SUPPLEMENTAL MATERIAL

For paper entitled "FTO fuels diabetes-induced vascular endothelial dysfunction associated with inflammation by erasing m⁶A methylation of *TNIP1*"

Chuandi Zhou^{1#}, Xinping She^{1#}, Chufeng Gu^{1#}, Yanan Hu¹, Mingming Ma¹, Qinghua Qiu¹, Tao Sun², Xun Xu^{1*}, Haibing Chen^{3*}, Zhi Zheng^{1*}.

Authors: Chuandi Zhou^{1#}, Xinping She^{1#†}, Chufeng Gu^{1#}, Yanan Hu¹, Mingming Ma¹, Qinghua Qiu^{1§}, Tao Sun², Xun Xu^{1*}, Haibing Chen^{3*}, Zhi Zheng^{1*}

Institutional affiliations:

¹Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai engineering center for precise diagnosis and treatment of eye diseases.

²Shanghai Eye Diseases Prevention & Treatment Center Shanghai Eye Hospital; Shanghai General Hospital; National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases.

³Department of Endocrinology and Metabolism, Shanghai 10th People's Hospital, School of Medicine, Tongji University

[†]Current Affiliation: Division of Ophthalmology, The Affiliated Hospital of Hangzhou Normal University

[§]Current Affiliation: Department of Ophthalmology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine [#]Chuandi Zhou, Xinping She and Chufeng Gu contributed equally to this paper.

*Zhi Zheng, Xun Xu and Haibing Chen are corresponding authors.

Supplemental material consisted of 11 supplemental figures and 6 supplemental tables.

Supplemental Figure 1. FTO is elevated upon high glucose both in vitro and in vivo.

(A) A diagram showing patient sample collection. Representative fudus photographs of recruited patients with diabetic retinopathy (DR) and idiopathic epiretinal membrane (ERM) (preoperative: the first column; intraoperative: the second column). Blue arrow: extensive fibrovascular membranes; Red arrow: neovascularization on fibrovascular membranes; Black arrow: epiretinal membrane formed on macular. (B) A schematic diagram of induction of diabetes and phenotype experiments in mice. (C) Gene tracks based on RNA-seq of Fto using Integrative Genomics Viewer (IGV) in normal and diabetic mouse retinas. DR, diabetic retinopathy; rpm/bp, reads per million mapped reads per base pair. (D and E) qRT-PCR reveals higher levels of FTO in murine retinas with type 1 (D, n=6) or type 2 (E, n=6) diabetes (Mann-Whitney U test). (F and G) Western blotting shows elevated expression of FTO in murine retinas with type 1 (F, n=6) or type 2 (G, n=6) diabetes (Student's t test). (H) Western-blotting shows upregulated FTO treated by high glucose in human retinal microvascular endothelial cells (HRMECs) (n=3). NG, normal glucose (5.5 mM) with Dmannitol as osmotic control; HG, high glucose (30 mM). (I) Western-blotting indicates FTO expression is elevated with increasing concentrations of glucose administered to HRMECs (n=3). (J) Immunofluorescence shows reduced level of m⁶A and upregulated FTO in HRMECs treated with increasing concentrations of glucose (n=3, scale bar: 20 µm). (K, L) qRT-PCR shows overexpression (K, n=6) and knockout (L, n=6) efficiency of *Fto* by intravitreal injection of adeno-associated virus (AAV). (M) Immunofluorescence shows successful transfection of AAV in retinal vascular endothelial cells to modulate the expression of FTO (scale bar: 10 µm; zoom figure: scale bar: 20 µm). For H-L, significant differences are determined by Kruskal-Wallis's test followed by Bonferroni's post hoc comparison test. Data are shown as the mean \pm SD. *p<0.05. n.s., statistically not significant.

Supplemental Figure 2. FTO promotes inflammation, proliferation and apoptosis upon high glucose both *in vivo* and *in vitro*.

(A) ELISA assays demonstrate EC-specific *Fto*-deficient (EC $Fto^{\Delta/\Delta}$) mice have lower levels of interleukin (IL)-1 β and IL-18 in retina after introduction of diabetes (n=3). (B, C) qRT-PCR shows overexpression (B, n=6) and knockout efficiency (C, n=6) of *FTO* by overexpression plasmid and small interfering RNA (siRNA), respectively. (D) Western-blotting shows upregulated FTO in human retinal microvascular endothelial cells (HRMECs) after transfecting with overexpressed

plasmid (n=3, Student's t test). (E) Western-blotting displays upregulated FTO upon high glucose in HRMECs, and FTO is successfully knockout by siRNA (n=3). (F) ELISA assays display an elevation of IL-1 β and IL-18 in HRMECs treated by high glucose, and this trend can be reversed by silencing *FTO* (n=3). (G) EdU assays indicates silencing *FTO* suppressed the proliferation of HRMECs induced by high glucose. The nuclei were stained with Hoechst (blue) (n=4, Scale bar: 50 µm). (H) Flow cytometric analysis demonstrates *FTO* knockdown alleviates apoptosis of HRMECs treated by high glucose (n=3). (I) Flow cytometric analysis indicates *FTO* overexpression aggravates apoptosis of HRMECs (n=3, Student's t test). (J) ELISA assays display overexpressed *FTO* lead to an elevation of IL-1 β and IL-18 (n=3, Student's t test). NG, normal glucose (5.5 mM) with D-mannitol as osmotic control; HG, high glucose (30 mM). For A-C, E-H, significant differences are assessed by 1-way ANOVA or Kruskal-Wallis's test followed by Bonferroni's post hoc comparison test. Data are shown as the mean \pm SD. *p<0.05.

Supplemental Figure 3. Silencing *Fto* inhibits inflammation and tube formation induced by high glucose in both mice cardiac endothelial cells (MECEs) and mice renal glomerular endothelial cells (MRGECs).

(A, B) Western-blotting displays upregulated FTO upon high glucose in both MECEs (A, n=3, Student's t test) and MRGECs (B, n=3, Student's t test). (C, D) ELISA assays show silencing *Fto* suppresses elevated interleukin-1 β (IL-1 β) and IL-18 stressed by high glucose in both MECEs (C, n=6) and MRGECs (D, n=6). (E, F) Silencing *Fto* inhibits tube formation induced by high glucose in both MECEs (E, n=3, scale bar: 200 µm) and MRGECs (F, n=3, scale bar: 200 µm). The average number of tube formation for each field was assessed. NG, normal glucose (5.5 mM) with D-mannitol as osmotic control; HG, high glucose (30 mM). For C-F, significant differences are determined by 1-way ANOVA or Kruskal-Wallis's test followed by Bonferroni's post hoc comparison test. Data are shown as the mean \pm SD. *p<0.05. n.s., statistically not significant.

Supplemental Figure 4. Enrichment analyses of differentially expressed genes in diabetes.

(A) Pie charts exhibit the distribution of m⁶A peak in different RNA regions (CDS, 5' UTR, 3' UTR and stop codon) in normal and diabetic murine retinas. (B) The distribution of the genes with 1, 2, 3, 4 and 5 or more m⁶A peaks in normal and diabetic murine retinas. (C) Gene ontology (GO) analysis for differentially expressed genes in diabetic reitnas based on combined RNA-seq and MeRIP-seq. (D) Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis for differentially expressed genes in diabetic reitnas based on combined RNA-seq and MeRIP-seq. DR, diabetic retinopathy. (E) Gene tracks based on RNA-seq of *Tnip1* using Integrative Genomics Viewer (IGV) in normal and diabetic mouse retinas. DR, diabetic retinopathy; rpm/bp, reads per million mapped reads per base pair.

Supplemental Figure 5. *TNIP1* attenuates inflammation, proliferation and apoptosis stressed by high glucose.

(A) Western blotting displays reduced expression of TNIP1, accompanied by upregulated FTO, in retinal fibrovascular membranes of patients with retinopathy due to type 2 diabetes (n=6, Student's t test). (B, C) qRT-PCR shows suppressed expression of *Tnip1* in both diabetic murine retinas (B, n=6, Student's t test) and human retinal microvascular endothelial cells (HRMECs) cultivated in high glucose (C, n=6, Student's t test). NG, normal glucose (5.5 mM) with D-mannitol as osmotic control; HG, high glucose (30 mM). (D, E) qRT-PCR shows overexpression (D, n=6) and knockout (E, n=6) efficiency of *Tnip1* by intravitreal injection of adeno-associated virus (AAV). (F) Immunofluorescence shows successful transfection of AAV in retinal vascular endothelial cells to modulate the expression *Tnip1* (scale bar: 10 µm; zoom figure: scale bar: 20 µm). (G, H) qRT-PCR shows overexpression (G, n=6) and knockout efficiency (H, n=6) of Tnip1 by overexpression plasmid and small interfering RNA (siRNA), respectively. (I) ELISA assays demonstrate overexpressed *TNIP1* suppresses the enrichment of interleukin-1 β (IL-1 β) and IL-18 in human retinal microvascular endothelial cells (HRMECs) treated by high glucose (n=3). (J) EdU assays displays TNIP1 impedes the proliferation of HRMECs cultivated in high glucose. The nuclei were stained with Hoechst (blue). (n=4, scale bar: 50 µm). (K) Flow cytometric analysis demonstrates TNIP1 alleviates apoptosis of HRMECs treated by high glucose (n=3). NG, normal glucose (5.5 mM) with D-mannitol as osmotic control; HG, high glucose (30 mM). For D-E, G-K significant differences are assessed by Kruskal-Wallis's test followed by Bonferroni's post hoc comparison test. Data are shown as the mean \pm SD. *p<0.05.

Supplemental Figure 6. FTO regulates inflammation and apoptosis in diabetes-induced retinal vascular endothelium dysfunction via mediating TNIP1.

(A) FTO reduces mRNA level of *TNIP1* in human retinal microvascular endothelial cells (HRMECs) (n=3). (B) *TNIP1* knockout partially reverses the trend of decreased interleukin-1 β (IL-1 β) and IL-18 caused by silencing *FTO* in HRMECs (n=3). (C) Silencing *TNIP1* limits the suppression effect of tube formation induced by *FTO* knockdown. The average number of tube formation for each field

was assessed (n=4, scale bar: 200 μ m). (D) Silencing *TNIP1* partially reverses the trend of reduced apoptosis induced by *FTO* knockout in HRMECs (n=3). (E) Co-immunoprecipitation (Co-IP) assays reveal direct interaction between TNIP1 and A20. (F) Co-IP assays identify direct interaction between TNIP1 and IKK γ . (G) Co-IP assays indicate TNIP1 promotes A20-mediated deubiquitination of IKK γ . NG, normal glucose (5.5 mM) with D-mannitol as osmotic control; HG, high glucose (30 mM). All significant differences are assessed by 1-way ANOVA or Kruskal-Wallis's test followed by Bonferroni's post hoc comparison test. Data are shown as the mean \pm SD. *p<0.05.

Range 1: 9	9 to	746	Graphics
------------	------	-----	----------

	Score		Expect	Identities	Gaps	Strand	-
	248 bits(274)	2e-69	532/775(69%)	59/775(7%)	Plus/Plus	-
Human	Query	9	TGTGTCATTTGGC	ICCACCTTCATCTTGC	AGAGCCAGCTGATCTC	AGATTGCCAAGAAAC	68
Mouse	Sbjct	9	TGGGTCATTTGGT	ICCACCTTCATCTTTC	AGAGCCAGCTGACCTC	AGATTGCCAA-AAGT	67
Human	Query	69		GCACGGTGTGGC	CAGAGCCTCAGCTGGA		123
Mouse	Sbjct	68	TTGAAGGCCATGT	GCATGTTCTGTGTGAC	CCAAGCCTTGGCAG-A	GGAGAGGCTGGGATG	126
Human	Query	124	GGTGGCCAGCTTG		ACTGAGCTGTTTACAG		182
Mouse	Sbjct	127	GGTAGCTGGCTCA	CATCCCCAG-CCAAGC	CTCGAACTGTTGACAA	GACCAGGGAGAATCC	185
Human	Query	183			GGGAGTGACTGGGAAA		241
Mouse	Sbjct	186	ACCCATG-GGCGCG	CCACCAGGT-TCTTAT	GGATGCAAGCAGGAGA	AGCTCAACACCCTGC	243
Human	Query	242			GGCTTTGACCCACCAT		297
Mouse	Sbjct	244	CTCTTGCCAAGAC	AAG-GAAGCCTCACCT	GGCTTTGACCTGCCAT	CCGTTGCTGAGGCCA	302
Human	Query	298			CAGCCAAGACCCCCTT		357
Mouse	Sbjct	303	CTGGCTTCCA	ICCTAAGAATGAGGTG	CAAC-AAGACCCCATT	CTCACAGAACCTCAA	358
Human	Query	358	GGAAGTGGTTTCAG		TGACCAATTTGTGTGTG		417
Mouse	Sbjct :	359	AGACTTGGTTCCA	GCTCTCCAGAGACCA	TACCCAACTCATGTGC	ATGTGCCGTTTTTGC	418
Human	Query	418		GCAGGACCTGCCCCAC	GCACACCCCTAC		473
Mouse	Sbjct	419	TTCAAGCTCAGTA	GCAGGACCTGCCCCGA	GCCCCCTGCTCCTTGC	CCTCTGTGAGGAGT	478
Human	Query	474	TGTGGGAAGTGTG		AGAAGAGAATGAT-GG		532
Mouse	Sbjct	479	TACGGAGAGG	GCTTTGTCTCTAGAGC	AGAAGAGAATGATGGG	ACGGCCTGATGCTGT	535
Human	Query	533	GGCCCTCTCCAC		CCTTGCTGA-AGCCAT	CACAGATGGGA-G	586
Mouse	Sbjct	536	CATGCTCTCCACT	GCACCTGTGGCAG	-CCTCCTGAGAGCCAC	CA-AGATCTGGGATG	590
Human	Query	587	AAGGCCATGCCAG	CCACGTCCGCCGAGGG	GCGCCAGCCTGAAGCT	GCCAGGCCCTGAGGT	646
Mouse	Sbjct	591	AAGGCCACACCAG	CCATGTCTGCTGAAGG	GCCCCAGACTGA	 GA	633
Human	Query	647	TCAGACCCTGGAC				706
Mouse	Sbjct	634		IIIIIIIIIIIIII ICCACAGTTAGATGTT		I	691
Human	Query	707	GTCCATCCCTGGA	IAGCTATTTGCACGAA	TCATGGACATAAATCC	AAGTTGAAGA 761	
Mouse	Sbjct	692	GTCTGTTGCTAGG	CAGCCGTTTGCACAAA	TCTTGGACATAAATCC	AACTTGAAGA 746	

Supplemental Figure 7. *TNIP1* gene homology comparison between human and mouse. *TNIP1*homology analysis with Basic Local Alignment Search Tool (BLAST) between human and mouse genomes.

Range 1: 12 to 744 Graph	ICS
--------------------------	-----

	Score 233 bits	(258)	Expect 4e-65	Identities 530/774(68%)	Gaps 65/774(8%)	Strand Plus/Plus	-
Human	Query	12	GTCATTTGGCTCC	ACCTTCATCTTGCAGA	GCCAGCTGATCTCAGAT	IGCCAAGAAACTAG	71
Rat	Sbjct	12	GTCACTTGGTTCT		 GCCAGCTGACCTCAGAT		71
Human	Query	72			GCCTCAGCTGGATGAGA	GGCTGAGATGGG	125
Rat	Sbjct	72	AGGCCATGTGCATC	GTTCAGTGTGACCCAA	GCCTTGGCAGAAC-AGA	GGCTGGGAGGGGCA	130
Human	Query	126			CTGAGCTGTTTACAGGA		183
Rat	Sbjct	131	GATGGCCACAT	CCCCAG-CCAAGCT	 CT-AGCTGTTTACAAGA	IIIIII CTAGGAAGAATCTA	184
Human	Query	184			GGAGTGACTGGGAAAAA	CTCCTT-CCCTGC-	241
Rat	Sbjct	185	CCCGTGAGGCCTC	CACCAGGT-TCTTCTG	GATGCAGCCAGGAGAAA	CTCAACACCCTGCC	243
Human	Query	242		AGAGAGGCCTCATCCG	GCTTTGACCCACCATCC	GTTGCAGAAGCCTC	298
Rat	Sbjct	244	TCTTGCCAAGACCA	AG-GAGGCCTCACCTG	GCTTTGACCTGCCATCT	GTTGCCGAGGCCAC	302
Human	Query	299	CAGGAGCAGCAAT	CCTAAGAGTGGGAGGC.	AGCCAAGACCCCCTTCC	I-TCAAAACCTCCC	357
Rat	Sbjct	303	TGGCTTCCAT	CCTAAGAGTGGGGTGC	AAC-AAGACCCC-TTCC	ICTCAGAACCTCAA	357
Human	Query	358	GGAAGTGGTTTCAC		TGACCAATTTGTGTGTG'		417
Rat	Sbjct	358	AGACTTGGTTCCAC	GCTCTCCAGAGACCA	CACCCAGTTCGTGTGCA	I	417
Human	Query	418	TTCAAGCTCTGTAC	GCAGGACCTGCCCC.	ACGCACACCCCTACC	CCTCTGTGAGGAGC	473
Rat	Sbjct	418	TTCAAGCTCAGTAC	GCAGGACCTGCCCTGC.	ACCCCCTGCTCCTTACC	CCTCTGTGAGGAG-	476
Human	Query	474	TGTGGGAAGTGTG	GGTTTGTCTCCAGAAC	AGAAGAGAATGA-TGGA		532
Rat	Sbjct	477	TTAGGGAAGAG-GO	GCTTTGTCTCTAGAGC.	AGAAGAGAACAACGGGA	I I I I I I I IGGCCTGATGCTGT	535
Human	Query	533	GGCCCTCTCCAC	-CACCACTCACAGTAG	CCTTGCTGA-AGCCATC	A-CAGATGGGA-GA	587
Rat	Sbjct	536	CATGCTCTCCACTC	GCACCTGTGTCG	GCCTCCTGAGAGCCACC	ATGATCTGGAATGA	591
Human	Query	588	AGGCCATGCCAGC			CAGGCCCTGAGGTT	647
Rat	Sbjct	592	AGGCCACACCAGC	CAGGTCTGCTAAAGGG	CCCCAGACTGAAGAT		635
Human	Query	648	CAGACCCTGGACCC	CATAGCTGGAGGCCT	GTGGTGCCAGAAGCCCA	GATTAGGGTGGCTG	707
Rat	Sbjct	636		CACAGTT-ATGTCT	ATGGTGCCAGAGGTCTG	I I I I I I I I I I I I I I I I I I I	691
Human	Query	708	TCCATCCCTGGAT			GTTGAAGA 761	
Rat	Sbjct	692		AGCTGTTTGCACAAAT		CTTGAGGA 744	

Supplemental Figure 8. *TNIP1*gene homology comparison between human and rat. *TNIP1*homology analysis with Basic Local Alignment Search Tool (BLAST) between human and rat genomes.

	Range 1	1:24 to 1	560 Expect	Identities	Gane	Strand	Frama	
	1764 bit	ts(1955)	0.0()	1321/1547(85%)	11/1547(0%)	Plus/Plus	Fiame	
Human	Query	2	CGGTGGCGAA	GCGGCTTTAGTGGCA	GCATGAAGCGCACCC	CGACTGCCGAGG	AACGAGA	61
Mouse	Sbjct	24	CGGTGGCGAA	3GCGGCTTTAGTAGCA	GCATGAAGCGCGTCC	AGACCGCGGAGG	AACGAGA	83
Human	Query	62	GCGCGAAGCT	AAGAAACTGAGGCTTC	TTGAAGAGCTTGAAG	ACACTTGGCTCC	CTTATCT	121
Mouse	Sbjct	84	GCGGGAAGCT	AAGAAACTGAGGCTCC	TTGAGGAGCTTGAAG	ACACTTGGCTTC	CTTACCT	143
Human	Query	122	GACCCCCAAA	GATGATGAATTCTATC	AGCAGTGGCAGCTGA	аататсстааас	TAATTCT	181
Mouse	Sbjct	144	GACCCCCAAA	GATGATGAGTTCTATC	AGCAGTGGCAGCTGA	AATACCCTAAAC	TGGTTTT	203
Human	Query	182	CCGAGAAGCC	AGCAGTGTATCTGAGG	AGCTCCATAAAGAGG	TTCAAGAAGCCT	TTCTCAC	241
Mouse	Sbjct	204	ĊĊĠĂĠĂĠĠĊĊ	3 S S S S S S S S S S S S S S S S S S S	ÁĠĊŦĠĊĂŦĂĂĠĠĂĠĠ	rccccgaggcct	TTCTCAC	263
Human	Query	242	ACTGCACAAG	CATGGCTGCTTATTTC	GGGACCTGGTTAGGA'	FCCAAGGCAAAG	ATCTGCT	301
Mouse	Sbjct	264	ACTGCATAAG	CATGGCTGCTTGTTTC	GGGACGTGGTGAGGA	FCCAAGGCAAAG	ATGTGCT	323
Human	Query	302						361
Mouse	Sbjet	362	CACCCCAGTG	references	GGGACCCAGGCTGCA		ACCERCI	383
Mouse	Shict	384						443
Human	Query	422	AATAGCCGCT	GCTTGTGAGACCTTCC	TCAAGCTCAATGACT	ACCTGCAGATAG	AAACCAT	481
Mouse	Sbjct	444	GATCGCCGCT	JCATGTCAGACCTTCC	TAAAGCTCAATGACT	ACCTCCAGGTGG	AGACCAT	503
Human	Query	482	CCAGGCTTTG	заадаасттостосса	ААĞAĞAAĞĞCTAATĞ	AGGATGCTGTGC	CATTGTG	541
Mouse	Sbjct	504		GAAGAACTGGCTGTCA	GAGAGAAGGCCAATG	AAGACGCTGTGC	CACTGTG	563
Human	Query	542	TATGTCTGCA	SATTTCCCCAGGGTTG	GGATGGGTTCATCCT	AÇAACGGACAAG	ATGAAGT	601
Mouse	Sbjct	564	CATGGCA	GAGTTCCCCAGGGCCG	GCGTGGGGGCCGTCCT	GCGATG	ATGAAGT	614
Human	Query	602	GGACATTAAG	AGCAGAGCAGCATACA	ACGTAACTTTGCTGA	ATTTCATGGATC	CTCAGAA	661
Mouse	Sbjct	615	GGACCTTAAG	AGCAGAGCAGCCTACA	ACGTGACTTTGCTAA	ACTTCATGGATC	CTCAGAA	674
Human	Query	662	AATGCCATAC	CTGAAAGAGGAACCTT	ATTTTGGCATGGGGA	AAATGGCAGTGA	GCTGGCA	721
Mouse	Sbjct	675	GÁTĠĊĊĊŦĂĊ	FTĠĂĂĂĠĂĠĠĠĠĊĊĊŢ	ÅTTTCĠĠĊĂTĠĠĠĠĂ	ÅGÅTĠĠĊGĠŦĠÅ	ĠĊŦĠĠĊĂ	734
Human	Query	722		AATCTGGTGGACAGGT		ACAGTTATAGCT	GTGAAGG	781
Mouse	Sbjct	735	TCACGATGAG	AACCTGGTGGACAGGT	CAGCCGTGGCAGTGT	ACAGCTATAGCT	GCGAAGG	794
Human	Shict	795						853
Human	Ouerv	841	ATGTTGGTTT	TAAGATCTCATGGGAC	ATAGAGACACCTGGT	TTGGCGATACCC	CTTCACC	900
Mouse	Sbjct	854	ATGTTGGTTT	TAAGATCTCTTGGGAC	ATCGAGACACCAGGA	TTAACAATCCCT	CTTCACC	913
Human	Query	901	AAGGAGACTGO	СТАТТТСАТССТТСАТ	GATCTCAATGCCACC	сассаасастот	GTTTTGG	960
Mouse	Sbjct	914	AGGGAGACTG	CTATTTCATGCTGGAT	GACCTCAATGCCACC	CACCAGCACTGI	GTTTTGG	973
Human	Query	961	CCGGTTCACA	ACCTCGGTTTAGTTCC	ACCCACCGAGTGGCA	GAGTGCTCAACA	GGAACCT	1020
Mouse	Sbjct	974	CTGGCTCACAG	GCTCGGTTTAGTTCC	ACTCACCGTGTGGCA	GAGTGCTCAACA	GGCACCT	1033
Human	Query	1021	TGGATTATAT	ITTACAACGCTGTCAG	TTGGCTCTGCAGAAT	STCTGTGACGAT	GTGGACA	1080
Mouse	Sbjct	1034	TGGATTATAT	cttagaacdctgtcad	ttggcgctgcagaat	STCCTCAATGAC	TCAGACG	1093
Human	Query	1081	ATGATGATGT	CTCTTTGAAATCCTTT	GAGCCTGCAGTTTTG	AAACAAGGAGAA	GAAATTC	1140
Mouse	Sbjct	1094	ÁŤĠGCĠÁCĠŤ	ĊŦĊĠŦŦĠĂĂĂŦĊĊŦŦŦ	ĠĂŦĊĊŦĠĊĂĠŦŦŦŦĠ	ÀÀÀĊÀÀĠĠÀĠÀG	ĠĂĂĂŦĊĊ	1153
Human	Query	1141		CGAGTTTGAGTGGCTG		CAAGGCAATCGA		1200
Mouse	Sbjct	1154	ATAATGAGGT	GAGTTTGAGTGGCTG	AGGCAGTTCTGGTTT	CAAGGCAATCGA	TACAAAC	1213
Human	Query	1214						1200
Humon	Ouerv	1214	AGGGTGTGAC		CARCICACCIGGAG	GGCTGIGGAAG	CALCARA	1320
Mouse	Sbict	1274		AAATGCGGTGCTCCGT		GGCTCCCGGTG		1333
Human	Query	1321	GGAATGAAAT	CTTGACTGCCATCCTT	GCCTCGCTCACTGCA	CGCCAGAACCTG	AGGAGAG	1380
Mouse	Sbjct	1334	 GGAGTGAGAT	ICTGTCTGCCATCCTG	 GTCCCGCTCACCGTG	 CGCCAGAACCTG		1393
Human	Query	1381	AATGGCATGC	саддтоссадтсасда	аттөсссөаасатта	ÇÇTĞCTĞATÇAĞ	AAGCCAG	1440
Mouse	Sbjct	1394	AGTGGCATGC	CAGGTGCCAGTCCCGA	GTCGTCCGGACTTTA	CAGTACAGCAG		1453
Human	Query	1441	AATGTCGGCC	ATACTGGGAAAAGGAT	GATGCTTCGATGCCT	CTGCCGTTTGAC	CTCACAG	1500
Mouse	Sbjct	1454	ACTGCCGGCC	ATATTGGGAGAAGGAT	GACCCTTCCATGCCT	CTGCCCTTTGAC	CTCACAG	1513
Human	Query	1501	ACATCGTTTC	AGAACTCAGAGGTCAG		ССТА <u>Б</u> 1547		
Mouse	Sbjct	1514	ACGTGGTTTC	céaectcaeaeeccae	ctgctggaagcaaga	rccTAG 1560		

Supplemental Figure 9. FTO gene homology comparison between human and mouse.

FTO homology analysis with Basic Local Alignment Search Tool (BLAST) between human and mouse genomes.

Range 1: 1 to 1509

	Score		Expect	Identities	Gaps	Strand	Frame	
	1677 bit	s(1859)	0.00	1285/1519(85%)	11/1519(0%)	Plus/Plus		
Human	Query	30	ATGAAGCGCAC	CCCGACTGCCGAGG	AACGAGAGCGCGAAGC	TAAGAAACTGAG	GCTTCTT	89
Rat	Sbjct	1	ATGAAGCGCGT	ĊĊAĠĂĊĊĠĊĠĠĂĠĠ	a a c d d d d d d d d d d d d d d d d d	TAAGAAACTGAC	scretc	60
Human	Query	90	GAAGAGCTTGA	AGACACTTGGCTCC	CTTATCTGACCCCCAA.	AGATGATGAAT'	ICTATCAG	149
Rat	Sbjct	61	GAGGAGCTTGA	AGACACTTGGCTTC	CTTACCTGACCCCCAA	AGATGACGAGT	ICTATCAG	120
Human	Query	150						209
Rat	Ouerv	210	CTCCATAAAGA	GAAATATCCTAAAC	TGGTTTTCCGAGAGGGC	rggCagCataco		269
Human	Sbict	181	CTGCACAAAGA	GGTCCCCGAGGCCI	TTCTCACACTGCACAA	GCATGGCTGCT'	I I I I I I I I I I I I I I I I I I I	240
Human	Query	270	GACCTGGTTAG	GATCCAAGGCAAAG	ATCTGCTCACTCCGGT	ATCTCGCATCC	ICATTGGT	329
Rat	Sbjct	241	 GACCTGGTGAG	GATCCAAGGCAAAG	ACGTGCTCACCCCGGT	GTCTCGCATCC	 ICATTGGG	300
Human	Query	330	AATCCAGGCTG	САССТАСААСТАСС	TGAACACCAGGCTCTT	TACGGTCCCCT	GCCAGTG	389
Rat	Sbjct	301	GACCCCGGCTG	CACCTACAAGTACT	TGAACACCAGGCTCTT	CACCGTGCCCT	GCCAGTG	360
Human	Query	390	AAAGGGTCTAA	татаааасасассо	AGGCTGAAATAGCCGC	IGCTTGTGAGAG	CCTTCCTC	449
Rat	Sbjct	361	AAGGGCTGCAC	CATCAATTACACAG	AGGCCGAGATTGCCGC	CGCATGTCAGAG	CTTCCTC	420
Human	Query	450	AAGCTCAATGA	CTACCTGCAGATAG	AAACCATCCAGGCTTT	3GAAGAACTTGO	CTGCCAAA	509
Rat	Sbjct	421	AAGCTCAATGA	ctacctacagetco	AGACCATCCAGGCCTT	GGAAGAACTGGG	TATCAAA	480
Human	Query	510	GAGAAGGCTAA	TGAGGATGCTGTGC	CATTGTGTATGTCTGC.	AGATTTCCCCAC	GGTTGGG	569
Rat	Sbjct	481	GAGAAGGĊCAA	ŤĠĂAĠĂĊĠĊŤĠŤĠĊ	ĊĠŦŦĠŦĠĊĂŦĠĠĊ	AGAGTTĊĊĊĊĂ	GGCŤGGC	537
Human	Query	570	ATGGGTTCATC	CTACAACGGACAAG				629
Rat	Sbjct	538	GTGGGACCGTC	CTGCGATG	ATGAAGTGGACCTTAA	GAGCAGAGCAG	CCTACAAC	591
Human	Shict	592	GTAACTTIGCT					651
Rai	Ouerv	690	TTTGGCATGGG	GAAAATGGCAGTGA	GCTGGCATCATGATGA	AAATCTGGTGGI	ACAGGTCA	749
Rat	Sbjct	652	TTCGGCATGGG			GAACTTGGTGG/	ACAGGTCA	711
Human	Query	750	GCGGTGGCAGT	GTAÇAGTTATAGÇI	GTGAAGGCCCTGAAGA	GGAAAGTGAGGA	ATGACTCT	809
Rat	Sbjct	712	GCCGTGGCGGT	GTACAGCTATAGCI	GTGAAGGCTCCGAGGA	TGAAAGCGATG	ACGAGTC-	770
Human	Query	810	CATC-TCGAAG	GCAGGGATCCTGAT	ATTTGGCATGTTGGTT	TTAAGATCTCA	IGGGACAT	868
Rat	Sbjct	771	CAGCTTCGAAG	GCAGAGATCCCGAT	ACGTGGCATGTTGGTT	TTAAGATCTCA	IGGGACAT	830
Human	Query	869	AGAGACACCTG	GTTTGGCGATACCC	CTTCACCAAGGAGACT	JCTATTTCATGO	CTTGATGA	928
Rat	Sbjct	831	CĠĂĠĂĊGĊĊAĠ	ĠĊŦŦĠĂĊĂĂŦŦĊĊŢ	ĊŦŦĊĂĊĊĂĠĠĠĂĠĂĊŦ	ŚĊŦĂŦŦŦĊĂŦĠŎ	ĊŦĠĠĂŦĠĂ	890
Human	Query	929	TCTCAATGCCA		GTTTTGGCCGGTTCAC.			988
Rat	Sbjct	891	CCTCAATGCCA	CCCACCAGCACTG	GTTTTGGCTGGCTCAC.	AGCCTCGGTTT	AGCTCCAC	950
Human	Shict	951						1040
Human	Ouerv	1049	GGCTCTGCAGA	ATGTCTGTGACGAT	GTGGACAATGATGATG	TCTCTTTGAAA	TCCTTTGA	1101
Rat	Sbict	1011	GGCACTGCAGA	ATGTTCTCAATGAC		IIII III TCTCGCTGAAG	IIIIIIIII	1070
Human	Query	1109	GCCTGCAGTTT	TGAAACAAGGAGAA	GAAATTCATAATGAGG	TCGAGTTTGAG	IGGCTGAG	1168
Rat	Sbjct	1071	GCCTGCAGTTC	TGAAACAAGGAGAA	GAGATCCACAACGAGG	TCGAGTTTGAG?	IGGCTGAG	1130
Human	Query	1169	GCAGTTTTGGT	TTCAAGGCAATCGA	тасадааадтосасто.	ACTGGTGGTGT	CAACCCAT	1228
Rat	Sbjct	1131	GCAGTTCTGGT	TTCAAGGAAATCGA	TACAAAATTTGCACTG.	ATTGGTGGTGT	GAGCCCAT	1190
Human	Query	1229	GGCTCAACTGG	AAGCACTGTGGAAG	AAGATGGAGGGTGTGA	CAAATGCTGTGC	CTTCATGA	1288
Rat	Sbjct	1191	GACTCAGCTGG	AGGGGCTGTGGAAG	AAGATGGAGAGTGTGA	CAAATGCCGTGC	CTTCGTGA	1250
Human	Query	1289	AGTTAAAAGAG	AGGGGCTCCCCGTG	GAACAAAGGAATGAAA	ICTTGACTGCC	ATCCTTGC	1348
Rat	Sbjct	1251	<u>ÁĠ</u> ŦŦĂĂGĂĠĂĠ	ÅĠĠĠĠĊŦĊŦĊĊĠŦĠ	ġĂĂĊĂĂĂĠĠĂGŦĠĂĂĂ	† TC ŤĠTĊŤĠĊĊO	GTĊĊŦGAT	1310
Human	Query	1349	CTCGCTCACTG	CACGCCAGAACCTG	AGGAGAGAATGGCATG	CAGGTGCCAG	ICACGAAT	1408
Rat	Sbjct	1311	CCCACŤĊÁĊCA	TGCGCCAGAATĊŤĠ	BAGGAAAGAATGGCACG	CCAGGTGCCÁĠ	GCCCGÁGŤ	1370
Human	Query	1409	TGCCCGAACAT					1468
ral Human	Ouerv	1469	TGTCCGAACTC	CTCTGCCGTTTGAC	CTCACAGACATGCCGGC	CAGAACTCAGA	GTCAGCT	1529
Rat	Sbict	1431	CCCTTCTATGC	CTCTGCCCTTTGAC	CTCACAGATGTGGTCT	CTGAGATCAGA	AGCCAGCT	1490
Human	Query	1529	TCTGGAAGCAA	AACCCTAG 1547				
Rat	- Sbjct	1491	 TCTGGAAGCAA	GATCCTAG 1509	•			

Supplemental Figure 10. FTO gene homology comparison between human and rat.

FTO homology analysis with Basic Local Alignment Search Tool (BLAST) between human and rat genomes.

	Range 1: 52 to 1560							
	Score		Expect	Identities	Gaps	Strand	Frame	
	2228 bit	s(1206)	0.00	1408/1509(93%)	0/1509(0%)	Plus/Plus		
Rat	Query	1	ATGAAGCGCGT		ACGGGAGCGGGAAGC	TAAGAAACTGA	GGCTCCTC	60
Mouse	Sbjct	52	ATGAAGCGCGT	CAGACCGCGGAGGA	ACGAGAGCGGGGAAGC1	TAAGAAACTGA	ĠĠĊŦĊĊŦŦ	111
Rat	Query	61	GAGGAGCTTGA	AGACACTTGGCTTCCT	TACCTGACCCCCAA#	AGATGACGAGT	TCTATCAG	120
Mouse	Sbjct	112	ĠĂĠĠĂĠĊŤŤĠĂ.	ĂĠĂĊĂĊŤŤĠĠĊŤŤĊĊĬ	rtácctgáccccáá	AĠĂŦĠĂŦĠĂĠŤ	ŤĊŤĂŤĊĂĠ	171
Rat	Query	121	CAGTGGCAGCT					180
Mouse	Sbjct	1 / 2	CAGTGGCAGCT	GAAATACCCTAAACTC	GTTTTCCGAGAGGCC	CATCCT		231
Mouse	Sbict	232					TGTTTCGG	291
Rat	Ouerv	241	GACCTGGTGAG	GATCCAAGGCAAAGAG	CGTGCTCACCCCGGT	GTCTCGCATCC	TCATTGGG	300
Mouse	Sbjct	292	 GACGTGGTGAG	 GATCCAAGGCAAAGAT	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	 GTCTCGCATCC	 TCATCGGG	351
Rat	Query	301	ĢĄĊĊĊĊĢĢĊŢĢ	САССТАСААСТАСТТС	БААСАССАССТСТТС	CACCGTGCCCT	ĢĢÇÇAĢŢĢ	360
Mouse	Sbjct	352	GACCCAGGCTG		JAACACCAGACTCTTC	CACGGTGCCCT	 GGCCCGTG	411
Rat	Query	361	AAGGGCTGCAC		GCCGAGATTGCCGCC	CGCATGTCAGA	CCTTCCTC	420
Mouse	Sbjct	412	AAGGGCTGCAC	GGTCAAGTACACAGAG	GCTGAGATCGCCGC	IGCATGTCAGA	CCTTCCTA	471
Rat	Query	421	AAGCTCAATGA	CTACCTACAGGTCGAG	GACCATCCAGGCCTTO	GAAGAACTGG	CTATCAAA	480
Mouse	Sbjct	472	ÀÀĠĊŦĊÀÀŦĠĂ	ċtaċċtcċaġġtgġad	ġĂĊĊĂŦĊĊĂĠĠĊĊŦŦĊ	ġġààġààċtġġ	ĊŤGŤĊÅGÅ	531
Rat	Query	481	GAGAAGGCCAA'		GTTGTGCATGGCAGAG	GTTCCCCAGGG	CTGGCGTG	540
Mouse	Sbjct	532	GAGAAGGCCAA	IGAAGACGCTGTGCC <i>F</i>	ACTGTGCATGGCAGAG	GTTCCCCAGGG	CCGGCGTG	591
Rat	Shict	592		CGATGATGAAGTGGAO				651
Rat	Ouerv	601	CTAAACTTCAT	CGATCATCAGAAAAATC	CCGTACTTGAAAGA	GAGCCCTATT	TCGGCATG	660
Mouse	Sbjct	652	CTAAACTTCAT	GATCCTCAGAAGAT	CCCTACTTGAAAGA	GAGCCCTATT	TCGGCATG	711
Rat	Query	661	GGGAAGATGGC	GGTGAGCTGGCACCAT	IGACGAGAACTTGGTO	GACAGGTCAG	ÇÇĞTĞĞÇĞ	720
Mouse	Sbjct	712	GGGAAGATGGC	 GGTGAGCTGGCATCAC	CGATGAGAACCTGGTC	GACAGGTCAG	 CCGTGGCA	771
Rat	Query	721	GTGTACAGCTA	TAGCTGTGAAGGCTCC	CGAGGATGAAAGCGAT	GACGAGTCCA	GCTTCGAA	780
Mouse	Sbjct	772	GTGTACAGCTA	TAGCTGCGAAGGCTC	 rgaggatgaaagtgao	GACGAGTCCA	GCTTCGAA	831
Rat	Query	781	GGCAGAGATCC	CGATACGTGGCATGT	IGGTTTTAAGATCTCA	ATGGGACATCG	AGACGCCA	840
Mouse	Sbjct	832	GGCAGAGATCC	rgatacttggcatgt	rggtttttaagatctci	TGGGACATCG	AGACACCA	891
Rat	Query	841	GGCTTGACAAT	ICCTCTTCACCAGGGA	AGACTGCTATTTCATC	CTGGATGACC	TCAATGCC	900
Mouse	Sbjct	892	GGATTAACAAT	CCCTCTTCACCAGGG	AGACTGCTATTTCAT	GCTGGATGACC	TCAATGCC	951
Rat	Query	901						960
Rat	Ouerv	961	GCAGAGTGCTC			TAGIICCACIC	CACTECAE	1011
Mouse	Sbict	1012	GCAGAGTGCTC	ACAGGCACCTTGGA	TATATCTTAGAACG	TGTCAGTTGG	CGCTGCAG	1071
Rat	Query	1021	AATGTTCTCAA	IGACTCGGACAATGGO	CGACGTCTCGCTGAAG	TCCTTCGAGC	CTGCAGTT	1080
Mouse	Sbjct	1072	AATGTCCTCAA		GACGTCTCGTTGAAF	TCCTTTGATC		1131
Rat	Query	1081	стдааасаада	адаададатссасаас	сөаөөтсөаөтттөаө	TGGCTGAGGC	АĢŢŢĊŢĢĢ	1140
Mouse	Sbjct	1132	TTGAAACAAGG	AGAGGAAATCCATAAI	TGAGGTGGAGTTTGAG	TGGCTGAGGC	AGTTCTGG	1191
Rat	Query	1141	TTTCAAGGAAA'	CGATACAAAATTTGC		GAGCCCATGA	CTCAGCTG	1200
Mouse	Sbjct	1192	TTTCAAGGCAA	rcgatacaaactttgo	CACCGATTGGTGGTG	GAGCCCATGA	CTCACCTG	1251
Rat	Query	1201	GAGGGGGCTGTG	3AAGAAGATGGAGAG1	IGTGACAAATGCCGTC	CTTCGTGAAG	TTAAGAGA	1260
Mouse	Sbjct	1252	ĠĂĠĠĠĠĊŦĠŦĠ	ġĂĂĠĂĂĠĂŦĠĠĂĠĂĠĊ	catgacaaatgcgdto	sctccgtgaag	ŤŤÅÅAÅĠÅ	1311
Rat	Query	1261	GAGGGGGCTCTC	CGTGGAACAAAGGAG1		CGTCCTGATCC	CACTCACC	1320
Mouse	Sbjct	1312	GAGGGGGCTCCC	GGTGGAACAAAGGAG	rgagattctgtctgcc	CATCCTGGTCC	CGCTCACC	1371
Mouse	Shict	1321	ATGCGCCAGAA					1/31
Rat	Ouerv	1321	CTACCACCACAC	CIGAGGAAGGAGTGG	CCGCCATATTCCCAG	AAGGATCACC	CTTCCGGACT	1431
Mouse	Sbict	1432	TTACCAGTACA	JCAGAAACCAGACTGC	CCGCCATATTGGGA			1491
Rat	Query	1441	CCTCTGCCCTT	FGACCTCACAGATGTC	GTCTCTGAGATCAG	AGCCAGCTTC	TGGAAGCA	1500
Mouse	Sbjct	1492	CCTCTGCCCTT		GGTTTCCGAGCTCAG	GGCCAGCTGC		1551
Rat	Query	1501	AGATCCTAG	1509				
Mouse	Sbjct	1552	AGATCCTAG	1560				

Supplemental Figure 11. *Fto* gene homology comparison between rat and mouse.

Fto homology analysis with Basic Local Alignment Search Tool (BLAST) between rat and mouse genomes.

Gene_ID	Gene_Name	m ⁶ A log ₂ fold change	RNA log ₂ fold change
ENSRNOG0000010370	Tnip1	-2.403344934	-1.877649774
ENSRNOG0000006565	Fstl4	-2.116491664	0.933593991
ENSRNOG0000001335	Zkscan1	-1.501391236	0.676768574
ENSRNOG0000008869	Ppp1r9a	-1.035297836	0.703270304
ENSRNOG0000024711	Sdk2	-0.926931718	0.755600279
ENSRNOG0000009403	Dcaf17	-0.890179084	0.831494151
ENSRNOG0000043102	Bahcc1	-0.786528769	0.628833773
ENSRNOG0000013570	Rad5412	-0.77675958	0.623855184
ENSRNOG0000006050	Med19	-0.74638501	-0.593321028
ENSRNOG0000014452	Zfhx3	-0.733215313	0.700445655
ENSRNOG0000007528	Kcnh7	-0.728463539	1.240004352
ENSRNOG0000013257	Hecw2	-0.727604057	0.872840955
ENSRNOG0000048174	Uqcrq	-0.720206759	-0.684999835
ENSRNOG0000016046	Hecwl	-0.670929796	0.663801235
ENSRNOG0000004269	Myt11	-0.657111855	0.629508064
ENSRNOG0000015269	Atf7	-0.630214394	0.604309124
ENSRNOG0000014866	Pign	-0.628593726	0.724600424
ENSRNOG0000007319	Trib3	-0.60789811	0.898044
ENSRNOG0000030352	Pcdhga9	-0.599882549	0.745519586
ENSRNOG0000007030	Epha7	0.607385619	0.704355376
ENSRNOG0000003742	Cdkl5	0.614003318	0.882585524
ENSRNOG0000052894	Epg5	0.624900984	0.677217193
ENSRNOG0000011585	Fat3	0.635607055	0.86493989
ENSRNOG0000045696	/	0.670009641	-0.720027611
ENSRNOG0000000924	Slc7a1	0.688531053	1.916719941
ENSRNOG0000001622	Impg2	0.708175115	0.649446802
ENSRNOG0000001141	Srrm4	0.708357455	0.669713596
ENSRNOG0000029131	Aabr07024637.1	0.723300489	0.657155156
ENSRNOG0000002291	Brwd3	0.763101043	0.68355021
ENSRNOG0000011151	Tenm4	0.773635986	0.688185311
ENSRNOG0000002341	Trim25	0.77387041	0.777095165
ENSRNOG0000024832	Gpr158	0.843450113	0.773135615
ENSRNOG0000056658	Xvlt1	0.868167806	0.65151631
ENSRNOG0000056656	/	0.881474402	1.058279742
ENSRNOG0000059479	Adcvl	0.93522769	0.587940421
ENSRNOG0000018830	Aff3	0.976309003	0.792163902
ENSRNOG0000008425	Navl	1.038821314	0.719154598
ENSRNOG0000006943	Aabr07072108.1	1.090522518	-1.181784135
ENSRNOG0000010964	Akan13	1.099207994	0.846206833
ENSRNOG0000000478	/	1.199220997	-0.823773518
ENSRNOG0000001216	Trnm?	1 45803698	-0.640956169
ENSRNOG0000053240	Sogal	1.475450762	0.834672276
ENSRNOG0000052247	Manha	1 820481272	0 587818667

Supplemental Table 1. Differentially expressed genes based on combined methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA-seq in diabetes

Gene_ID	Gene_name	m ⁶ A log ₂ fold change	RNA log ₂ fold change
ENSRNOG0000061371	Aabr07035541.3	-1.501391236	-2.986475067
ENSRNOG0000022673	Slc22a20	-1.709196683	1.413439099
ENSRNOG0000017410	Loxhd1	-1.394557866	1.324649995
ENSRNOG0000010370	Tnip1	-2.403344934	-1.877649774
ENSRNOG0000051494	Aabr07002870.2	-1.599254974	4.299916654
ENSRNOG0000010906	Ccl5	-1.139213224	-1.258196724
ENSRNOG0000029749	Pabpc4l	-5.766610799	2.305523471
ENSRNOG0000015441	Il4r	-2.223895882	1.25294364
ENSRNOG0000028632	Bcl2l14	-1.029716879	1.413439099
ENSRNOG0000028744	Mtnr1a	-3.037795763	2.039296856
ENSRNOG0000042623	Sh2d4b	-1.326540478	-1.24398034
ENSRNOG0000032869	Crygf	-4.863984696	-2.35602882

Supplemental Table 2. Genes regulated by *Fto* based on combined analyses of methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA-seq in diabetic retinas

	membrane		
Variables	DR (n=30)	ERM (n=30)	р
Age (y)	51.5(41.0-57.0)	59.0(56.5-66.0)	< 0.001*
Gender			0.121
Male	18(60.0)	12(40.0)	
Female	12(40.0)	18(60.0)	
Diabetes duration (y)	12.5(10.0-17.5)	NA	NA
Type of diabetes			NA
Type 1 diabetes	10(33.3)	NA	
Type 2 diabetes	20(66.7)	NA	
Glycated hemoglobin (%)	7.1(6.4-8.6)	5.4(4.9-5.9)	<0.001*
Fasting blood glucose (mmol/L)	6.2(5.9-8.5)	5.6(4.8-6.3)	0.002*
Systolic blood pressure (mmHg)	129.5(121.5-140.3)	134.5(123.8-142.5)	0.317
Diastolic blood pressure (mmHg)	78.5(70.0-86.0)	80.0(72.8-90.0	0.552
Low density lipoprotein (mmol/L)	2.8(1.7-3.0)	2.7(2.3-2.9)	0.915
BMI (kg/m ²)	24.0(21.8-26.4)	24.8(22.7-26.4)	0.313
Insulin use	26(86.7%)	0	<0.001*
LogMAR BCVA	0.8(0.3-1.2)	0.7(0.5-1.0)	0.305

Supplemental Table 3. Clinical characteristics of patients with diabetic retinopathy and idiopathic epiretinal

Data are presented as median (interquartile range)/n (%).

DR: diabetic retinopathy; ERM: epiretinal membrane; BMI: body mass index; LogMAR, logarithm of the minimum angle of resolution; BCVA: best-corrected visual acuity; NA: not available.

*Statistically significant.

Oligonucleotides name	Species	Sequence (5'-3')
FTO-siRNA	human	CGGTGGCAGTGTACAGTTA
TNIP1-siRNA	human	CAGGAGAGCGUUACCAUGUGGTT
NC-siRNA	human	TTCTCCGAACGTGTCACGT
LV-FTO-OE	human	NM_001363894.1
LV-TNIP1-OE	human	NM_001252385.2
AAV-Fto-shRNA	mouse	Top strand: AATTCGTTGAAAGAGGAGCCCTATTTCCTCGAGGA AATAGGGCTCCTCTTTCAATTTTTTG Battam strand:
		Bottom strand: GATCCAAAAAATTGAAAGAGGAGCCCTATTTCCTC GAGGAAATAGGGCTCCTCTTTCAACG
AAV-Fto-OE	mouse	NM_011936.2
AAV- <i>Tnip1</i> -shRNA	mouse	Top strand: AATTCGCGAGTTCAACAGGTTGGCCTCCAAATTCA AGAGATTTGGAGGCCAACCTGTTGAACTCGTTTTT TG
		Bottom strand: GATCCAAAAAACGAGTTCAACAGGTTGGCCTCCA AATCTCTTGAATTTGGAGGCCAACCTGTTGAACTC GCG
AAV-Tnip1-OE	mouse	NM_021327.4
WT probe	/	TAAGAGTGGGAGGCAGCCAAG <mark>A</mark> CCCCCTTCCTTCA AAACCTCCCGGA
MT probe	/	TAAGAGTGGGAGGCAGCCAAGTCCCCCTTCCTTCA AAACCTCCCGGA

Supplemental Table 4. Oligonucleotides sequences for small interfering RNA (siRNA), overexpression plasmid, virus, and probes

LV: lentivirus; AAV: adeno-associated virus; OE, overexpression; WT: widetype; MT: mutant type.

Gene name	Application	Species	Sequence (5'-3')
TNIP1	qPCR	human	F: GTTCAACCGACTGGCATCCAA
			R: AGACGCACCCTCTTTGTTGC
METTL3	qPCR	human	F: TCCATCTGTCTTGCCATCT
			R: TCGCTTTACCTCAATCAACTC
METTL14	qPCR	human	F: AATGGCCGTTCTGTGCTCAT
			R: AAGGACCCATCACAGGCAAG
FTO	qPCR	human	F: GCTGACCTGGATGTAGATGTT
			R: GGAGAGATGTGTTAATGGCAT
ALKBH5	qPCR	human	F: CCTTGGTTTTGTTGCCTGTT
			R: ATCAGCCTCTGTCCCCTATTG
YTHDF1	qPCR	human	F: GGAACAACATCTATCAGCACA
			R: GACCTTGAGACCCACTTGTC
YTHDF2	qPCR	human	F: GCTACAAGCACACCACTTCCAT
			R: GCCTTTTATTTCCCACGACC
YTHDF3	qPCR	human	F: CCTGTCAGTGCTTCACCTTCT
			R: CGTCCATTCTTCAGATTCCAA
β -actin	qPCR	human	F: GCACCGCAAATGCTTCTA
			R: GGTCTTTACGGATGTCAACG
TNIP1	m ⁶ A RIP	human	F: AGAGTGGGAGGCAGCCA
			R: TGAAACCACTTCCGGGAG
Tnip1	m ⁶ A RIP	mouse	F: ATCCTAAGAATGAGGTGCAAC
			R: AACCAAGTCTTTGAGGTTCT
Cre expressioin	Genotyping PCR	mouse	F: CCAGGCTGACCAAGCTGAG
			R: CCTGGCGATCCCTGAACA
Fto flox	Genotyping PCR	mouse	F: AAAGTTTGAAGGAGGGGAGAAGTG
			R: ACCAAAGAGGGGGGGAGACAGTTACG
$Fto^{\Delta/\Delta}$	Genotyping PCR	mouse	F: CTGAATAGCCCCCTCCCAATGACC
			R: ATAAAAATGACAGGAAGCCAAGAA

Supplemental Table 5. Primers used in this study

PCR: polymerase chain reaction.

	Catalog	
Chemicals and Reagents	Namehar	Company
	Number	
Human IL-18 ELISA Kit	ab215539	Abcam
Mouse IL-18BP ELISA Kit	ab254509	Abcam
Human IL-1 beta ELISA Kit	ab214025	Abcam
Mouse IL-1 beta ELISA Kit	ab197742	Abcam
Rabbit monoclonal to FTO	ab280081	Abcam
Anti-YTHDF1 antibody [EPR22349-41]	ab220162	Abcam
Rabbit recombinant multiclonal [RM1006] to CD31	ab281583	Abcam
Mouse monoclonal to beta Actin	ab8226	Abcam
Rabbit Anti-Mouse IgG H&L(HRP)	ab6728	Abcam
Goat Anti-Rabbit IgG H&L(HRP)	ab6721	Abcam
Pierce Magnetic RNA-Protein Pull-Down Kit	20164	Thermo Fisher Scientific
Rhodamine phalloidin	R415	Thermo Fisher Scientific
Imprint® RNA Immunoprecipitation Kit	RIP-12RXN	Sigma-Aldrich
Dual-Glo Luciferase® Assay System	E2920	Promega
GloMax [®] 96 Microplate Luminometer	E6521	Promega
Rabbit polyclonal antibody to TNIP1	15104-1-AP	Proteintech
Ubiquitin antibody	10201-2-AP	Proteintech
Rabbit polyclonal antibody to HA	51064-2	Proteintech
NF-κB p105/p50 (D4P4D) Rabbit mAb	13586	CST
m ⁶ A Rabbit mAb	D9D9W	CST
DYKDDDDK Tag (D6W5B) Rabbit mAb	14793S	CST
Rabbit monoclonal to A20	5630S	CST
Anti-rabbit IgG, HRP-linked Antibody	7074	CST
Anti-mouse IgG, HRP-linked Antibody	7076	CST
Rabbit monoclonal to FLAG M2	14793	CST

Supplemental Table 6. Antibodies and reagents used in this study

Unedited blot and gel images.

Figure 6A

Figure 6B

Figure 7F

Figure S1F

Figure S1G

Figure S5A

FTO 58kDa · TNIP1 72kDa v β-actin 42kDa ·

Figure S6E

72kDa •

89kDa-

42kDa

β-actin 42kDa

HA-A20

β-actin

HA-TNIP1

Figure S6F

Figure S6G

89kDa

72kDa

Figure 2C

Figure 4D

Figure 4E

Figure 4F

Figure 7A

Figure 7B

Figure 7F

RNA probes

