7A1, and SPOCK1, all of which are implicated in extracel-
lular matrix (ECM) structure and extracellular signaling (25–30).

We next investigated the impact of these differentially expressed 
genes on overall survival in a large independent cohort of PDAC 
samples. A Kaplan-Meier analysis (31) of The Cancer Genome Atlas 
(TCGA) PDAC cohort (3, 32) using the top 25 differentially expressed 
genes from our data set identified 11 genes with statistically signifi-
cant inverse correlations with survival in upper and lower quartile 
expression groups (Supplemental Figure 2). COL7A1 showed the 
most significant difference in survival in high and low expression 
groups, with a median survival time of 17 months in high COL7A1 
expressers compared with 38 months in low COL7A1 expressers.

To confirm the protein expression of a subset of these differ-
entially expressed genes in the PDAC organoids, we performed 
immunofluorescent labeling of the proteins encoded by SPOCK1 
and OLR1 along with pan-cytokeratin (pan-CK) on representative 
collective, mesenchymal, and noninvasive organoids (Figure 2D, 
Supplemental Figure 3, and Supplemental Videos 1 and 2). SPOCK1 

I gels, they invade the surrounding matrix, allowing morphological 
characterization of the invasive phenotype.

Previously, we demonstrated that organoids from surgically 
resected human PDACs show either a mesenchymal or collective 
invasion pattern in vitro, characterized by sharp single-cell protru-
sions or curvilinear multicellular projections, respectively (21). In 
that study, we identified transforming growth factor β (TGF-β) as a 
potent inducer of invasion in some organoid cultures, but we also 
discovered that the molecular drivers of invasion varied between 
patients. Therefore, comprehensive assessment of transcriptomic 
alterations in invading organoids from human PDACs is required 
to elucidate the molecular programs that drive cancer cell invasion.

In this study, we used a collection and sorting pipeline that we 
developed to isolate organoids based on invasion pattern, enabling 
us to determine the transcriptomic programs underlying the col-
lective and mesenchymal patterns of invasion. We performed 
morphology-guided transcriptomic profiling on a cohort of fresh 
human PDAC organoids, linked our findings to publicly available 
single-cell RNA-sequencing (scRNA-seq) data from human PDACs, 
and then validated key results in a second independent cohort of 
fresh human PDAC organoids. Our results suggest that collective 
and mesenchymal invasion are orchestrated via 2 distinct transcrip-
tomic programs and influenced by interactions between the tumor 
cells and cells in the surrounding microenvironment.

Results
To identify the transcriptomic signatures associated with invasion 
in PDAC, we performed RNA-seq of organoids representing previ-
ously described collective and mesenchymal invasion patterns (21), 
along with paired noninvasive organoids. To do this, we developed a 
method to isolate organoids based on invasive phenotype for molec-
ular profiling (Figure 1A). Using this method, a total of 11 organoid 
cultures were generated from surgically resected human PDACs that 
did not receive neoadjuvant chemotherapy. Among these, 7 cultures 
showed a predominantly mesenchymal invasion pattern (“mes-
enchymal organoids”), and 3 showed a predominantly collective 
invasion pattern (“collective organoids”) (Figure 1B). Intriguingly, 
1 tumor gave rise to both collective and mesenchymal organoids, 
and these invasion patterns were mutually exclusive at the individ-
ual organoid level, consistent with our previous work (21). For this 
organoid culture, the collective and mesenchymal organoids were 
analyzed separately. Thus, we analyzed a total of 8 mesenchymal 
organoid cultures and 4 collective organoid cultures with 11 match-
ing noninvasive organoid cultures from the same primary tumors.

The clinical and pathological features of the primary tumors 
(Supplemental Table 1; supplemental material available online with 
this article; https://doi.org/10.1172/JCI162054DS1) demonstrate 
that the pattern of invasion in our organoid model was neither cor-
related with the size of the primary tumor (P = 0.808, Mann-Whit-
ney U test) nor with its grade or the presence of lymph node metas-
tasis (P = 1.00 and P = 0.162, χ2 test). To investigate whether driver 
gene mutations were enriched in PDACs with either invasive phe-
notype, we performed targeted next-generation DNA sequencing 
of primary tumor tissue using a panel of 432 cancer-associated 
genes (Supplemental Table 2). The prevalence of mutations in 
KRAS, CDKN2A, TP53, and SMAD4 did not differ between the 2 
invasion patterns in our organoid system, and mutations in other 
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mary PDAC (Figure 2E and Supplemental Figure 3B). The PDAC 
cells showed a heterogeneous SPOCK1 or OLR1 staining intensity 
across the tissue section, but costaining with pan-CK confirmed the 
expression of both proteins in PDAC cells. Considering the com-
plexity of PDAC architecture, the true “invasive front” of a tumor 
cannot be reliably identified in a 2-dimensional tissue section, so 
we could not determine whether SPOCK1 or OLR1 expression was 
enhanced in the most invasive PDAC cells in vivo. However, our 
results confirm the expression of SPOCK1 and OLR1 in PDAC cells 
in human tumors, and their heterogeneous expression is consistent 
with the patterns seen in our organoids.

To further examine the transcriptomic differences between 
invasive phenotypes, we limited our analysis to the 12 invasive 
organoid samples. PCA and non-negative matrix factorization 
(NMF) identified 3 distinct transcriptomic groups of invasive organ-
oids (Figure 3, A and B). We found that on the transcriptomic level, 
the organoids do not simply separate into 2 groups based on their 
morphologic phenotype. While mesenchymal and collective organ-
oids exclusively comprised transcriptomic groups 1 (tG1: 6 mes-
enchymal organoid cultures) and 2 (tG2: 3 collective organoid cul-
tures), a third transcriptomic group emerged, which included both 
invasion patterns (tG3: 2 mesenchymal and 1 collective organoid 
cultures). These data suggest that although many of the molecular 

and OLR1 were chosen for assessment by immunofluorescence 
based on their significant differential expression in invasive organ-
oids (Figure 2C and Supplemental Figure 3A), transmembrane 
and intracytoplasmic protein localization, and previously reported 
roles in cancer cell invasion. For example, SPOCK1 (which encodes 
SPARC or osteonectin) is involved in cell-cell and cell-matrix inter-
actions and has been associated with induction of EMT and inva-
sion in multiple tumor types (28–30). In the noninvasive organ-
oid, SPOCK1 showed uniform, moderate cytoplasmic staining. In 
contrast, SPOCK1 staining was more intense in the collective and 
mesenchymal organoids, with the strongest staining in the inva-
sive protrusions facing the collagen I matrix. In addition, in the 
mesenchymal organoids, SPOCK1 staining highlighted single-cell 
projections from the core of the organoid. Immunofluorescence 
assessment of another differentially expressed gene, OLR1, showed 
a similar staining pattern, with protein expression enriched in the 
invasive protrusions of the collective and mesenchymal organoids 
(Supplemental Figure 3C and Supplemental Video 3 and 4).

We next sought to assess the expression of these proteins in 
cancer cells in primary PDAC tissue. To do this, we performed 
immunofluorescent staining to label SPOCK1 or OLR1, along 
with pan-CK immunofluorescence and DAPI staining, in forma-
lin-fixed, paraffin-embedded (FFPE) tissue sections from a pri-

Figure 1. Patient-derived PDAC organoids show 2 morphometrically distinct invasive phenotypes. (A) Schematic of PDAC organoid culture generation, 
collection, and RNA-seq timeline. (B) Representative images of collective and mesenchymal invasion. Scale bars: 50 μm. (C) Log2(1/circularity) of collective 
and mesenchymal organoids (n = 10, adjusted P value=2 × 10–4 using Wilcoxon’s test). In the box-and-whisker plot, the box outlines represent the 25th to 
75th percentiles, horizontal lines represent medians, and whiskers extend to 1.5 × IQR.
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Figure 2. Comparison of transcriptomes of invasive and noninvasive organoids reveals differentially expressed genes that are enhanced in invasive 
protrusions. (A) A sample-to-sample distance plot (Spearman’s correlation) of the variance-stabilizing transform (VST) gene expression for each sample 
(n = 23). (B) Differentially expressed (DE) genes between all invasive organoids (n = 12) and noninvasive organoids (n = 11) (adjusted-P threshold of 0.05). 
OLR1, SPOCK1, MMP8, and COL7A1 were all upregulated in invasive organoids compared with the noninvasive organoids. (C) SPOCK1 mRNA expression in 
indicated organoid groups. Each dot represents an organoid culture. In the box-and-whisker plot, the box boundaries represent the 25th to 75th percen-
tiles, horizontal lines represent medians, and whiskers extend to 1.5 × IQR. (D) Phase and immunofluorescence images of pan-CK, SPOCK1, and DAPI 
staining in invasive and noninvasive organoids. Scale bars: 50 μm. (E) Immunofluorescence images of pan-CK, SPOCK1, and DAPI staining in primary  
PDAC tissue sections. Scale bar: 50 μm.
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by their speed of metastatic progression in murine intraductal xeno-
grafts (35). We found that the tG1 organoids expressed the “fast pro-
gressor” transcriptomic signature, whereas 1 collective organoid 
culture in tG2 expressed the “slow progressor” signature. However, 
the remaining invasive organoids expressed neither a slow nor fast 
progressor signature. Taken together, these analyses demonstrate 
that the transcriptomic groups identified in our organoid system 
correspond with transcriptomic subtyping previously reported 
in primary PDAC tissue samples, underscoring the fidelity of our 
organoid model and highlighting distinct invasion mechanisms as 
an important difference between transcriptomic subtypes.

A heatmap incorporating select EMT pathway genes (36, 37) 
demonstrated that the organoids in tG1 (6 mesenchymal organoid 
cultures) had the most prominently upregulated EMT transcrip-
tional programs, with upregulated expression of ZEB1/2, SNAIl1/2, 

drivers of invasion are reflected in the invasive morphology, distinct 
molecular mechanisms that are not distinguishable morphological-
ly (such as tG3) can be revealed by transcriptomic analysis.

We next sought to determine how our transcriptomic groups 
aligned with previously reported subtyping schemes for PDAC tis-
sue. Using the DECODER pipeline (33) to infer associations with 
widely recognized classical versus basal transcriptomic subtyping 
scheme for primary PDAC tissue originally published by Moffitt et 
al. (8), 2 of 3 tG2 invasive organoid samples were assigned as the 
classical subtype, whereas the other invasive organoids were classi-
fied as the basal subtype (Figure 3B). Similarly, a recently proposed 
PDAC subtyping scheme using sets of transcriptional regulators 
(34) classified tG1 as being in the morphogenic state and both 
tG2 and tG3 as being in the lineage state. Lastly, we applied gene  
signatures previously derived from PDAC organoids distinguished 

Figure 3. Transcriptomic analysis segregates invasive organoids into 3 distinct transcriptomic groups, each with unique pathway signatures. (A) PCA 
plot of gene expression in invasive organoids (n = 12). (B) Heatmap of differentially expressed genes between our 3 transcriptomic groups annotated by 
previously reported PDAC transcriptomic subtypes (8, 34) and phenotypic groups (35). (C) EMT pathway gene expression in all invasive organoids (n = 12). 
(D) Select pathways that are significantly enriched in differentially expressed genes between invasive (n = 12) and noninvasive counterparts (n = 11) from 
each of the 3 transcriptomic groups using Gene Ontology - Biological Processes. (E) Triangular plot using hypoxia, immune response, and mesenchymal 
development gene signatures on each axis.
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TWIST1, VIM, and FN1 (Figure 3C). Conversely, organoids in 
tG2 and tG3 showed higher expression of CDH1, SMAD3, MET, 
EGFR, and ERBB2 genes, which are associated with the TGF-β and  
phosphatidylinositol 3-kinase (PI3K) pathways. Interestingly, the 
organoids in tG3 exclusively showed lower expression of HIF1A, 
SMAD4, and FOXC2. These results show that unique gene mod-
ules within the EMT transcriptional programs are associated with 
distinct invasive phenotypes.

We next performed pathway analysis of Gene Ontology Biologi-
cal Processes (GO-BP), using differentially expressed genes between 
invasive organoids and their noninvasive counterparts in each of the 
3 transcriptomic groups (Figure 3D and Supplemental Table 5). The 
GO-BP enrichment revealed that all 3 transcriptomic groups of inva-
sive organoids had differentially expressed genes related to ECM 
organization compared with noninvasive counterparts, which further 
highlights the importance of extracellular signaling in local invasion. 
tG1, which contained only mesenchymal organoids, showed the most 
robust enrichment for mesenchymal development (EMT and mes-
enchymal cell differentiation) as well as cancer-ECM interactions 
(cell-substrate adhesion, cell-matrix adhesion, cellular response to 
growth factor/TGF-β stimulus). tG2, which contained only collec-
tive organoids, yielded fewer differentially expressed genes than 
other groups but showed enrichment in regulation of cell-substrate 
adhesion, basement membrane organization, and humoral immune 
response. The tG3 invasive organoids were enriched for actin cyto-
skeleton organization and regulation of cell morphogenesis. This 
analysis demonstrates that while some pathways are upregulated in 
invasive organoids in all transcriptomic groups, each group also has 
distinct pathways that define its invasive organoids.

Based on unique pathway enrichment in each transcriptomic 
group, we projected all invasive organoid cultures on a triangular 
spectrum using hypoxia, mesenchyme development, and immune 
response gene expression as each axis (Figure 3E). Each axis, read 
in a clockwise manner, shows the relative fraction of that signature 
expressed in each sample. For example, a sample located in the top 
corner would only express the hypoxia-related genes and not the 
other 2 gene sets. A robust segregation of 3 transcriptomic groups 
was recapitulated by these 3 pathways, demonstrating the role of 
mesenchymal features, hypoxia, and the immune response in defin-
ing the distinct molecular features of each group. Furthermore, the 
triangular plot highlights the cell state continuum of our organoids 
with respect to these gene sets, as most of the samples are not locat-
ed near a corner in the plot.

Neoadjuvant chemotherapy is increasingly employed in the clin-
ical care of PDAC patients, providing an important opportunity to 
study the impact of chemotherapy on invasion in organoids derived 
from surgically resected PDACs. Therefore, we next sought to assess 
invasion-associated transcriptomic alterations in human PDAC 
organoids from patients who underwent neoadjuvant chemotherapy. 
Using the same organoid dissection and RNA-seq pipeline, we ana-
lyzed organoids from 3 patients who were treated with neoadjuvant 
chemotherapy (FOLFIRINOX alone or FOLFIRINOX with gemcit-
abine/Abraxane) prior to surgery (Supplemental Table 1). Organoids 
from all 3 PDACs invaded with a mesenchymal phenotype, but these 
treated organoids had lower inverse circularity (P < 0.001) and lower 
mean invasive protrusions (3.6 vs. 5.2, P = 0.012 by unpaired t test) 
than organoids from treatment-naive PDACs (Figure 4A).

PCA analysis showed the transcriptomes of the invasive organ-
oid generated from neoadjuvant-treated tumors clustered with the 
tG1 organoids (untreated mesenchymal organoids) (Figure 4B). A 
differential gene expression analysis comparing the invasive and 
noninvasive organoids from chemotherapy-treated tumors yielded 
859 differentially expressed genes (FDR < 0.05) (Figure 4, C and D, 
and Supplemental Table 6). As expected, a majority of these differ-
entially expressed genes overlapped with differentially expressed 
genes from comparing untreated tG1 organoids to noninvasive 
counterparts (Figure 4C). Furthermore, we identified 16 differen-
tially expressed genes from comparing neoadjuvant therapy–treat-
ed invasive organoids to untreated tG1 mesenchymal organoids 
(P < 2 × 10–6) (Figure 4E). Among these genes, 6 genes, including 
SYT8 and HLAJ, were upregulated in the chemotherapy-treat-
ed organoids. We show the variance-stabilizing transform of the 
expression of select EMT related genes (SPOCK1, TGFBI, ZEB1, 
VIM) and classical subtype gene (GATA6) that were not different 
between chemotherapy-treated and tG1 organoids as well as select 
genes that were downregulated (BM6, ARNT2, PLAU) and upregu-
lated (SYT8, HLAJ) in the chemotherapy-treated organoids (Figure 
4F). Some of these have been associated with chemotherapy resis-
tance in other tumor types (38–41).

We next sought to examine whether the transcriptomic groups 
identified in our organoid data could be translated to other publicly 
available transcriptomic data from PDAC tissue.

First, we derived a minimal set of genes for tG1 and tG2 that 
belong to unique phenotypes (mesenchymal and collective, respec-
tively) and applied them to the 185 PDAC samples available in 
TCGA (Figure 5A) (3, 32). We found that by separating the patients 
into 2 groups based on their mean expression of these genes, the 
patients with high expression of genes from tG1 had a significant-
ly lower overall survival rate relative to the low tG1 group (Figure 
5B). Next, we leveraged publicly available human PDAC scRNA-
seq data (n = 24) with provided cell-type annotations (42), which 
allowed us to assess correlation of our transcriptomic groups with 
features of the tumor microenvironment. By applying gene sets of 
tG1 (6 mesenchymal organoid cultures) and tG2 (3 collective organ-
oid cultures) to the cancer cells in the human PDAC scRNA-seq data 
set, we confirmed that both tG1 and tG2 signatures are present in 
the PDAC scRNA-seq data. Tumors with PDAC cells showing the 
highest fraction of tG1 or tG2 signatures were designated as tG1 (n = 
8) or tG2 (n = 9) groups. In addition, we also found some tumors that 
contained neither transcriptomic group (n = 7). In these groups, we 
identified significant differences in the proportion of cancer cells 
and non-neoplastic cells within the tumor microenvironment (Fig-
ure 5C). Tumors with neoplastic cells expressing the tG2 signature 
had a significantly higher proportion of neoplastic cells and T and B 
cells in the tumor microenvironment when compared with the tG1 
group tumors. Moreover, the microenvironment of the tG1 tumors 
had a higher proportion of fibroblasts than the tG2 and neither 
groups. Lastly, tumors that express neither the tG1 or tG2 signatures 
had the largest fraction of neoplastic cells and the least immune 
infiltration in the tumor microenvironment.

Next, we compared the fibroblast subpopulations to further 
examine the distinct tumor microenvironment compositions of 
the tG1, tG2, and neither-group tumors from the PDAC scRNA-seq 
data set. Intriguingly, we observed differences in inflammatory and 
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myofibroblastic cancer-associated fibroblast (iCAF and myCAF) 
enrichment between these groups of tumors. While the tG1 and nei-
ther-group tumors showed higher proportions of fibroblasts express-
ing the myCAF signature (43), the tG2 tumors’ fibroblasts consisted 
of higher fractions of iCAFs (Figure 5D). We next compared our 
transcriptomic groups in this scRNA-seq data set to the Moffitt et al. 
subtyping scheme (8). We found that patients with majority classi-
cal cells had a higher fraction of cells with tG2-related genes and the 
patients with majority basal cells had higher fractions of cells that 

express the tG1 genes (Figure 5E). These observations showed again, 
in an independent data set, that our transcriptomic groups from the 
organoid model align well with the Moffitt subtypes (as in Figure 3B).

To validate our findings, we performed immunohistochemical 
labeling of T cells (CD3), B cells (CD20), myofibroblasts (αSMA), 
and macrophages (CD68) on sections of primary tumor tissue from 
our original cohort (Figure 5F). For each cell type, we calculated the 
density of the cells/tumor area (100 μm2) (Figure 5G). The PDACs 
that gave rise to collective organoids showed significantly higher  

Figure 4. PDAC organoids from patients receiving neoadjuvant chemotherapy display similar invasion-associated transcriptional alterations to those 
of treatment-naive organoids. (A) Inverse circularity scores of mesenchymal organoid cultures generated from untreated (mesenchymal organoids, n = 
8) and neoadjuvant-treated (treated, n = 3) PDACs (Wilcoxon’s test, P = 8.1 × 10–5). (B) PCA of gene expression in collective (n = 4), mesenchymal (n = 8), 
and treated organoids (n = 3). (C) Differentially expressed (DE) genes between neoadjuvant-treated invasive and noninvasive organoids (FWER 0.05) and 
overlap with DE genes between mesenchymal organoids and noninvasive counterparts. (D) Pathway analysis of mesenchymal and treated organoids using 
Gene Ontology - Biological Processes. (E) DE genes between treated and mesenchymal organoids. (F) mRNA expression levels of indicated genes in mes-
enchymal (n = 8) and treated organoids (n = 3). Each dot represents an organoid culture. In the box-and-whisker plots, the box outlines represent the 25th 
to 75th percentiles, horizontal lines represent medians, and whiskers extend to 1.5 × IQR.
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based on the application of our transcriptomics signatures to the 
independent scRNA-seq data set (Figure 5, C and D).

In order to identify ligands from fibroblasts that could be driv-
ing the transcriptomic signature in tG1, we conducted ligand-target 

density of T cells than the tumors that produced mesenchymal 
organoids (P = 0.0042, t test). Conversely, PDACs that gave rise to 
mesenchymal organoids had higher density of myofibroblasts (P 
= 0.037, t test). These patterns are consistent with our predictions 

Figure 5. Application of organoid invasion signatures to primary PDAC scRNA-seq data reveals different cellular compositions in the tumor microenviron-
ment. (A) Pancreatic cancer samples from The Cancer Genome Atlas (PAAD from TCGA) ordered by their expression score of tG1 and tG2 genes (the score was 
calculated using Ucell R package of positive expression of tG2 genes and negative expression of tG1 genes). This gene expression score is annotated in green at 
the top of the figure. The second annotation bar shows the Moffitt et al. (8) basal and classical subtypes for these samples. (B) A Kaplan-Meier curve of high 
and low tG1 signature–expressing tumors in TCGA cohort (n = 185). (C) Average fractions and error bars showing SD of neoplastic cells, T and B cells, fibroblasts, 
macrophages, and other cell types within tG1 (n = 8), tG2 (n = 9), and neither (n = 7) tumors in the Peng et al. (42) scRNA-seq data set. (D) Average fractions 
and error bars showing SD of fibroblast subpopulations in tG1 (n = 8), tG2 (n = 9), and neither (n = 7) tumors from Peng et al. scRNA-seq data set. (E) Fraction 
of tumor cells that express tG1 genes (x axis) and tG2 genes(y axis) within each PDAC in the Peng et al. scRNA-seq data set. Each patient’s Moffitt et al. 
subtype is shown in the color legend. (F) Representative images of immunohistochemical staining showing the density of CD3+ T cells in primary tumors that 
produce mesenchymal and collective organoids. Scale bars: 200 μm. (G) Quantification of the density of B cells, T cells, myofibroblasts, and macrophages/
tumor area (100 μm2) on tissue sections of primary PDACs (6 tumors that generated mesenchymal organoids and 3 that generated the collective organoids), 
which shows statistically significant differences in fractions of myofibroblasts (P = 0.037, t test) and T cells (P = 0.0042, t test). Each dot represents 1 tumor.  
In the box-and-whisker plots, the box outlines represent the 25th to 75th percentiles, horizontal lines represent medians, and whiskers extend to 1.5 × IQR.
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results of the organoid transcriptomic profiling provide important 
insights into the molecular programs that underlie invasion. We 
identified significantly differentially expressed genes, including 
COL7A1, SPOCK1, and OLR1, when comparing invasive organoids 
with noninvasive organoids from all patients (Figure 2). These genes, 
which were associated with worse prognosis in an independent 
cohort, suggest a conserved molecular program that drives invasion.

In addition, clustering of the transcriptomes of the invasive 
organoids from each patient revealed 3 molecularly distinct groups, 
suggesting some heterogeneity in the molecular invasion programs 
between patients. Two of these groups contained only organoids 
of a single morphological invasive phenotype, confirming that 
these distinct phenotypes leverage different molecular programs 
to invade. However, the third group was mixed in phenotype. This 
indicates that our phenotypic classification of organoid invasion 
captures molecularly distinct groups, but all of the molecular differ-
ences are not evident morphologically. Although our transcriptomic 
groups were derived using whole transcriptome data, we were able 
to recreate the groups using only pathways related to mesenchy-
mal development, hypoxia, and immune response, highlighting 
that these are among the key molecular pathways in the distinct 
mechanisms of PDAC invasion. In addition, our results under-
score the heterogeneity of invasive potential of cancer cells within  
each patient. Every tumor sample produced both invasive and non-
invasive organoids, demonstrating that all PDAC cells within a giv-
en patient are not equally invasive.

Multiple previous studies have performed transcriptomic pro-
filing of primary human PDAC tumors, producing several proposed 
classification schemes (10–13). Recent integration of these data has 
delineated 2 consensus transcriptomic groups, typically termed clas-
sical and basal, with basal tumors having a worse prognosis (8). Our 
organoid transcriptomic groups overlap substantially with the gene 
signatures for the classical and basal groups (Figure 3). This concor-
dance suggests that our signatures derived from RNA-seq of organoid 
cultures are relevant to human PDACs in vivo. In addition, it suggests 
functional and molecular differences in the programs of invasion 
in these previously defined subgroups. This functional difference is 
also highlighted in the overlap of our groups from the signatures of 
“fast progressors” and “slow progressors” identified by intraductal 
injection of human PDAC organoids into the murine pancreas (35), 
suggesting that the fast and slow progressors are not only molecularly 
different but employ phenotypically distinct invasion patterns. The 
correlation of our tG1 signature with decreased overall survival is in 
line with associations of the basal and fast progressor subtypes (8), as 
well as our previous observation of worse prognosis in tumors giving 
rise to organoids with mesenchymal phenotype (21).

In addition to the 2 transcriptomic groups that discreetly contain 
mesenchymal and collective invaders, we identified a third transcrip-
tomic group containing organoids of both phenotypes. The existence 
of a third “intermediate” cell state has been proposed by recent bulk 
RNA-seq and scRNA-seq studies of human PDAC samples (11, 45). 
Moreover, multiple studies have reported cells with “biphenotyp-
ic” epithelial and mesenchymal features (sometimes referred to as 
partial EMT), underscoring the possibility for transitions between 
these states (46–48). However, while some transcriptomic features 
of tG3 align with intermediate cell states in other studies (49), sever-
al features of our data set suggest that tG3 is not simply a transition 

gene pairing analysis using NicheNet (44). We focused on fibro-
blasts in tG1 tumors because the tG1 group had the highest pro-
portion of fibroblasts in our analysis of scRNA-seq data, suggesting 
that fibroblasts could be a microenvironmental driver of invasion 
in tG1 tumors. For this ligand-target analysis, we used patient sam-
ples from the scRNA-seq data set that had high tG1 signatures. We 
used genes that were enriched in the fibroblasts from these patients 
as potential ligands. For potential target genes, we used genes that 
were enriched in the cancer cells from these patients compared with 
the patients in the “neither” group (Figure 6A). We further restrict-
ed our results to genes that were differentially expressed in tG1 mes-
enchymal organoids compared with their noninvasive counterparts. 
The analysis yielded several interesting ligand-target gene pairs, 
including ligands with previously reported roles in tumor cell inva-
sion (Figure 6B). In order to validate a subset of these ligands, we 
tested the impact of TGF-β1, IL-6, CXCL12, and MMP9 on invasion 
in 12 freshly derived human PDAC organoids cultures in collagen I 
gels (Figure 6, C and D), including 8 cultures with predominantly 
mesenchymal invasion, 3 cultures with predominantly collective 
invasion, and 1 culture containing both phenotypes. The proportion 
of the invasive and noninvasive organoids was similar between the 
control and the treatment groups (Figure 6E). However, the inverse 
circularity scores of TGF-β1–, IL-6–, CXCL12-, and MMP9-treated 
organoids were significantly higher than the controls in all analyzed 
PDAC organoid cultures (Figure 6F and Supplemental Figure 4). Of 
note, the invasive phenotypes were not altered by ligand treatment; 
cultures with predominantly collective invasion in control condi-
tions retained this phenotype with ligand treatment (Supplemental 
Videos 5 and 6). To determine whether ligand treatment altered the 
expression of genes associated with our transcriptomic groups, we 
performed quantitative reverse transcriptase PCR (qRT-PCR) of a 
panel of 3 genes from tG1 and 3 genes from tG2 on all ligand-treat-
ed organoid cultures from these 12 patients. Treatment with all 4 
ligands led to upregulation of tG1 genes and downregulation of 
tG2 genes (Figure 6G), supporting the hypothesis that ligands from 
fibroblasts enhance invasion via the tG1 transcriptomic program. 
Intriguingly, the upregulation of tG1 genes and downregulation of 
tG2 genes occurred in both mesenchymal and collective organoid 
cultures, demonstrating that upregulation of tG1 genes can also 
enhance collective invasion. Taken together, these results validate 
that TGF-β1, IL-6, CXCL12, and MMP9 enhance invasion in PDAC 
organoids, and the enhancement of invasion by these ligands (which 
were identified through analysis of tG1 samples) is not limited to a 
specific invasive phenotype. Among these ligands, IL-6 treatment 
resulted in the strongest enhancement of the invasive phenotype, 
as evidenced by the highest increase in the inverse circularity score. 
Some of the downstream genes of the IL-6 pathway are illustrated 
in Figure 6H and include TP53, JAK, STAT3, and JUN.

Discussion
In this study, we leveraged our organoid culture system of human 
PDAC samples, employing a unique dissection approach after cul-
ture in collagen I gels, to isolate organoids for molecular profiling 
based on their invasive phenotype. From each organoid sample, we 
separately analyzed invasive and noninvasive organoids, and the 
invasive organoids were further classified as mesenchymal or col-
lective, with a predominant phenotype in each patient sample. The 
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Figure 6. Identification and experimental evaluation of distinct ligand-receptor interactions between fibroblasts and tumor cells belonging to tG1.  
(A) A circos plot showing the 4 ligands that were tested experimentally and their target genes. (B) List of fibroblast ligand target genes and activation status 
in tG1 (n = 8), tG2 (n = 9), and neither (n = 7) group tumors. (C) Timeline of ligand treatment assay. (D) Representative images of the control, IL-6–, MMP9-, 
TGF-β1–, and CXCL12-treated collective and mesenchymal organoids after the ligand treatment assays. Scale bars: 50 μm. (E) Proportion of invasive (dark 
blue) and noninvasive (light blue) organoids per ligand condition (n = 12). (F) A metric of organoid invasive morphology (log2[1/circularity]) for control and 
ligand-treated mesenchymal (n = 9) and collective organoid cultures (n = 4). ****P ≤ 0.0001 by Mann-Whitney U test. Each dot represents a PDAC organoid; 
data are shown as box-and-whisker plots, with the box boundaries representing the 25th to 75th percentiles, horizontal lines representing medians, and 
whiskers that extend to 1.5 × IQR. Dashed line shows average shape metric across all 4 treatment groups. (G) qRT-PCR showing upregulation in mRNA levels 
of tG1 genes (MXRA8, SPARC, TGFBI) and downregulation in mRNA levels of tG2 genes (RND1, LGR4, CYP1A1) after ligand treatment assay (presented as 
mean ± SD for 12 patients). Day 0 samples and untreated controls showed no significant differences in mRNA expression levels of the genes (Student’s t 
test, P > 0.05); however, the differences between the control and all treated organoids were significant (Student’s t test, P < 0.01), except for the MXRA8 
gene in MMP9-treated cultures (Student’s t test, P > 0.05). (H) A prediction of downstream genes in the IL-6 pathway
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represent the minority of newly diagnosed PDAC patients (1, 2). 
Others have recently demonstrated the ability to derive organoids 
from small biopsy material (58, 59), opening the possibility to derive 
organoids from PDAC metastases. Assessment of these invasive 
phenotypes and transcriptomic programs in organoids across the 
PDAC stage spectrum is an important future direction. In addition, 
in order to better understand the native biology of invasion of PDAC 
cells, we focused mostly on PDACs that did not receive neoadjuvant 
chemotherapy. Our RNA-seq results on a limited number of treated 
PDACs suggest that they maintain similar invasion-associated tran-
scriptomic programs. In addition, we previously reported a similar 
prevalence of invasive phenotypes in organoids derived from surgi-
cally resected PDACs with and without neoadjuvant chemotherapy 
(21), and in the current study, these prevalences are similar in our 
initial transcriptomic analysis cohort (untreated) and ligand-valida-
tion cohort (treated), providing further evidence that neoadjuvant 
therapy does not alter invasive phenotype. Still, direct comparisons 
of pre- and posttreatment samples from the same patient will be 
required to fully understand the impact of chemotherapy on inva-
sion and its associated molecular alterations.

Our study leverages a sizable cohort of human PDAC organ-
oids processed through our organoid dissection and transcriptomic 
analysis pipeline in order to delineate the molecular programs that 
drive invasion. We identify transcriptomic groups that align with 
morphologically defined organoid invasion patterns, and through 
correlation with primary PDAC scRNA-seq data, we identify spe-
cific ligands from non-neoplastic cells that enhance invasion in 
our organoid model. Taken together, our results provide important 
insights into the molecular and cellular alterations that drive inva-
sion in human pancreatic cancer, highlighting potential strategies to 
inhibit invasion for novel therapeutic approaches.

Methods
Human pancreatic cancer specimens. Fresh tissue was harvested from 14 
surgically resected human pancreatic cancer specimens at the time of 
gross examination in Surgical Pathology at the Johns Hopkins University 
Hospital or the University of Mainz Medical Center.

Organoid generation. Organoids were generated from resected 
PDAC and pancreaticobiliary ampullary carcinoma as described in the 
literature (21). Fresh PDAC specimens were digested within 24 hours 
of surgical resection. Organoids were rinsed with a solution contain-
ing 10,000 U/mL penicillin, 10 mg/mL streptomycin (Sigma-Aldrich, 
P4333), and amphotericin B (Invitrogen, 15290026) in DPBS (Sigma-Al-
drich, D8537). Tumors were minced and shaken in digestion solution 
containing 1 mg/mL collagenase from Clostridium histolyticum (Sig-
ma-Aldrich, C2139), insulin (Sigma-Aldrich, I9278), penicillin-strepto-
mycin (Sigma-Aldrich, P4333), L-glutamine (Gibco, 25030081), and 5% 
FBS (Gibco, A4766801) in DMEM (Sigma-Aldrich, D6546) up to 2 hours, 
depending on the size of the tumor.

The cancer cell suspension was centrifuged for 10 minutes at 
1500 RPM at 4°C. The digestion media was aspirated, and 4 mL of 
DMEM/F-12 (Sigma-Aldrich, D6421) was added, and 40 μL of DNase 
(Sigma-Aldrich, D4263) was added and shaken for 3 minutes to remove 
any fragmented DNA in the digestion solution. The cancer cell suspen-
sion was centrifuged for 10 minutes at 1500 rpm at 4°C, and the pellet 
was washed with 10 mL of DMEM/F-12. The cancer cell suspension  
was placed on a tube rack to allow large stromal pieces to precipitate.  

or mixture of tG1 and tG2. In the 3-way transcriptomic comparison 
of the invasive organoids in our data set (Figure 3B), there was a set 
of genes that were uniquely upregulated in tG3 and not seen in tG1 
and tG2, and tG3 also had the highest expression of genes in the 
hypoxia gene signature (Figure 3E), suggesting that tG3 is a distinct 
rather than an intermediate transcriptomic group. Single-cell or spa-
tially resolved transcriptomic approaches in organoid models will be 
required in future studies to more robustly address this question.

When we applied these organoid-derived transcriptomic signa-
tures to scRNA-seq data from human primary PDACs, we found sig-
nificant differences in the non-neoplastic cells in the tumor microen-
vironment between PDACs with different predominant signatures. 
The suggested impact of the tumor microenvironment on invasion is 
supported by our previous studies in human PDAC organoids, which 
demonstrated attenuated invasion with passaging in epithelium-only 
culture (21). However, the differences in microenvironment between 
tumors with tG1 and tG2 signatures suggest that non-neoplastic cells 
in the surrounding microenvironment may impact not only the extent 
of invasion but also underlying molecular features. Using ligand- 
receptor analysis, we identified several ligands from fibroblasts with 
targets overexpressed in mesenchymal invaders in tG1. These includ-
ed multiple ligands with previously supported roles in cancer cell 
invasion, including TGF-β1, IL-6, CXCL12, and MMP9, underscoring 
the robustness of our approach. For example, we previously showed 
that TGF-β treatment can enhance invasion in some PDAC organoids 
(21), and previous PDAC-CAF coculture studies identified TGF-β1 
secreted from CAFs as a key mediator of tumor cell proliferation and 
EMT (50). In addition, multiple studies have demonstrated that IL-6 
can enhance migration of PDAC cell lines in 2-dimensional culture 
(51, 52). Other ligands, such as CXCL12 and MMP9, have docu-
mented roles in invasion in other tumor types, but their role in PDAC 
invasion remains to be explored in depth (53, 54). We experimentally 
validated several of these ligands in our PDAC organoid system, con-
firming their ability to enhance invasion in human PDAC cells. We 
also showed that while these ligands can alter the invasion-associated 
gene signatures, single ligand treatment does not shift the morpho-
logically defined invasive phenotype (collective or mesenchymal),  
at least in the time course of our validation experiments. Taken in  
the context of our previous work on PDAC organoids (21), these 
results suggest that the invasive phenotype is likely driven by a com-
bination of molecular alterations in tumor cells and alterations in cel-
lular composition of the tumor microenvironment.

Previous studies have reported utilization of human PDAC 
organoids for a range of organoid profiling questions, including 
drug response (55, 56) and growth factor dependency (57). Our 
approach employs human PDAC organoids grown in collagen I 
gels to interrogate the molecular programs underlying invasion. In 
this study, we analyzed freshly derived organoids from surgically 
resected human PDACs; the use of fresh organoids to assess tran-
scriptomic programs is important, as recent reports have shown a 
transcriptomic shift in human PDAC organoids after long-term pas-
saging in culture (45). However, the use of fresh organoids without 
expansion over passages in culture limits the quantity of organoids 
available for analysis, and some assays, such as murine implantation 
(35) or large-scale drug screening (55, 58), may not be possible with 
this approach in PDAC. Another important caveat is that our study 
included only organoids from surgically resected PDACs, which 
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RNA-seq library generation. Library preparation and RNA-seq were 
performed at the Single Cell & Transcriptomics Core at Johns Hopkins 
using the TruSeq stranded RNA-seq library kit (Illumina). Libraries were 
prepared using 30–100 ng of RNA from each culture. For every invasive 
and noninvasive pair, the starting RNA input was matched for library 
preparation. The libraries were sequenced on the Illumina Next-Seq and 
Nova-Seq platforms, with coverage of 40–60 million reads per sample. 
The quality of the reads was evaluated using FASTQC software (61).

Targeted DNA sequencing analysis. Targeted NGS sequencing was 
performed using the Solid Tumor gene list v4, which includes 432 can-
cer hotspot genes at Johns Hopkins Genomics. DNA was extracted from 
FFPE tissue specimens, captured with Kapa Roche reagents and Inte-
grated DNA Technology (IDT) probes, and sequenced using the Illu-
mina Hi-Seq and Nova-Seq platforms. Analysis was performed using 
human reference sequence genome assembly hg19 (GRCh37). Variant 
callers (MDL VC 9.0 and Haplotyper Genome Analysis TK-3.3) using the 
Bayesian statistical model were used to generate a list of variants. Mul-
tiple annotations and filtering algorithms, including the COSMIC data-
base v88 (62), dbSNP v150 (63), and Annovar (64), were used to confirm 
mutation status. Furthermore, DNA mutations with variant allele fre-
quency greater than or equal to 0.25 were filtered out to exclude germ-
line mutations. Copy number alterations were called when the log2(mean 
chromosomal copy number) was greater than or equal to 1.3 (amplifica-
tion) or less than or equal to –1.0 (loss). These annotations were reviewed 
by a team of laboratory technologists, genetic analysts, and pathologists.

RNA-seq analysis. The human genome was obtained in FASTA 
format (GRCh38) from Ensembl (65) and gene set annotation in GTF 
format. The hisat2 indices were built from the genome index using 
hisat2-build from Hisat2 version 2.1.0 (66). Raw RNA-seq paired-end 
reads were aligned to the genome using hisat2 after trimming with 
TrimGalore (67). The total reads per sample ranged from 37–62 million 
and the alignment mapping rate was greater than 90%. We next used 
DESeq2 (68) to estimate differential gene expression between invasive 
and noninvasive organoids in each invasion mode from the counts gen-
erated by HTSeq (69). We used standard DESeq2 parameters to exclude 
genes with no reads and those with P values set to the nominal value of 
1. Additionally, we removed genes with low read count by requiring an 
average of 5 reads per patient sample.

Pathway analysis. We performed pathway analysis using the R pack-
age clusterProfiler (70) for KEGG (71) and GO (72, 73) and our own 
algorithm for gene set enrichment analysis of the MSigDB pathways 
from the Broad Institute (74). The triangular plot in Figure 3E was creat-
ed using the R package Plotrix (75) using the triax.plot function and the 
pathways used were cancer hypoxia (76), mesenchyme development 
(72, 73), and immune response (8).

NMF analysis. We performed NMF (77) on all 12 cultures with organ-
oids that invaded the collagen I matrix. We used variance-stabilizing 
transformation of the count data and identified 3 distinct groups in the 
analysis (parameters nrun = 250 and others set to default). We extracted 
the feature genes for each of the 3 groups and cross-referenced them 
with genes that were differentially expressed between invasive organ-
oids in each NMF group relative to their noninvasive counterparts.

scRNA-seq analyses. We used publicly available scRNA-seq data for 24 
primary PDAC tumors (42). These data were selected due to their large 
size (39,646 cells from 24 PDAC patients) and high number of CAFs (5,823 
cells) relative to other currently available data sets. Cell-type annotations, 
including subtypes based on established phenotypes for epithelial cancer 

The supernatant containing organoid and single-cell suspensions was 
moved to a new tube to repeat 5 seconds of centrifugation and washing 4 
times with DMEM/F-12. In general, 20 μL of cell suspension contained 
20–30 organoids, and this number was checked under a microscope to 
plate 50–60 organoids per dome. Collagen I gel was prepared as pre-
viously described (21, 55). Collagen I was mixed with 10× DMEM and 
1N NaOH to result in 3.34 mg/mL collagen (Corning, collagen I, rat, 
354236). The collagen solution was incubated in ice for 30 minutes until 
collagen fiber formation was initiated. The collagen gel was then mixed 
with an organoid pellet and plated on a 60-mm dish (Corning, 430166) 
in a flattened dome shape and was solidified at 37°C for 30 minutes. 
After the collagen I gel solidified, the pancreatic organoid media contain-
ing insulin (Sigma-Aldrich, I9278), GlutaMAX (Gibco, 35050061), Pen-
Strep (Sigma-Aldrich, P4333), 0.0075% BSA (Sigma-Aldrich, A9647), 
cholera toxin (Sigma-Aldrich, C8052), and human EGF (Sigma-Aldrich, 
E9644) in DMEM (Sigma-Aldrich, D6546) was added.

Microscopy. Representative images of invasive and noninvasive 
organoids were acquired using a Nikon Ti-E inverted microscope on 
day 5 or 6 of culture, 1–2 days prior to collection. All images were taken 
at ×10 magnification.

Organoid collection. The manual collection of individual organoids 
was performed on an inverted microscope (Nikon TMS). Prior to collec-
tion, the pancreatic organoid medium was aspirated and replaced with 2 
mL of PBS to prevent the collagen I gel from drying. A pair of extra-fine 
forceps (Excelta 5-SA-SE Tweezer), each designated for the invasive or 
noninvasive phenotype, was used. Briefly, the organoid of interest was 
identified, and many small holes were made in the collagen gel around it. 
Then, the collagen I gel surrounding the organoid of interest was gently 
grasped by the forceps and transferred to a tube. After the collection, 1 
mL of TRIzol (Invitrogen, 15596026) was added to each tube, and the 
tubes stored at –80°C until RNA extraction.

Immunofluorescent staining. Whole domes containing organoids 
were fixed with 4% paraformaldehyde overnight (Electron Microsco-
py Sciences, 157-4) and stored in DPBS (Sigma-Aldrich, D8537) until 
imaging. Organoids were permeabilized with permeabilization buf-
fer containing 0.5% Triton X-100 (Sigma-Aldrich, T9284) in DPBS. 
Blocking buffer (10% FBS, 1% BSA, 0.1% Triton X-100 in DPBS) 
was used for blocking nonspecific sites. Primary antibodies against 
pan-CK (Cell Signaling Technology, 4545S), OLR1 (Invitrogen, PA5-
80872), SPOCK1 (Abcam, ab229935), and COL7A1 (Invitrogen, PA5-
139764) were diluted at 1:400 (pan-CK and OLR1), 1:300 (SPOCK1), 
and 1:25 (COL7A1) in antibody dilution buffer (1% FBS, 1% BSA, 0.1% 
Triton X-100 in DPBS) and incubated on a tilting shaker overnight at 
4°C. The next day, organoids were washed with DPBS for 10 minutes 
on a shaker 3 times. Next, secondary antibodies (Invitrogen, A31572 
and A11001) in antibody dilution buffer were incubated 3 hours. 
Finally, DAPI (Invitrogen D21490) in dilution buffer was added and 
incubated for 10 minutes before imaging. All dilution buffer and DPBS 
were aspirated prior to imaging.

The immunofluorescence protocol for PDAC FFPE sections was 
the same except for the additional antigen retrieval process. Briefly, the 
FFPE sections were immersed in xylene to remove paraffin and washed 
by dipping in serial ethanol and deionized water. Lastly, the FFPE sec-
tions were incubated in sodium citrate buffer (pH 6.0) at 100°C. Finally, 
the stained slides were coverslipped. All images were acquired using a 
Nikon A-1 Confocal microscope and Nikon Ti-E inverted microscope, 
and image processing was performed using ImageJ (60).
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Hs.PT.58.40018323), SPARC (IDT, Hs.PT.58.24878442), MXRA8 (IDT, 
Hs.PT.58.27513130.gs), LGR4 (IDT, Hs.PT.58.22915883), RND1 (IDT, 
Hs.PT.58.26229791), and CYP1A1 (IDT, Hs.PT.58.219047). The relative 
mRNA expression levels were calculated using the comparative thresh-
old cycle (dCt) method and normalized to GAPDH as the reference gene 
(IDT, Hs.PT.39a.22214836).

Statistics. Statistical analyses, including the Mann-Whitney U test,  
χ2 test, and 2-tailed Student’s t test comparing the clinical and pathological 
features of tumors and organoid inverse circularity scores were conduct-
ed using SPSS software v28 (IBM). The Mann-Whitney U test, comparing 
fraction of immune cells and fibroblasts in organoid cultures with differ-
ent invasive morphologies and comparing inverse circularity of organoids  
with and without stimulatory ligands (IL-6, CXCL12, MMP9, and TGF-β1), 
was implemented in R version 4.0.4 (https://cran.r-project.org/).

Study approval. This study was approved by the Institutional Review 
Boards of the Johns Hopkins University Hospital and the University of 
Mainz Medical Center. All patients provided written informed consent.

Data availability. RNA-seq data are available via direct request from 
the corresponding author.
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cells (basal-like and classical gene expression programs) (8) and CAFs 
(myofibroblastic and inflammatory properties) (78) were obtained. Brief-
ly, the Seurat package (v4.0.1) (79, 80) for R statistics (v4.0) was utilized 
to calculate gene set scores for cells within the epithelial cancer or CAF 
populations. Cancer cells with a positive basal-like score and negative 
classical score were classified as basal, whereas cancer cells with a neg-
ative basal-like score and positive classical score were defined as classi-
cal (otherwise dual-positive or dual-negative). Fibroblasts with a positive 
myofibroblastic score and negative inflammatory score were classified as 
myCAFs, whereas fibroblasts with a negative myofibroblastic score and 
positive inflammatory score were defined as iCAFs (otherwise dual-posi-
tive or dual-negative). Exploration and validation of the organoid-derived 
transcriptomic programs tG1 and tG2 was conducted by calculating the U 
score of their signature genes in the cancer cells. Patients were classified in 
either group if at least 20% of their cancer cells expressed that signature. 
After splitting the patients into tG1, tG2, or neither-expression groups, we 
quantified the combination of other cell types within their tumors.

Ligand-target gene analysis. To identify ligands on fibroblasts that 
could be responsible for gene expression changes observed on the can-
cer cells, we used the R package NicheNet (44) to infer ligand-target gene 
pairs. This algorithm incorporates intracellular signaling and transcrip-
tional regulation to go beyond ligand-target pairing. We used the nichen-
et_seuratobj_cluster_de function, with the sender cell being fibroblasts 
from patients that belong to the tG1 group and the receiver cell being 
differentially expressed in the cancer cells belonging to the tG1 group 
relative to other cancer cells.

Immunohistochemistry and analysis. Antibodies against CD3 (DAKO, 
A045201-2; 1:100), CD20 (Roche/Ventana, 760-2531; prediluted), and 
CD68 (Roche/Ventana, 790-2931; prediluted) were used to label T 
cells, B cells, and macrophages on sections of primary tumors. For anal-
ysis, stained slides were scanned and HALO software v3.5 (Indica Labs) 
was used to annotate the tumor regions on the given sections. Multiple 
parameters, including a range of staining positivity threshold and nucle-
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