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METHODS 

Patient Cohorts 

Chemotherapy 

The study workflow is illustrated in Figure 1. Patient and disease characteristics are detailed 

in Supplementary Table 1.  

 

Immunotherapy 

BM samples were obtained from 33 elderly patients with chemotherapy-refractory/early 

relapsed AML on a phase 2 study of AZA+Pembro (clinicaltrials.gov identifier: NCT02845297). 

Azacitidine was given intravenously at 75 mg/m2 daily on days 1 to 7 every 4 weeks, and 

pembrolizumab was given intravenously at 200 mg on day 8 and every 3 weeks thereafter. 

Patient and disease characteristics are detailed in Supplementary Table 9. 

 

RNA Isolation, nCounter Data Quality Control and Normalization 

RNA was isolated and processed as previously described (1). Briefly, 100-150 ng per sample 

of RNA extracted from BM aspirates were processed on the nCounter FLEX analysis system 

(NanoString Technologies) using the PanCancer Immune Profiling (PCI) panel. 

The reporter probe counts, i.e., the number of times the color-coded barcode for that gene is 

detected, were tabulated in a comma separated value (CSV) format for data analysis with the 

nSolver software package (version 4.0.62) and nSolver Advanced Analysis module (version 

2.0.115; NanoString Technologies). The captured transcript counts were normalized to the 

geometric mean of the housekeeping reference genes included in the assay (n = 40) and the 

code set’s internal positive controls. Batch effects and other unwanted sources of variation 

were removed using the Surrogate Variable Analysis (SVA) package in Bioconductor. 

 

In vitro Cytotoxicity Assays 

Cytotoxicity of senescent (CD8+CD57+KLRG1+) and non-senescent (CD8+CD57-KLRG1-) T 

cells against primary AML cells (CD45lowSSCint) was tested in vitro using anti–CD33/CD3 and 
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control bi-specific T-cell engager (BiTE) antibody constructs (both provided by Amgen), as 

previously described (2). Briefly, primary AML samples were sorted into CD8+CD57+KLRG1+ 

T cells, CD8+CD57-KLRG1- T cells and AML blasts. T cells were then co-cultured with primary 

AML blasts (effector/target [E/T] ratio = 1:5) in Iscove’s Modified Dulbecco’s Medium (Life 

Technologies) supplemented with 15% fetal bovine serum, and 10 ng/ml each of IL-3, SCF, 

G-CSF, and GM-CSF (all from Life Technologies), for 48 hours. Cells were exposed to either 

BiTE (10 ng/ml) or cBiTE (10 ng/ml). After 48 hours, T-cell cytotoxicity against CD33+CD34+ 

primary AML cells was determined by flow cytometry using the Live/Dead Fixable Yellow Dead 

Cell Stain Kit (ThermoFisher Scientific). 

 

Validation Bulk RNA-Seq Datasets (AML) 

The Cancer Genome Atlas (TCGA-AML) series consisted of RNA-sequencing data (Illumina 

HiSeq2000) from 147 adult patients with nonpromyelocytic AML who were enrolled on Cancer 

and Leukemia Group B treatment protocols 8525, 8923, 9621, 9720, 10201 and 19808. RNA 

and clinical data were retrieved from cBioPortal for Cancer Genomics 

(https://www.cbioportal.org/) (3). Level 3 RSEM-normalized RNASeqV2 data was downloaded 

and log2-transformed prior to analysis. No further pre-processing was applied. For mRNA 

expression data, cBioPortal for Cancer Genomics computes the relative expression of an 

individual gene and tumor specimen to the gene’s distribution in all samples that are diploid 

for the gene in question. The returned value (z-score) indicates the number of standard 

deviations away from the mean of expression in all other tumor samples. To ensure high 

stringency, a z-score threshold of ±2.0 was used in all analyses. Patients had a median age 

of 60 years, 54% were male, with 12%, 65% and 22% classified as favorable, intermediate, 

and adverse risk, respectively, based on 2017 European Leukemia Net (ELN) risk stratification 

by genetics. One hundred thirteen patients (77%) were reported as having received “7+3” 

cytotoxic induction chemotherapy. The remaining patients were treated with adjunctive 

therapy in addition to “7+3” or with hypomethylating agents. 
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The second data series (Beat-AML) was retrieved using the VIZOME interface 

(http://www.vizome.org/aml/) and consisted of RNA-sequencing data (Agilent platform) from 

primary specimens from 281 patients with nonpromyelocytic AML and detailed clinical 

annotation, including diagnostic information, responses and outcomes, treated on the Beat 

AML Master Trial (4, 5). 

The third data series, hereafter referred to as the Children’s Oncology Group Therapeutically 

Applicable Research to Generate Effective Treatments (COG-TARGET) AML series, 

consisted of RNA-sequencing data (Illumina HiSeq2000) from 145 children, adolescents, and 

young adults with de novo AML enrolled onto biology studies and clinical trials managed 

through the COG on studies CCG-2961, AAML03P1, or AAML0531 (6, 7). 

NanoString immune transcriptomic datasets are available through GEO accession number 

GSE134589 (n = 432 children and adults with newly diagnosed AML) and our previous 

publication (1). 

 

Validation Bulk RNA-Seq Datasets (Melanoma) 

The TCGA Pan-Cancer Atlas series consisted of RNA-sequencing data (Illumina HiSeq2000) 

from 441 adult patients with untreated primary and/or metastatic melanoma. The 

PRJEB23709 series encompassed 73 patients with melanoma treated with standard-of-care 

single-agent nivolumab or pembrolizumab (n = 41) or combination anti-PD-1 + anti-CTLA-4 (n 

= 32). RNA-sequencing data were retrieved through the original publication (8) and the Tumor 

Immune Dysfunction and Exclusion (TIDE) portal (http://tide.dfci.harvard.edu/login/) (9). In the 

original study, responders were defined as individuals with complete response, partial 

response, or stable disease of greater than 6 months with no progression, and non-responders 

as progressive disease or stable disease for less than or equal to 6 months before disease 

progression. 

 

Signature Calculation 

The relative abundance of immune cell types was computed as previously published (10, 11). 
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For each sample, immune gene expression scores were calculated as an average (arithmetic 

mean) of gene expression values for all genes in the signature. 

The LSC17 score was computed as the weighted sum of the normalized expression values of 

the 17 genes included in the signature using the same weights as those provided in the original 

publication (12): 

LSC17 score = 

(DNMT3B × 0.0874) + (ZBTB46 × −0.0347) + (NYNRIN × 0.00865) + (ARHGAP22 × −0.0138) 

+ (LAPTM4B × 0.00582) + (MMRN1 × 0.0258) + (DPYSL3 × 0.0284) + (KIAA0125 × 0.0196) + (

CDK6 × −0.0704) + (CPXM1 × −0.0258) + (SOCS2 × 0.0271) + (SMIM24 × −0.0226) + (EMP1 

× 0.0146) + (NGFRAP1 × 0.0465) + (CD34 × 0.0338) + (AKR1C3 × −0.0402) 

+ (GPR56 × 0.0501). 

 

GSEA and Leading-Edge Analysis 

GSEA was performed using the GSEA software v4.1.0 (Broad Institute). A collection of 4,872 

gene sets (ImmuneSigDB) derived from 389 published studies of immune cell states and 

experimental perturbations, both genetic and chemical, was downloaded from 

https://www.gsea-msigdb.org/gsea/msigdb/index.jsp (13). Each gene set in the 

ImmuneSigDB contains either up- or downregulated genes only. The GSEA-p software 

package was used to extract leading-edge genes that contribute most to the enrichment signal 

and are shared across the top-ranking ImmuneSigDB gene sets (14). 

 

Immune Deconvolution 

Immune cell fractions relative to all cells were inferred using immunedeconv, an R package 

for quantifying cell types from bulk RNA-sequencing data. We selected quanTIseq since this 

method provides an absolute score representing immune cell fractions and therefore allows 

both intra- and inter-sample comparisons (15, 16). 
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Statistics 

Descriptive statistics included calculation of median, inter-quartile ranges and proportions to 

summarize study outcomes. Comparisons were performed with the Mann-Whitney U test for 

paired or unpaired data (two-sided), as appropriate, or with the ANOVA with correction for 

multiple hypothesis testing. Given the potentially large number of parameters with high 

correlation and in order to prevent overfitting, we used the Least Absolute Shrinkage and 

Selection Operator (LASSO) regularization technique for variable reduction (glmnet and 

penalized packages in R) (17). Ten-fold internal cross-validation was used to select the 

optimal l value (optL1 function). Model performance was estimated through the mean 

likelihood ratio test statistic across the 10 outer cross-validation splits. This was repeated for 

1,000 iterations. Genes with nonzero coefficients were selected as predictive of the outcome 

variable (patient survival). 

Overall survival was computed from the date of diagnosis to the date of death. Relapse-free 

survival was measured from the date of first complete remission to the date of relapse or 

death. Subjects lost to follow-up were censored at their date of last known contact. Kaplan-

Meier survival plots were generated using the survminer package in R and the log-rank 

(Mantel-Cox) test was used to compare survival distributions. The P values were adjusted for 

multiple hypothesis testing using the Benjamini-Hochberg procedure. A P value less than 0.05 

was considered significant. IBM SPSS Statistics (version 27), R (version 4.2.0) and GraphPad 

Prism (version 9.3.1) were used for statistical analyses. 

 

Data and Materials Availability 

The transcriptomic datasets generated in this study have been deposited on to the GEO 

repository under accession numbers GSE176100 and GSE178926 and will be publicly 

available as of the date of publication. The results published here are in part based upon data 

generated by the TCGA Research Network and by the TARGET initiative, which can be 

accessed, queried, and visualized through the cBioPortal for Cancer Genomics 

(https://www.cbioportal.org/). 
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Accessions for gene expression and RNA-sequencing data sets used in this study: newly 

diagnosed AML GEO: GSE134589 (1), newly diagnosed AML TCGA 

https://www.cbioportal.org/ (3), newly diagnosed AML COG-TARGET 

https://www.cbioportal.org/ (6), newly diagnosed Beat-AML Master Trial 

https://www.cbioportal.org/ (4), newly diagnosed AML syn21991338 (18), newly diagnosed 

AML GEO: GSE76004 (12), newly diagnosed AML (German AMLCG 1999 trial) GEO: 

GSE37642 (19, 20), newly diagnosed, chemotherapy-resistant AML GEO: GSE106291 (19), 

untreated cutaneous melanoma TCGA https://www.cbioportal.org/ (21), cutaneous melanoma 

immunotherapy ENA: PRJEB23709 (8), tumor microenvironment (TME) classification and 

functional TME gene signatures https://science.bostongene.com/tumor-portrait/ (22). 

Codes for reproducibility of data are publicly available. 

Gene lists generated in this study are provided in Supplementary Table 2. 

 

Single-cell RNA Sequencing Datasets 

Dufva et al. (18) 

Single-cell RNA sequencing (scRNA) data from eight diagnostic AML samples were retrieved 

through the Synapse data repository (https://www.synapse.org/#!Synapse:syn21991338). 

The following objects were analyzed using the Seurat package in R (v.4.2.0) without any 

further processing (23): FIMM_AML_scRNA.rdata, FIMM_AML_HCA_T_scRNA.rdata 

(integrated reference dataset of BM T cells from the FIMM AML cohort and the Human Cell 

Atlas [HCA; n = 8 healthy donors], totaling 52,909 profiled cells) and 

FIMM_AML_HCA_Yang_NK_scRNA.rdata (integrated reference dataset of NK cells from the 

FIMM AML cohort, the HCA and Yang et al. (n = 6 healthy donors) (24), resulting in 26,601 

profiled cells). SingleR cell type annotations (ENCODE/Blueprint) were provided in the original 

publication (18). Single-cell signature scores were estimated with the AddModuleScore_UCell 

function (UCell v1.0.0 package, available on GitHub at https://github.com/carmonalab/UCell), 

which is based on the Mann-Whitney U statistic and calculates scores based on the relative 

ranking of genes for individual cells. 
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van Galen et al. (25) 

scRNA-seq profiles for 16 AML samples at diagnosis and during treatment (totaling 30,712 

transcriptomes) and for 5 healthy BM donors (7,698 cells) were downloaded from GEO: 

GSE116256. After filtering out cells with >5% mitochondrial gene counts, or <200 or >2,500 

detected genes, data were normalized using the sctransform and glmGamPoi packages (26). 

Twenty principal components were selected for UMAP projection and clustering using the 

Seurat implementation of the Leiden algorithm with resolution set at 0.5. Cell type annotations 

were provided in the original publication. 

 

Abbas et al. (27) 

scRNA-seq data of eight patients with relapsed/refractory AML treated with azacitidine and 

nivolumab were analyzed as previously published. A total of 60,753 AML and 52,641 TME 

cells from 22 BM aspirates (8 pre-ICB and 14 post-ICB) were used for downstream analyses. 

IES scores were compared for responders (PT1A/2A/3A) and non-responders (PT4A/5A/6A) 

before (timepoint A) and after treatment (timepoints B and C) across cell types. Cell type 

annotations were provided in the original publication. 

 

Tirosh et al. (28) 

scRNA-seq profiles of 19 human melanoma tumors were downloaded from GEO: GSE77940. 

After filtering out cells with >5% mitochondrial gene counts, or <200 or >2,500 detected genes, 

data were processed as detailed above. Cell type annotations were provided in the original 

publication. 

 

Sade-Feldman et al. (29) 

scRNA-seq profiles of 16,291 individual immune cells from 48 tumor samples of patients with 

melanoma treated with ICB were accessed through the Single Cell Portal 

(https://singlecell.broadinstitute.org). Data were processed as detailed above. Cells were 
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automatically annotated (ENCODE/Blueprint reference map) using the SingleR and celldex 

packages in R (30, 31). 
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Key Resources 
Reagent or Resource Source Identifier 
Antibodies   
CD45 (clone 2D1) BioLegend Cat#: 368510 
CD19 (clone HIB19) BioLegend Cat#: 302258 
CD4 (clone OKT4) BioLegend Cat#: 317408 
CD8 (clone SK1) BioLegend Cat#: 344740 
CD8 (clone RPA T8) e-Bioscience Cat#: 45-0088-42 
CD57 (clone HNK1) BioLegend Cat#: 359608 
KLRG1 (clone SA231A2) BioLegend Cat#: 367716 
CD28 (clone CD28.2) BioLegend Cat#: 302946 
CD33 (clone P67.6) BioLegend Cat#: 366622 
TIGIT (clone A15153G) BioLegend Cat#: 372712 
CD127 (clone A019D5) BioLegend Cat#: 351326 
PD1 (clone EH12.1) BD Biosciences Cat#: 560795 
Tim-3 (clone F38-2E2) BioLegend Cat#: 345034 
CD34 (clone 561) BioLegend Cat#: 343608 
CD3 (clone OKT3) BioLegend Cat#: 317340 
Ki-67(clone B56) BD Biosciences Cat#: 561284 
gH2AX (clone N1-431) BD Biosciences Cat#: 562377 
ICOS (clone C398.4) BioLegend Cat#: 313534 
CD25 (clone BC96) e-Bioscience Cat#: 25-0259-42 
Biological Samples   
Newly diagnosed AML This paper GEO: GSE176100 
Relapsed/refractory AML This paper GEO: GSE178926 
Newly diagnosed AML This paper Flow cytometry 
Deposited data   
Human Cell Atlas (HCA) 
bone marrow dataset Freeberg and Welter 

https://data.humancellatlas.org/explore/pr
ojects/cc95ff89-2e68-4a08-a234-
480eca21ce79 

Human Primary Cell Atlas 
(HPCA) Mabbott et al. (2013) https://rdrr.io/github/LTLA/celldex/src/R/H

umanPrimaryCellAtlasData.R 
Normal bone marrow NK 
cells Yang et al. (2019) GEO: GSE130430 

Newly diagnosed AML Vadakekolathu et al. 
(2020) GEO: GSE134589 

Newly diagnosed AML TCGA-AML https://www.cbioportal.org/ 
See Table S1 

Newly diagnosed AML COG-TARGET AML https://www.cbioportal.org/ 
See Table S1 

Newly diagnosed AML Beat-AML Master Trial https://www.cbioportal.org/ 
See Table S1 

Newly diagnosed AML Herold et al. (2018) 
Li et al. (2013) GEO: GSE37642 

Newly diagnosed AML Ng et al. (2016) GEO: GSE76004 
Newly diagnosed AML 
(scRNA-seq) van Galen et al. (2019) GEO: GSE116256 

DOI: 10.1016/j.cell.2019.01.031 
Newly diagnosed AML 
(scRNA-seq) 

FIMM 
Dufva et al. (2020) 

syn21991338 
DOI: 10.1016/j.ccell.2020.06.002 

AML immunotherapy 
(scRNA-seq) Abbas et al. (2021) 

https://ega-
archive.org/studies/EGAS00001004894 
DOI: 10.1038/s41467-021-26282-z 

Cutaneous melanoma 
immunotherapy (scRNA-
seq) 

Sade-Feldman et al. 
(2018) 

GEO: GSE120575 
DOI: 
https://doi.org/10.1016/j.cell.2018.10.038 

Cutaneous melanoma 
(scRNA-seq) Tirosh et al. (2016) GEO: GSE77940 

DOI: 10.1126/science.aad0501 
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Cutaneous melanoma TCGA PanCancer Atlas 
Gao et al. (2013) https://www.cbioportal.org/ 

Cutaneous melanoma 
immunotherapy Gide et al. (2019) ENA: PRJEB23709 

See Table S9 
Cutaneous melanoma 
immunotherapy Prat et al. (2017) GEO: GSE93157 

See Table S10 

Cutaneous melanoma Bagaev et al. (2021) 
DOI: 10.1016/j.ccell.2021.04.014 
https://science.bostongene.com/tumor-
portrait/ 

Chemicals, Peptides, 
and Recombinant 
Proteins 

  

IL3 PHC0034 Life Technologies 
G-CSF RGCSF10 Life Technologies 
GM-CSF PHC2013 Life Technologies 
SCF PHC2115 Life Technologies 
Critical Commercial 
Assays 

  

RNA extraction kit Qiagen Cat#: 74106 
PanCancer Immune 
Profiling kit NanoString Technologies Cat#: 115000132 
Qubit™ RNA HS Assay 
Kit Thermo Fisher Scientific Cat#: Q32852 
RNA Clean & 
Concentrator-5 with 
DNase I Set 

Zymo Research Cat#: R1013 

Software and 
Algorithms 

  

celldex R package Aran et al. (2019) https://bioconductor.org/packages/releas
e/data/experiment/html/celldex.html 

CIBERSORT Gentles et al. (2015) https://cibersort.stanford.edu/ 

clusterProfiler R package Yu et al. (2012) https://guangchuangyu.github.io/software
/clusterProfiler/ 

ClustVis Metsalu et al. (2015) https://biit.cs.ut.ee/clustvis/ 
corrplot R package Wei et al. (2021) https://github.com/taiyun/corrplot 
EnhancedVolcano R 
package Blighe et al. (2019) DOI: 10.18129/B9.bioc.EnhancedVolcan

o 
EPIC Racle et al. (2017) http://epic.gfellerlab.org 
GeneMANIA Warde-Farley et al. (2010) https://genemania.org/ 

GEPIA2021 Chenwei et al. (2021) http://gepia2021.cancer-pku.cn/sub-
expression.html 

GEPIA2 Tang et al. (2019) http://gepia2.cancer-pku.cn/#index 

ggfortify R package Horikoshi et al. (2018) https://CRAN.R-
project.org/package=ggfortify 

ggplot2 R package Wickham (2016) https://ggplot2.tidyverseorg 

ggrepel R package Slowikowski 
et al. (2021) 

https://cran.r-
project.org/web/packages/ggrepel/index.
html 

glmnet R package Friedman et al. (2010) https://www.jstatsoft.org/v33/i01/ 

GSEA-P Subramanian et al. (2007) https://www.gsea-
msigdb.org/gsea/downloads.jsp 

Genotype-Tissue 
Expression (GTEx) 

Broad Institute of MIT and 
Harvard https://gtexportal.org/home/ 

ggVennDiagram R 
package Gao et al. (2021) 

https://cran.r-
project.org/web/packages/ggVennDiagra
m/readme/README.html 

GOSemSim R package Yu et al. (2010) http://bioconductor.org/packages/release/
bioc/html/GOSemSim.html 
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immunedeconv R 
package Sturm et al. (2019) https://github.com/icbi-lab/immunedeconv 

ImmuneSigDB Godec et al. (2016) 
http://www.gsea-
msigdb.org/gsea/msigdb/genesets.jsp?co
llection=IMMUNESIGDB 

maxstat R package Hothorn et al. (2003) 
Lausen et al. (2004) 

https://cran.r-
project.org/web/packages/maxstat/maxst
at.pdf 

nCounter advanced 
analysis v2.0.134 NanoString Technologies 

https://www.nanostring.com/products/ana
lysis-solutions/ncounter-advanced-
analysis-software/ 

NetworkAnalyst  Xia et al. (2015) https://www.networkanalyst.ca/ 

nSolver v4.0.70 NanoString Technologies 
https://www.nanostring.com/products/ana
lysis-solutions/ncounter-advanced-
analysis-software/ 

PANTHER (v16.0) Mi et al. (2013) 
Thomas et al. (2003) http://www.pantherdb.org/ 

pathfindR R package Ulgen et al. (2019) 
https://cran.r-
project.org/web/packages/pathfindR/inde
x.html 

Prism v9.0 GraphPad https://www.graphpad.com/scientific-
software/prism/ 

quanTIseq Finotello et al. (2019) https://icbi.i-
med.ac.at/software/quantiseq/doc/ 

R v4.0.4 R Core Team https://cran.r-project.org/bin/macosx/ 

sctransform R package Hafemeister and Satija, 
2019 

https://github.com/ChristophH/sctransfor
m 

SeneQuest Gorgoulis et al. (2021) https://senequest.net/ 
Seurat R package (v4) Hao et al. (2021) https://github.com/satijalab/seurat 

SingleR R package Aran et al. (2019) https://bioconductor.org/packages/releas
e/bioc/html/SingleR.html 

SPSS Statistics v26 IBM https://www.ibm.com/uk-
en/analytics/spss-statistics-software 

STRING Szklarczyk et al. (2019) http://string-db.org 

survminer R package Kassambara et al. (2021) 
https://cran.r-
project.org/web/packages/survminer/surv
miner.pdf 

SVA Bioconductor 
package Leek et al. (2021) https://bioconductor.org/packages/sva/ 

TIDE Jiang et al. (2018) http://tide.dfci.harvard.edu/login/ 
TIMER2.0 Taiwen et al. (2020) http://timer.cistrome.org/ 
TRRUST Han et al. (2018) https://www.grnpedia.org/trrust/ 
UCell R package Andreatta et al. (2021) https://github.com/carmonalab/UCell 
UCSC Xena Goldman et al. (2020) https://xenabrowser.net/datapages/ 
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Supplementary Figures 
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Figure S1 | Patient cohorts and gene expression platforms utilized in this study. Related 

to Materials & Methods. 
PMCC = Princess Margaret Cancer Centre; CHOP = Children’s Hospital of Philadelphia; SAL 

= Studien Allianz Leukämie; JHU = Johns Hopkins University; ICB = immune checkpoint 

blockade. 
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Figure S2 | Senescent-like T cells at time of response assessment and survival in 
patients with AML in the JHU1 cohort. Related to Fig. 2. 

Kaplan-Meier estimates of overall survival (OS) from complete remission (CR) in patients (N 

= 22) with senescent-like CD3+CD8+KLRG1+CD57+ T cells above (magenta line) and below 

(blue line) the optimal cut-point, which was computed using the maxstat package in R. Survival 

curves were compared using a log-rank test (survminer package in R). Median OS is indicated 

(color-coded by the optimal cut-point of the proportion of CD3+CD8+CD57+KLRG1+ T cells). 

HR = hazard ratio; CI = confidence interval. 
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Figure S3 | Expression of IED genes in FIMM AML cases (single-cell RNA-sequencing). 
Related to Fig. 2. 
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(A) Venn diagram showing the overlap between immunosenescence-associated genes in 

TCGA-AML and Beat-AML Master Trial cases and the derivation of a 172-gene IED signature. 

(B) Uniform manifold approximation and projection (UMAP) embedding of cell types identified 

by SingleR (ENCODE/Blueprint annotation) in 8 BM samples from patients with untreated 

AML (FIMM cohort) (18). 

(C) Violin plot of the expression of IED172 genes in the FIMM cohort. The IED172 score was 

computed using the UCell package in R. 
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Figure S4 | Expression of IED genes in AML cases from van Galen et al. (single-cell 
RNA-sequencing). Related to Fig. 2. 
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(A) Uniform manifold approximation and projection (UMAP) embedding of cell types identified 

by van Galen et al. in 16 BM samples from patients with untreated AML (25). 

(B) Violin plot of the expression of IED172 genes in the van Galen cohort. The IED172 score 

was computed using the UCell package in R. Cell type annotation as in the original publication. 
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Figure S5 | Expression of IED genes in healthy donor BM samples from van Galen et al. 
(single-cell RNA-sequencing). Related to Fig. 2. 
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(A) Uniform manifold approximation and projection (UMAP) embedding of cell types identified 

by van Galen et al. in 5 BM samples from healthy controls (25). 

(B) Violin plot of the expression of IED172 genes in healthy donor BM samples from the van 

Galen cohort. The IED172 score was computed using the UCell package in R. Cell type 

annotation as in the original publication. 
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Figure S6 | Expression of IED genes by natural killer (NK) cell functional subtypes from 
patients with AML (FIMM cohort). Related to Fig. 2. 
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Uniform manifold approximation and projection (UMAP) embedding of IED172 genes in NK 

cell subsets from healthy donor BM samples and patients with AML from the FIMM cohort 

(18). The NK functional scores were computed using the UCell package in R. A list of marker 

genes is provided in Supplementary Table 3 and can also be retrieved through the original 

publication (24). 

Abnormalities of the top 15 genes defining each NK subtype (mostly RNA up-regulation and/or 

gene amplification) were correlated with clinical outcomes in TCGA-AML cases (right column). 

Survival curves were compared using a log-rank test (survminer package in R). 
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Figure S7 | Expression of IED genes by natural killer (NK) cell functional subtypes from 
patients with AML (FIMM cohort). Related to Fig. 2. 
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Uniform manifold approximation and projection (UMAP) embedding of IED172 genes in NK 

cell subsets from healthy donor BM samples (24) and patients with AML from the FIMM cohort 

(18). The NK functional scores were computed using the UCell package in R. A list of marker 

genes is provided in Supplementary Table 3 and can also be retrieved through the original 

publication (24). 

Abnormalities of the top 15 genes defining each NK subtype (mostly RNA up-regulation and/or 

gene amplification) were correlated with clinical outcomes in TCGA-AML cases (right column). 

Survival curves were compared using a log-rank test (survminer package in R). 

 

  



 27 

 
Figure S8 | Signature overlap and pathway analysis. Related to Figure 2. 
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(A) Percent overlap between the 172 immune effector dysfunction (IED) genes from this study 

and published signatures of T-cell dysfunction/exhaustion and response of solid tumors to 

immune checkpoint blockade (32-34). Gene lists are provided in Supplementary Table 4. 

(B) Gene ontologies (GO) captured by the 172 genes in the IED signature (Panther 

Classification System, v16.0; http://www.pantherdb.org/). Percent of gene hits against total 

number of process hits. Parts of whole (100%) are shown as color-coded entries. 

(C) Bubble plot depicting enriched miRNAs in IED172 signature genes (clusterProfiler 

package in R). 
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Figure S9 | IED172 scores in TCGA-AML and Beat-AML cases. Related to Figure 2. 
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(A) European Leukemia Net (ELN) risk category, correlation between IED172 score and 

patient age, and mutation count in TCGA-AML cases (Mann-Whitney U test for unpaired 

determinations). 

(B) European Leukemia Net (ELN) risk category, correlation between IED172 score and 

patient age, and mutation count in Beat-AML cases (Mann-Whitney U test for unpaired 

determinations). 

 

  



 31 

 
Figure S10 | IED172 scores in Beat-AML cases. Related to Figure 2. 
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(A) IED172 scores at baseline in Beat-AML patients who experienced primary induction failure 

(PIF, following a standard 2 cycles) and in those who achieved complete remission (CR) after 

induction chemotherapy. 

(B) Number of patients with PIF and CR in the IED172high and IED172low group at baseline 

(median split). Data were compared using the Fisher’s exact test. 

(C) IED172 scores at baseline and at time of response assessment in 13 cases with matched 

bone marrow (BM) samples. Data were compared using the Wilcoxon matched pairs signed 

rank test. CT = chemotherapy. 

(D) Percentage of BM blasts in 13 cases with matched samples. MRD = measurable residual 

disease at time of BM sampling. 

(E) Immune cell type deconvolution of bulk RNA-seq data. The composition of immune cells 

in the tumor microenvironment was inferred using quanTIseq (immunedeconv package in R), 

which provides an absolute score representing immune cell fractions and allows both intra- 

and inter-sample comparisons (15). 

(F) Boxplots comparing immune cell fractions in matched BM samples collected at baseline 

and post-chemotherapy (Mann-Whitney U test for unpaired determinations). Outliers are 

shown with black dots. **** P < 0.0001; *** P < 0.001; * P < 0.05; ns = not significant; mDC = 

myeloid dendritic cells. 
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Figure S11A | IED172 scores in AML cases from van Galen et al. Related to Figure 3. 
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Violin plot of the expression of IED172 genes in patients with AML from the van Galen cohort 

(25). The IED172 score was computed using the UCell package in R. Blast counts at diagnosis 

and at different timepoints after treatment are indicated in each plot. BM = bone marrow; D = 

day. 
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Figure S11B-S11C | IED172 scores in AML cases from van Galen et al. Related to Figure 

3. 

(B) Violin plot of the expression of IED172 genes in patients with AML from the van Galen 

cohort (25). The IED172 score was computed using the UCell package in R. Blast counts at 

diagnosis and at different timepoints after treatment are indicated in each plot. BM = bone 

marrow; D = day. 

(C) Correlation between blast count and IED172 score. Red dots denote BM aspirates 

collected from patients who were not in complete remission (CR) at time of sampling. 
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Figure S12 | Leukemia stem cell (LSC17) score and survival in the TCGA-AML and Beat-
AML Master Trial cohorts. Related to Figure 3. The LSC17 score was calculated as the 

weighted sum of the normalized expression values of the 17 genes included in the signature 

using the same weights as those provided in the original publication (12). Kaplan-Meier 

estimates of overall survival (OS) in TCGA-AML (A) and Beat-AML Master Trial patients (B) 

with above median (magenta line) and below median (blue line) LSC17 scores. Survival 

curves were compared using a log-rank test (survminer package in R). 
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Figure S13 | Derivation of a parsimonious immune effector dysfunction (IED) gene set 
using LASSO penalized regression for feature selection. Related to Figure 4. 

(A) A prognostic index (PI) was generated using β values from Cox regression analyses of 

gene expression and patient survival, as previously published (35). PCI = PanCancer Immune 

profiling panel. 

(B) Venn diagram showing the overlap between PI24 and PI20 genes. 

(C) Correlation between the PI24 score and overall survival (OS) time in the TCGA-AML 

cohort. R = Pearson correlation coefficient. 

(D) AUROC curve measuring the predictive ability of IED172 and PI24 genes for OS. CI = 

confidence interval. AUROC = 1.0 denotes perfect prediction and AUROC = 0.5 denotes no 

predictive ability. 
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Figure S14 | Published gene sets capturing NK cells, cytolytic activity and immune 
senescence, and survival in TCGA-AML cases. Related to Figure 4. 
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Gene lists were downloaded from Dufva et al. (cytolytic genes) and Pereira et al. (NK-related 

genes, senescence-related genes) (18, 36) and are reported in the Figure as well as in 

Supplementary Table 4. For each sample, gene expression scores were calculated as an 

average (arithmetic mean) of gene expression values for all genes in the signature. Kaplan-

Meier estimates of overall survival (OS) in TCGA-AML cases with gene expression score 

above median (magenta line) and below median (blue line). Survival curves were compared 

using a log-rank test (survminer package in R). 
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Figure S15 | An immune effector dysfunction (IED)-related prognostic index (PI24) 
separates survival in a validation AML cohort. Related to Figure 4. 

(A) Kaplan-Meier estimates of overall survival (OS) in Beat-AML cases with PI24 above 

(magenta line) and below the optimal cut-point (blue line). Survival curves were compared 

using a log-rank test (survminer package in R). 

(B) AUROC curve measuring the predictive ability of IED172 (magenta curve) and PI24 genes 

(green curve) for OS. CI = confidence interval. AUROC = 1.0 denotes perfect prediction and 

AUROC = 0.5 denotes no predictive ability. 
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Figure S16 | Identification of an optimal prognostic index (PI24) cut-point in TCGA-AML 
and Beat-AML cases. Related to Figure 4. 

The PI was computed as detailed in Materials and Methods. 

(A) Kaplan-Meier estimates of relapse-free survival (RFS) in TCGA cases with PI24 above 

(magenta line) and below the optimal cut-point (blue line). Survival curves were compared 

using a log-rank test (survminer package in R). 

(B) Kaplan-Meier estimates of overall survival (OS) in TCGA-AML cases with PI24 above 

(magenta line) and below the optimal cut-point (blue line). 



 43 

(C) Kaplan-Meier estimates of RFS in TCGA cases with high (top quartile; green line), 

intermediate (blue line) and low PI24 (bottom quartile; magenta line). 
(D) Kaplan-Meier estimates of OS in TCGA cases with high (top quartile; green line), 

intermediate (blue line) and low PI24 (bottom quartile; magenta line). 

(E) Kaplan-Meier estimates of overall survival (OS) in Beat-AML cases with PI24 above 

(magenta line) and below the optimal cut-point (blue line). 

(F) Kaplan-Meier estimates of OS in Beat-AML cases with high (top quartile; green line), 

intermediate (blue line) and low PI24 (bottom quartile; magenta line). 
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Figure S17 | Prognostic index (PI24) and survival in the GSE37642 series (German 
AMLCG 1999 trial). Related to Figure 4. 

Gene expression data were retrieved through GEO (accession numbers: GSE37642-GPL570 

and GSE37642-GPL96) (19, 20). The PI24 was computed as detailed in Materials and 

Methods. Maximally selected rank statistics (maxstat package in R) was used to identify an 

optimal cut-point of PI24 values. 
(A) Kaplan-Meier estimate of OS in GSE37642-GPL570 cases (n = 140) with PI24 above 

(magenta line) and below the optimal cut-point (blue line). Survival curves were compared 

using a log-rank test (survminer package in R). 
(B) Kaplan-Meier estimate of OS in GSE37642-GPL96 cases (n = 422) with PI24 above 

(magenta line) and below the optimal cut-point (blue line) identified in the GSE37642-GPL570 

series. 
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Figure S18 | Expression of IED-related gene sets in bone marrow samples from patients 
with AML. Related to Figure 4. 

Dot plot showing the expression of IED genes (RNA-sequencing signature [IED172]; 

NanoString IES signature [IED68], LASSO-based RNA-sequencing IED signature [PI24] and 

LASSO-based NanoString IED signature [PI20]) on immune cell types annotated by Dufva et 

al. (ENCODE/Blueprint) in 8 single-cell RNA-sequencing AML samples (18). Data and R 

objects were retrieved from the Synapse data repository 

(https://www.synapse.org/#!Synapse:syn21991338; SynapseID: syn21991338) and analyzed 

with R v.4.2.0. MPP = multipotent progenitors; MEP = megakaryocyte erythroid progenitors; 

GMP = granulocyte-macrophage progenitors; CMP = common myeloid progenitors; NK = 

natural killer. Signature scores were calculated using the UCell package in R. 
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Figure S19 | Expression of IED-related gene sets in bone marrow samples from patients 
with AML and from healthy donors. Related to Figure 4. 
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(A) Dot plot showing the expression of IED genes (RNA-sequencing signature [IED172]; 

NanoString IED signature [IED68], LASSO-based RNA-sequencing IED signature [PI24] and 

LASSO-based NanoString IED signature [PI20]) on immune cell types originally annotated by 

van Galen et al. in 16 single-cell RNA-sequencing AML samples (25). Signature scores were 

calculated using the UCell package in R. 

(B) Dot plot showing the expression of IED genes on immune cell types originally annotated 

by van Galen et al. in 5 single-cell RNA-sequencing BM samples from healthy donors (25). 
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Figure S20 | Predictive ability of IED-related gene sets in patients with AML in the PMCC 
cohort. Related to Figure 6. 
Head-to-head comparison of AUROC curves measuring the predictive ability of the IED68 

score (blue line), the PI20 (blue line) and the ELN cytogenetic risk classifier (magenta line) for 

overall survival (OS). CI = confidence interval. AUROC = 1.0 denotes perfect prediction and 

AUROC = 0.5 denotes no predictive ability. 
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Figure S21 | Prognostic index (PI20) and primary induction failure in patients with AML 
(n = 250) treated in the AMLCG-2008 study (NCT01382147). Related to Figure 6. Gene 

expression data were retrieved through GEO (accession number: GSE106291) (19). The PI20 

was computed as detailed in Materials and Methods. 

(A) Number of patients with primary therapy resistance (primary induction failure; PIF) and 

complete response (CR) in the PI20high and PI20low group (median split). Data were compared 

using the Fisher’s exact test. 

(B) Kaplan-Meier estimates of overall survival (OS) in patients with PI20 above (magenta line) 

and below the optimal cut-point (blue line). Survival curves were compared using a log-rank 

test (survminer package in R). 
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Figure S22 | NanoString-based prognostic index (PI20) in subjects of the indicated 
cytogenetic grouping (Princess Margaret Cancer Centre [PMCC] cohort). Related to 

Figure 6. 
(A) Kaplan-Meier estimates of relapse-free survival (RFS; top row) and overall survival (OS; 

bottom row) in patients from the PMCC cohort with higher than median (magenta line) and 

lower than median (blue line) PI20. Survival curves were compared using a log-rank test 

(survminer package in R). ELN = 2017 European Leukemia Net. 

(B) Kaplan-Meier estimates of OS after censoring at time of hematopoietic stem cell 

transplantation (HSCT). 
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Figure S23 | NanoString-based prognostic index (PI20) and survival in LSC17high and 
LSC17low patients (Princess Margaret Cancer Centre [PMCC] cohort). Related to Figure 

6. 

Kaplan-Meier estimates of relapse-free survival (RFS) and overall survival (OS) in PI20low and 

PI20high patients from the PMCC cohort with higher than median (magenta line) and lower than 

median (blue line) LSC17 scores, which were computed as detailed in Materials and Methods 

and in the original publication (12). Panels A and B = all patients; panels C and D = PIlow 

patients; panels E and F = PIhigh patients. RNA-sequencing data were retrieved through GEO 

(accession number: GSE76004). Survival curves were compared using a log-rank test 

(survminer package in R). 

Kaplan-Meier estimates of RFS and OS in patients with higher than median (magenta line) 

and lower than median (blue line) PI stratified based on a median split of the LSC17 stemness 

score. Panels G and H = LSC17high patients; panels I and J = LSC17low patients. 
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Figure S24 | Gene set enrichment analysis (GSEA) of differentially expressed genes 
between baseline and post-chemotherapy bone marrow samples from patients in the 
SAL and JHU2 chemotherapy cohorts. Related to Figure 8. 
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GSEA was performed using the clusterProfiler package in R using differentially expressed 

genes between baseline and post-chemotherapy bone marrow samples (log2 fold-change 

>1.0; adjusted P value <0.05) as an input. C2 and C7 gene sets were downloaded from the 

MSigDB (https://www.gsea-msigdb.org/gsea/msigdb/). SAL = Studien Allianz Leukämie; JHU 

= Johns Hopkins University. 
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Figure S25 | Expression of IED68 genes in a single-cell RNA-sequencing cohort of 8 
patients with chemotherapy-refractory and/or relapsed AML treated with azacitidine 
and nivolumab immunotherapy. Related to Figure 9. 
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(A) Uniform manifold approximation and projection (UMAP) embedding of IED68 genes in 

primary bone marrow (BM) samples (27). Cell type annotation as in the original publication. 

The IED68 score was computed using the UCell package in R. 

(B) Violin plot of IED68 single-cell scores in primary BM samples. NR = non-responder; Resp 

= responder. Data were compared using the Wilcoxon matched pairs signed rank test. **** 

P<0.001. 

(C) Violin plot of IED68 single-cell scores in primary BM samples collected at baseline and on-

treatment. Data were compared using the Wilcoxon matched pairs signed rank test. * P<0.05; 

*** P<0.001; **** P<0.0001. 
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Figure S26 | IED scores in patients with cutaneous melanoma (TCGA series). Related to 

Figure 10. RNA-sequencing and outcomes data for 441 patients with primary and/or 
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metastatic cutaneous melanoma (TCGA Pan-Cancer Atlas profiling project) were retrieved 

through the cBioPortal for Cancer Genomics (https://www.cbioportal.org/) (21). 

(A) Age (years) in patients with above and below median prognostic index (PI24). Data were 

compared using the Mann-Whitney U test for unpaired determinations. 

(B) Mutation count in patients with above and below median PI24. Data were compared using 

the Mann-Whitney U test for unpaired determinations. 

(C) Tumor microenvironment (TME) subtypes, as recently defined (22), in patients with above 

and below median PI24. Data were compared using the Fisher’s exact test. Sample annotation 

was retrieved through the BostonGene Science Portal 

(https://science.bostongene.com/tumor-portrait/). (D) Functional gene expression signatures 

from Bagaev et al. (22) in PI24high and PI24low cases. ClustVis, an online tool for clustering of 

multivariate data (Euclidean distance, complete linkage), was used for data visualization (37). 

The heatmap annotation track shows median split of PI24 scores. 

(E) Overall survival of patients with an immune-enriched TME stratified by PI24 [above 

(magenta line) and below the optimal cut-point (blue line); maxstat package in R]. Survival 

curves were compared using a log-rank test (survminer package in R). 

(F) Overall survival of patients with a depleted TME stratified by PI24 [above (magenta line) 

and below the optimal cut-point (blue line)]. 
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Figure S27 | PI24 scores in patients with cutaneous melanoma (TCGA series). Related 

to Figure 10. 
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(A) Box plots showing the number of lymphocyte clusters and tumor infiltrating lymphocyte 

(TIL) patches (available from Saltz et al. (38)), as well as myeloid/lymphocyte RNA scores 

(available from Bagaev et al. (22)), in patients with melanoma in the PI24high and PI24low 

subgroup. Data were compared using the Mann-Whitney U test for unpaired determinations. 

(B) Correlograms showing co-expression of functional gene signatures (available from Bagaev 

et al.) in PI24high and PI24low cases. The correlation matrix was re-ordered using the hclust 

function (corrplot package in R). Rectangles (“signature hubs”) were drawn based on the 

results of hierarchical clustering (Euclidean distance, complete linkage). 

(C) TIL patterns from deep-learning-derived “computational stain” of melanoma tissues 

(available from Saltz et al. (38)) from patients in the PI24high and PI24low subgroup. Fisher’s 

exact test. 
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Figure S28 | Expression of PI24 genes in a single-cell RNA-sequencing cohort 
encompassing 19 human melanoma tumors (Tirosh et al.). Related to Figure 10. 
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(A) Uniform manifold approximation and projection (UMAP) embedding of PI24 genes in 

primary melanoma samples from Tirosh et al. (28). Cell type annotation as in the original 

publication. 

(B) Heatmap showing expression of the top 5 marker genes which were identified using the 

FindAllMarkers function in Seurat. The MAST package was used to run differential expression 

testing. 

(C) Violin plot of the expression of PI24 genes in primary melanoma tissues. The PI24 score 

was computed using the UCell package in R. 
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Figure S29 | Expression of PI24 genes in a single-cell RNA-seq cohort encompassing 
48 tumor samples of patients with melanoma treated with immune checkpoint blockade 
(Sade-Feldman et al.). Related to Figure 10. 

(A) Violin plot of the expression of PI24 genes in primary melanoma tissues from Sade-

Feldman et al. (29). The PI24 score was computed using the UCell package in R. Cells were 
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automatically annotated (ENCODE/Blueprint reference map) using the SingleR and celldex 

packages in R (30, 31). 

(B) Violin plot of the expression of PI24 genes in pre-therapy melanoma tissues from 

responders and non-responders to immune checkpoint blockade (ICB). 
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