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Introduction
Hepatocellular carcinoma (HCC) is the most common form of liver 
cancer, representing the third leading cause of cancer-related death 
(1). The incidence of HCC ranks sixth among all tumor types world-
wide. Increased HCC occurrence in this decade reflects persistent 
hepatitis B and C virus infection and the increase of nonalcoholic 
steatohepatitis (NASH) since 2000 (2). A projection study indicated 
that the age-standardized incidence rates per 100,000 person-years 
for primary liver cancer would increase in both men and women by 
the year 2030 in most countries as a result of increased NAFLD and/
or NASH (3). During the past decade, multitargeted tyrosine kinase 
inhibitors (TKIs), such as sorafenib, lenvatinib, regorafenib, and 
cabozantinib, have been used as first- or second-line drugs for patients 
with unresectable HCC (4). However, these agents provide limited 
survival benefits and are associated with considerable toxicities and 
poor quality-of-life outcomes. Immune checkpoint inhibitors (ICIs) 
have been approved for HCC treatment and show a similar response 
rate (15%–30%) compared with TKI therapies (5). For example, 
HCC patients who received the CTLA4-blocking ICI tremelimumab 
showed a partial response rate of 18% and a disease control rate of 
76% (6). PD-1 and PD-L1 blockade showed higher objective response 
rates, which could reach 20% in advanced HCC patients (7). Recent-
ly, the phase III IMbrave150 trial results showed that combining an 
anti–PD-L1 antibody with an anti–VEGF-A antibody leads to prom-
ising efficacy for advanced HCC patients (8). Currently, this combi-
nation immunotherapy has become the first-line treatment strategy 
against HCC (9). Nevertheless, most patients eventually progress 
under this regimen. Therefore, studies to elucidate the molecular 
mechanisms underlying HCC pathogenesis are imperative to devel-
op additional and more effective drugs for precision medicine.

Molecular mechanisms of Wnt/β-catenin 
activation in HCC
The Wnt/β-catenin cascade is one of the major signaling pathways 
regulating liver homeostasis, regeneration, and tumorigenesis 
(10), which has been extensively reviewed (11, 12). In brief, in the 
absence of Wnt ligands, most cellular β-catenin is sequestered in 
the adherens junctions at the plasma membrane (Figure 1). Cyto-
solic β-catenin associates in a complex with adenomatous polypo-
sis coli (APC) and AXIN1 proteins, which mediate the N-terminal 
phosphorylation of β-catenin. This event leads to the ubiquitina-
tion of β-catenin by the E3 ubiquitin ligase β-transducin repeat–
containing protein (β-TRCP) and subsequent proteasomal degra-
dation. When Wnt ligands bind to the Frizzled receptors, Dvl/Dsh 
is phosphorylated and, in turn, recruits AXIN1 and GSK3β adja-
cent to the plasma membrane, thus preventing the formation of 
the degradation complex. As a result, unphosphorylated β-catenin 
escapes recognition by β-TRCP and translocates into the nucleus, 
where it binds to the T cell factor (TCF) and lymphoid enhancer–
binding protein family (LEF) transcription factors. The activated 
β-catenin/TCF/LEF complex induces the transcription of genes 
regulating cell proliferation and survival (Figure 1).

In the normal liver, β-catenin is membrane-localized in 
hepatocytes, and the Wnt/β-catenin pathway is activated in peri-
central hepatocytes, which is demonstrated by β-catenin–depen-
dent glutamine synthetase (GS) staining in these cells (13, 14). 
In HCC, recent genomic studies revealed that 30% to 40% of 
tumors demonstrate aberrant activation of the Wnt/β-catenin cas-
cade (15). The activation of this pathway could be subdivided into 
somatic genetic events and nongenetic events. For somatic muta-
tions leading to Wnt/β-catenin activations, The Cancer Genome 
Atlas (TCGA) analysis reveals that gain-of-function (GOF) muta-
tions of CTNNB1, which encodes β-catenin, occur in 27% of HCC 
patients (Figure 1). Most CTNNB1 missense mutations arise at the 
serine/threonine sites of exon 3 or adjacent amino acids, which 
prevents the β-catenin protein from phosphorylation and degrada-
tion, leading to its stabilization and unrestrained transcriptional 

Deregulated Wnt/β-catenin signaling is one of the main genetic alterations in human hepatocellular carcinoma (HCC). 
Comprehensive genomic analyses have revealed that gain-of-function mutation of CTNNB1, which encodes β-catenin, and 
loss-of-function mutation of AXIN1 occur in approximately 35% of human HCC samples. Human HCCs with activation of the 
Wnt/β-catenin pathway demonstrate unique gene expression patterns and pathological features. Activated Wnt/β-catenin 
synergizes with multiple signaling cascades to drive HCC formation, and it functions through its downstream effectors. 
Therefore, strategies targeting Wnt/β-catenin have been pursued as possible therapeutics against HCC. Here, we review the 
genetic alterations and oncogenic roles of aberrant Wnt/β-catenin signaling during hepatocarcinogenesis. In addition, we 
discuss the implication of this pathway in HCC diagnosis, classification, and personalized treatment.

β-Catenin signaling in hepatocellular carcinoma
Chuanrui Xu,1 Zhong Xu,2 Yi Zhang,3 Matthias Evert,4 Diego F. Calvisi,4 and Xin Chen5

1School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. 2Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China. 
3Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China. 4Institute of Pathology, University of Regensburg, 

Regensburg, Germany. 5Department of Bioengineering and Therapeutic Sciences and Liver Center, UCSF, San Francisco, California, USA.

Conflict of interest: The authors have declared that no conflict of interest exists.
Copyright: © 2022, Xu et al. This is an open access article published under the terms 
of the Creative Commons Attribution 4.0 International License.
Reference information: J Clin Invest. 2022;132(4):e154515. 
https://doi.org/10.1172/JCI154515.

https://www.jci.org
https://doi.org/10.1172/JCI154515


The Journal of Clinical Investigation   R E V I E W

2 J Clin Invest. 2022;132(4):e154515  https://doi.org/10.1172/JCI154515

Unique features of HCC with Wnt/β-catenin 
activation
Studies have illustrated that human HCCs with aberrant Wnt/ 
β-catenin activation have distinct clinical, pathological, and molec-
ular features. Multiple investigations suggest that overexpression 
and mutations of β-catenin occur more frequently in HCV-relat-
ed HCCs than in HBV-related HCCs (22–24) and are commonly 
observed in HCC with noncirrhotic liver in the absence of usual 
HCC risk factors (25, 26). Activation of the Wnt/β-catenin cas-
cade has been linked to early-stage HCC (24, 27), but also tumor 
progression (28). Association between β-catenin activation and 
HCC patient survival remains controversial, with most studies sug-
gesting that CTNNB1 mutation is a favorable prognostic marker. 
For instance, using meta-analysis, Wang et al. reported that HCC 
patients with CTNNB1 mutations demonstrate a more prolonged 
overall survival (29). Similar results came from a study by Ding et 
al. (30). However, Lu and colleagues reported that CTNNB1 muta-
tions are not associated with prognosis in advanced HCC (31).

The histopathological features of human HCC lesions with 
β-catenin activation have also been extensively investigated, pro-
viding conflicting results. For instance, Hsu et al. showed that β-cat-
enin mutations are associated with grade I HCC (22). In addition, 
Wong et al. found that HCCs with a non-nuclear type of β-catenin 

activity (14). In addition, mutations in armadillo repeat domains 
5 and 6 of the β-catenin protein are also frequently observed in 
human HCCs (16). Studies have suggested that these amino acid 
substitutions have reduced binding to APC, leading to increased 
Wnt/β-catenin signaling (16). Mutations have also been observed 
in APC and AXIN1, encoding critical components of the β-catenin 
degradation complex. Mutations in APC and AXIN1 are found in 
3% and 8% of HCC, respectively (Figure 1). APC and AXIN1 muta-
tions are mostly missense, deleted, and/or truncated mutations, 
resulting in loss of protein expression and function, a characteris-
tic of tumor suppressors (17). Importantly, mutations of CTNNB1, 
APC, or AXIN1 rarely co-occur in the same HCC, suggesting that 
these mutations lead to common downstream effectors. Notably, 
HCC patients harboring GOF CTNNB1 mutations demonstrate 
robust upregulation of canonical Wnt target genes, including 
GLUL, TBX3, AXIN2, LGR5, SP5, and OAT (Figure 1).

Studies have also revealed multiple nongenetic mechanisms 
leading to Wnt/β-catenin activation. These include promoter 
hypermethylation and related silencing of the secreted Frizzled- 
related protein 1 gene (SFRP1), a Wnt/β-catenin antagonist (18); 
overexpression of Frizzled (FZD) membrane receptor and Wnt 
ligands (19); and deregulated expression of microRNAs (20) and 
long noncoding RNAs (21) that regulate Wnt/β-catenin signaling.

Figure 1. Canonical Wnt/β-catenin signaling pathway in HCC. (A) When Wnt ligands are present, Wnt/FZD signaling activation leads to the phosphoryla-
tion of mammalian homolog of dishevelled (DVL). Phosphorylated DVL recruits AXIN and GSK3β to the plasma membrane, hence blocking the degradation 
complex’s formation. Subsequently, β-catenin accumulates in the cytoplasm and then translocates into the nucleus. Nuclear β-catenin binds to TCF/LEF 
transcription factors and promotes the transcription of target genes. (B) When Wnt ligands are absent, soluble β-catenin is phosphorylated by the GSK3β-
CK1α-APC-AXIN1 complex. Once phosphorylated, β-catenin is degraded by the proteasome after ubiquitination by the Skp-, Cullin-, and F-box–containing 
(SCF) protein complex. When β-catenin is absent in the nucleus, the TCF/LEF transcription factors are repressed by TLE-1. CTNNB1 (encoding β-catenin), 
AXIN1, and APC are mutated in 27%, 8%, and 3% of human HCCs, respectively.
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have shown that CTNNB1 mutation is one of the significant key 
genetic events in human HCCs (43, 44). Furthermore, Wnt/β-cat-
enin has also been implicated in HCC stemness, progression, 
metastasis, and drug resistance (45–49). For instance, this path-
way has been identified as the prominent signaling that causes the 
proliferation of cancer stem cells (CSCs). Indeed, overexpression 
of β-catenin increases self-renewal and in vivo tumorigenicity of 
HCC CSCs (50–52). Furthermore, activated Wnt/β-catenin has 
also been associated with resistance to sorafenib and regorafenib 
in HCC patients (51, 53). All these data support the critical roles of 
Wnt/β-catenin in various steps of hepatocarcinogenesis.

The oncogenic role of Wnt/β-catenin mutations in HCC was 
first investigated in transgenic mice. Importantly, transgenic mice 
overexpressing activated mutant forms of β-catenin develop hepato-
megaly, but not HCC (54, 55). These results indicate that activation 
of Wnt/β-catenin alone may not be sufficient to drive hepatocar-
cinogenesis. Instead, a second signal is required to cooperate with 
activated β-catenin to induce HCC development. Consistent with 
this hypothesis, recent studies using hydrodynamic transfection 
(56) have demonstrated that oncogenic forms of β-catenin cooper-
ate with other proto-oncogenes such as c-Met (57–59), K-RasV12 (60), 
activated Akt (61), LKB1 (62), and Nrf2 (63) to induce HCC forma-
tion in mice (Table 1). In human HCCs, coordinated activation of 
c-Met and β-catenin was found in approximately 10% of samples 
(64). While overexpression of c-Met or the activated mutant form of 
β-catenin via hydrodynamic injection alone cannot promote HCC 
formation in mice, coexpression of c-Met and activated β-catenin 
induces liver tumor development within 6–8 weeks after injection 
(58). Concomitant CTNNB1 mutations and NFE2L2/KEAP1 muta-
tions, which lead to action of the Nrf2 pathway, occur in approxi-
mately 9% of human HCCs (63). Coexpression of activated forms 
of β-catenin with mutant NFE2L2, but not the wild-type form of 
NFE2L2, can induce HCC development in mice (63). Loss-of-
function AXIN1 mutations and c-Met activation were detected 
in approximately 4% of human HCC, and coexpression of c-Met 
together with CRISPR/Cas9–based targeting of Axin1 (sgAxin1) in 
the mouse liver triggers HCC formation (59). Consequent RNA-Seq 
studies have demonstrated that these murine HCCs share similar 
gene expression patterns to the subset of human HCCs harboring 
similar genetic events. In addition, TERT promoter mutations are 
found in many HCC tissues with CTNNB1 mutations, indicating a 
possible synergistic effect of these two genes (65, 66).

Once activated, β-catenin triggers the induction of down-
stream target expression via the TCF/LEF1 family of transcription 
factors. Many of these target genes are implicated in hepatocar-
cinogenesis. c-MYC is one of the best-characterized downstream 
effectors of β-catenin. However, c-MYC is also regulated by many 
other mechanisms, such as amplification of the c-MYC locus, 
increased protein stability, and activation of estrogen receptor, 
Ras/Raf, and IFN-γ pathways (67–69). c-MYC was first identified 
as a Wnt/β-catenin target gene in the human HT29 colorectal 
cancer cell line harboring mutant APC alleles (70). Subsequent-
ly, multiple Wnt response elements were identified in the c-MYC 
promoter (71). Furthermore, in human HCC, c-MYC could be 
induced by β-catenin activation (72, 73), and this pathway plays a 
critical role in gankyrin-driven increased glycolysis and glutami-
nolysis (74) as well as in sorafenib responsiveness (75).

overexpression have poorer cellular differentiation (32). In contrast, 
there were no significant differences in HCC tumor grade between 
β-catenin–positive and –negative tumors in two other investigations 
(33, 34). These discrepancies remain to be addressed and might be 
due to the different analyses conducted (using either HCCs with 
β-catenin mutations or nuclear accumulation of the protein for the 
comparisons) or the lack of a standard and specific delineation of 
β-catenin–“positive” tumors based on the staining patterns (i.e., the 
percentage of cells positive for nuclear β-catenin defining an HCC 
as either β-catenin positive or negative). Finally, Audard et al. were 
the first to try to outline macroscopic and microscopic features of  
CTNNB1-mutated HCCs (25). They demonstrated that CTNNB1- 
mutated HCCs are usually large (>6 cm in diameter) and solitary 
lesions. Typical, albeit non-pathognomonic, microscopic features of 
CTNNB1-mutated HCCs are microtrabecular and acinar growth, a 
high degree of differentiation (Edmondson grade G1–G2), homoge-
neous microscopic appearance, prominent cholestasis, and lack of 
steatosis and inflammation. Interestingly, they showed that robust 
and uniform immunohistochemical expression of glutamine syn-
thetase (GS), a target of the Wnt/β-catenin pathway, was more sen-
sitive (90%) than cytoplasmic/nuclear β-catenin positivity (63%) in 
identifying CTNNB1-mutated HCCs, though with equal specificity 
(both 98%). Indeed, based on TCGA analysis, the upregulation of 
GLUL, which encodes GS, and other canonical Wnt/β-catenin tar-
get genes is strongly associated with CTNNB1 mutation status in 
HCC (Figure 1). These results were confirmed by Calderaro et al. in 
a large study comparing the correlation of morphology and molecu-
lar features in a large cohort of HCCs (35).

Overall, human HCCs can be subdivided into two major 
groups: a proliferation group and a nonproliferation group (36, 37). 
Each of these groups accounts for approximately 50% of human 
HCCs and consists of several subgroups identified in various 
genomic studies (Figure 1B). In addition, based on TCGA studies, 
HCC could be classified into clusters 1, 2, and 3 (38). Clusters 1 
and 3 belong to the proliferation group and cluster 2 to the nonpro-
liferation group. Boyault et al. further defined human HCCs into 
G1 to G6 subgroups (39). Among them, G1, G2, and G3 are classi-
fied as proliferation group, whereas G4, G5, and G6 are defined as 
nonproliferation group. The proliferation group and the nonprolif-
eration group show different molecular, genetic, epigenetic, and 
clinical features. The proliferation group is associated with chro-
mosomal instability, DNA hypomethylation, alcohol- or HCV- 
related HCC, low serum α-fetoprotein levels, and low frequency of 
vascular invasion. In contrast, the nonproliferation group is char-
acterized by chromosomal stability, promoter hypermethylation, 
frequent HBV infection, more aggressive phenotype, poor tumor 
differentiation, high serum α-fetoprotein levels, and increased 
vascular invasion (40). Intriguingly, GOF CTNNB1 mutations are 
frequently found in the nonproliferation group, and are associated 
with cluster 2 and G5/G6 subgroups (Figure 1B). In contrast, HCCs 
with AXIN1 mutations belong to the proliferation group, and are 
associated with cluster 1 and G1 subgroups (Figure 1B).

Induction of hepatocarcinogenesis by Wnt/ 
β-catenin
Activated Wnt/β-catenin signaling has been considered an early 
signaling event in HCC pathogenesis (41, 42). Importantly, studies 
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phorylated mTOR-S2448 (p–mTOR-S2448) characterizes human 
HCCs. In addition, CTNNB1-mutated HCCs are mTORC1-addict-
ed, owing to the GS/glutamine/p–mTOR-S2448 axis. These stud-
ies suggest that mTORC1 inhibitors could be effective for treating 
CTNNB1-mutant and GS-positive human HCCs.

In addition to the genes mentioned above, activated Wnt/ 
β-catenin drives the expression of hundreds of other genes, thus 
architecting a network of molecules that contributes to tumori-
genesis (91, 92). For example, activated Wnt/β-catenin induces 
the expression of AXIN2, which functions as a negative-feedback 
mechanism to inhibit β-catenin, perhaps avoiding the harm-
ful effects of a completely uncontrolled β-catenin activity (93). 
TBX3 is another liver-specific Wnt/β-catenin target gene that 
can contribute to specific pathological phenotypes via inhibition 
of the YAP cascade (94). Kinesin family member 2C (KIF2C) is 
also a direct target of the activated Wnt/β-catenin pathway (95). 
Its expression is upregulated in HCC and is associated with a 
poor prognosis. Furthermore, KIF2C enhances mTORC1 activa-
tion, providing another link between activated β-catenin and the 
mTOR cascade in HCC (95). In addition, Wnt/β-catenin is known 
to induce the expression of multiple matrix metalloproteinases 
(MMPs), such as MMP2 and MMP9, which contribute to tumor 
metastasis (96). VEGF-A and VEGF-C, key molecules promot-
ing angiogenesis, are induced by Wnt/β-catenin (97). Moreover, 
Wnt/β-catenin positively regulates MCL1 expression, associated 
with sorafenib sensitivity in HCC (98). In addition to activating 
genes or pathways, Wnt/β-catenin negatively regulates signaling 
cascades. In the intestine, Wnt inhibits the MAPK pathway (99), 
whereas, in the liver, it suppresses the NF-κB cascade (100). In 
mice with liver-specific knockout of Ctnnb1, there is increased 
RelA expression and LPS-induced NF-κB activation (101). Howev-
er, the inhibitory activities of the Wnt/β-catenin cascade in hepa-
tocarcinogenesis have not been well characterized and require 
further investigation.

Targeting Wnt/β-catenin for HCC treatment
Since Wnt pathway activation promotes HCC cell proliferation, 
migration, and invasion, targeting this signaling cascade is an 
attractive therapeutic approach for human HCC treatment. Sev-
eral agents have been screened and investigated for targeting the 

Cyclin D1 is another direct target of β-catenin and might be 
a key molecule by which activated β-catenin promotes tumor cell 
proliferation (76, 77). Numerous studies have demonstrated that 
activated Wnt/β-catenin induces cyclin D1 expression in mouse 
and human HCC (78, 79). However, it is worth mentioning that 
cyclin D1 is not an exclusive effector of the Wnt/β-catenin sig-
naling pathway. Indeed, other molecular cascades could regulate 
its expression, such as the NF-κB and MAPK pathways (80, 81). 
Studies conducted in vivo have also illustrated the critical role of 
cyclin D1 in HCC development (82). Specifically, the coexpression 
of c-Met and activated mutant forms of β-catenin rapidly induc-
es HCC formation in mice; overexpression of c-Met and cyclin D1 
also induces liver tumor development in mice, albeit with longer 
latency (58). Nevertheless, using Ccnd1-knockout mice, Patil et al. 
showed that cyclin D1 expression is not essential for liver tumor 
development induced by c-Met and activated mutant forms of 
β-catenin (58). Mechanistically, cyclin D2 expression in the liver 
is compensatorily upregulated upon cyclin D1 loss (58). Intrigu-
ingly, overexpression of cyclin D1 has also been shown to indi-
rectly enhance the Wnt/β-catenin pathway, leading to increased 
HCC metastasis (83). Altogether, these studies suggest the inter-
connected and feedback mechanisms between cyclin D1 and 
Wnt/β-catenin cascades during hepatocarcinogenesis.

GS, which promotes glutamine synthesis in cells, is a liver-spe-
cific Wnt/β-catenin target (84). In normal liver, GS is expressed 
in a layer of pericentral hepatocytes. Liver-specific knockout of 
β-catenin in mice leads to complete loss of the pericentral expres-
sion of GS (85). As we discussed above, immunostaining of GS 
may represent a pathological marker for human HCCs with GOF 
CTNNB1 mutations (86), although GS expression could also be 
induced by other factors (87). Studies have shown that GS regu-
lates autophagy downstream of activated β-catenin, which con-
fers sensitivity to sorafenib. Notably, GS-mediated glutamine 
synthesis is required for CTNNB1-mutated HCC growth, since 
glutamine deprivation inhibits CTNNB1-mutated HCC growth 
in vitro and in vivo (88). Amino acids, including glutamine, are 
major regulators of mTOR activity in cells (89). Recently, it has 
been discovered that GS-mediated increased glutamine synthesis 
leads to mTORC1 activation (90). Accordingly, a strong correla-
tion between activated β-catenin and positive expression of phos-

Table 1. Signaling pathways that cooperate with β-catenin or Axin1 activation or mutation to drive hepatocarcinogenesis

Combination Phenotype Character Reference
c-Met and β-catenin HCC Malignant HCC 57, 58
c-Met and ΔN90–β-catenin HCC Activation of Wnt/β-catenin and Notch signaling 59
K-Ras mutant (G12D) and β-catenin 
mutants (S33Y, S45Y)

HCC Increased glutamine synthetase, leukocyte cell–derived chemotaxin 2, regucalcin, and cyclin D1 and 
activated K-Ras effectors

60

Activated Akt and β-catenin HCC Steatotic hepatocellular adenomas that progressed to HCC 61
LKB1 and β-catenin HCC Well differentiated, almost never steatotic, and often cholestatic 62
Nrf2 and β-catenin HCC Positive for β-catenin targets, like glutamine synthetase and cyclin D1, and Nrf2 targets, like NAD(P)H 

quinone dehydrogenase 1 and peroxiredoxin 1
63, 153

TERT and β-catenin HCC HCV-related HCC 65, 66
c-Met and Axin1 deletion HCC Activation of Wnt/β-catenin and Notch signaling 59
YAP1 and β-catenin Hepatoblastoma Expressed common targets of both signaling pathways 154
TAZ and β-catenin Hepatoblastoma Hepatoblastoma lesions exhibiting both epithelial and mesenchymal features 155
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Wnt/β-catenin as a biomarker for resistance  
to immunotherapy
Immunotherapy has become the first-line treatment strate-
gy against advanced HCC (9). As we discussed above, in the 
IMbrave150 phase III clinical trial for advanced-stage HCC 
patients, the combination of the anti–PD-L1 antibody atezolizum-
ab and the anti-VEGF antibody bevacizumab demonstrated an 
objective response rate of 36% (8). Unfortunately, ICIs have lim-
ited efficacy as monotherapy against HCC. For instance, the anti–
PD-1 monoclonal nivolumab failed to improve HCC patient surviv-
al versus sorafenib in the phase III CheckMate 459 trial (9). One of 
the primary reasons for the failure of these clinical trials is that no 
biomarker-based patient selection has been implemented. There-
fore, it is plausible to hypothesize that some patients harbor genetic 
events that confer resistance to ICIs. In this regard, aberrant acti-
vation of Wnt/β-catenin has emerged as an important pathway 
mediating ICI resistance (138, 139). Harding et al. reported that in 
HCC patients treated with ICIs, activation of the Wnt/β-catenin 
pathway correlates with lower disease control rate and lower pro-
gression-free and overall survival rates (140). Furthermore, studies 
using mouse HCC models confirmed that upregulated Wnt/β-cat-
enin signaling in HCC promotes immune evasion and confers resis-
tance to anti–PD-1 therapy (141). Mechanistically, it was found that 
activated β-catenin inhibits CCL5 expression, leading to impaired 
dendritic cell recruitment. Likewise, activated β-catenin in mela-
noma cells enhances ATF3 expression and subsequently represses 
CCL4 expression, leading to reduced recruitment of dendritic 
cells and consequently T cells into the tumor tissues (142). These 
findings suggest that CTNNB1 mutational status could represent 
a novel biomarker for HCC patient exclusion for ICI treatment. 
Nevertheless, more studies are required to address the roles of the 
Wnt/β-catenin pathway in immunotherapy. For example, what is 
the Wnt/β-catenin mutation status in the IMbrave150 phase III 
clinical trial? Does the mutation status correspond to insensitivity 
to the combination immunotherapy or eventual progression over 
the treatment? Studies have suggested that NASH-related HCCs 
are particularly resistant to immunotherapies (143). Because the 
status of the Wnt/β-catenin pathway in NASH-related HCCs has 
not been well characterized, this question should be addressed 
using human HCC tissues and preclinical approaches.

Challenges and future directions
Despite extensive studies on the Wnt/β-catenin cascade during 
hepatocarcinogenesis, our understanding of the molecular path-
ways deregulated by activated Wnt/β-catenin and how we can 
effectively target Wnt/β-catenin remains quite limited. Here, we 
discuss several key issues that need to be addressed to guide us  
for precision medicine.

GOF CTNNB1 mutations and LOF AXIN1 mutations: same or dif-
ferent? As we discussed above, both GOF CTNNB1 mutations and 
loss-of-function (LOF) AXIN1 mutations promote canonical Wnt 
pathway activation in HCC (59). Genetic studies have shown that 
these two mutations are mutually exclusive in human HCCs (Figure 
1A), further supporting that they likely function via the major com-
mon pathway during hepatocarcinogenesis. Intriguingly, consider-
able differences have also been revealed based on recent genomic 
studies (Table 2). Specifically, HCCs with GOF CTNNB1 mutations 

Wnt pathway in cancer, and some of them are under develop-
ment. Those agents include small-molecule inhibitors that block 
the interaction of β-catenin with TCF, such as the fungal deriva-
tives PKF115–854 and CGP049090 (102–106), or the binding of  
β-catenin to cAMP response element–binding protein (CREB)–
binding protein (CBP), such as ICG-001 (107–109). Both PKF115–
854 and CGP049090 have shown inhibitory effects against HCC 
cell growth (45, 106). Therapeutic monoclonal antibodies against 
Wnts were also developed to block the binding of Wnts to Frizzled 
(FZ/FZD) receptors, such as anti-Wnt2 monoclonal antibodies 
(110) and the anti-FZD monoclonal antibody OMP-18R5 (111). 
Moreover, several approved drugs currently in clinical use have 
been shown to possess activity against the Wnt pathway (112, 113). 
These include indomethacin (114, 115), pyrvinium (116), sulindac 
(117), aspirin (114), celecoxib, and rofecoxib (118). Unfortunately, 
the antitumor potency of these repurposed drugs has not been 
established clinically.

In addition to Wnt/TCF inhibitors, agents targeting porcu-
pine (PORCN) or tankyrase (TNKS) have also been developed 
to block Wnt/β-catenin signaling in cancer cells. PORCN is an 
O-acyltransferase essential for Wnt ligand secretion (119). The 
PORCN inhibitors, such as LGK-974 (WNT-974) and ETC-159, 
may inhibit tumor growth via suppression of Wnt signaling. 
Indeed, studies have shown that LGK-974 can enhance the radio-
sensitivity of HepG2 cells by modulating Nrf2 signaling (120), 
and it is investigated in clinical trials for treating various solid 
tumors (121). TNKS targets AXIN protein for degradation, where-
as TNKS inhibition can stabilize AXIN, thus antagonizing Wnt 
signaling (122). Several TNKS inhibitors with promising thera-
peutic effects have been developed, including XAV939, G007-
LK, G244-LM, RK-287107, JW55, K-756, IWR-1, MSC2504877, 
AZ1366, JW74, and NVP-TNKS656 (123–132). Preclinical studies 
have shown that TNKS inhibitors, such as XAV939, can potent-
ly inhibit HCC growth in culture (133). However, PORCN and 
TNKS inhibitors target pathways upstream of β-catenin; there-
fore, they are unlikely to possess any efficacy against HCCs with 
GOF CTNNB1 mutations.

Interfering RNA– or antisense RNA–based therapy is another 
approach to inhibit the Wnt/β-catenin pathway. In particular, siR-
NAs targeting Wnts have been shown to suppress HCC cell growth 
in vitro (134–136). In a GOF Ctnnb1-mutant mouse HCC model 
induced by diethylnitrosamine (DEN) and phenobarbital, use 
of locked nucleic acid (LNA) antisense oligonucleotides against 
β-catenin strongly impaired HCC progression (137). In contrast, 
in the non–Ctnnb1-mutant HCC model, induced by DEN only, 
LNA-si-β-catenin demonstrated no efficacy (137). The therapeutic 
efficacy of LNA-si-β-catenin has been further validated in vivo in 
mouse HCCs induced by hydrodynamic transfection of activated 
forms of K-Ras and β-catenin oncogenes (60).

In summary, various strategies targeting the Wnt/β-caten-
in cascade have been developed in recent decades. Preclinical 
studies have provided evidence to support targeting this pathway 
against cancers, including HCCs. Nevertheless, considerable 
challenges remain, especially concerning the toxicity of these 
inhibitors, which suppress the Wnt/β-catenin pathway in normal 
tissues as well. Thus, the clinical development of these molecules 
has been somewhat limited to date.
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belong to the nonproliferation group, whereas HCCs with LOF 
AXIN1 mutations are classified into the proliferation group (40). 
Additional molecular analysis revealed that AXIN1-mutant HCCs 
show relatively low canonical Wnt pathway activation levels but 
higher YAP/NOTCH induction, while CTNNB1-mutant HCCs 
show robust canonical Wnt pathway and mTOR signaling activation 
(144). These data suggest that GOF CTNNB1 and LOF AXIN1 might 
induce overlapping but also distinct downstream molecular events 
during hepatocarcinogenesis. It is tempting to hypothesize that 
LOF AXIN1-mutant HCCs, but not GOF CTNNB1-mutant tumors, 
depend on the YAP cascade for growth. If so, we need to under-
stand how YAP becomes activated downstream of LOF AXIN1, and 
whether targeting YAP, such as using TNKS inhibitors, will lead to 
regression of HCC with LOF AXIN1 mutations.

What is the role of canonical Wnt/β-catenin signaling in HCCs in 
the absence of AXIN1 or CTNNB1 mutations? Based on the published 
data and the recent genomic studies, such as TCGA analysis, it is 
clear that Wnt ligands and their receptors are frequently upregulat-
ed in human HCC samples. However, one can also clearly see that 
high expression of canonical Wnt target genes, including GLUL 
(encoding GS) and TBX3, tracks strongly with GOF CTNNB1 muta-
tions in human HCC samples (Figure 1A). Therefore, upregulation 
of Wnt ligands/receptors obviously does not induce strong activa-
tion of the canonical Wnt/β-catenin pathway. What is the functional 
role of the canonical Wnt/β-catenin cascade during HCC molecular 
pathogenesis in the absence of AXIN1 or CTNNB1 mutations? Most 
studies so far have relied on HCC cell lines (60, 113, 145). However, 
studies have suggested that Wnt ligands are likely to be produced 
by cells within the microenvironment. For example, in the normal 

liver, Wnts are secreted from sinusoid endo-
thelial cells (146) or Kupffer cells during liver 
regeneration (147). The cellular sources of Wnt 
ligands in HCC remain to be defined. If they are 
secreted by the cells within the tumor microen-
vironment, it would be essential to investigate 
this canonical Wnt/β-catenin signaling in HCC 
when tumor cells are in their appropriate con-
text, such as using murine HCC models. This 
question is critical to determine whether target-
ing of Wnt ligands, such as with PORCN inhib-
itors, may help to treat HCC without AXIN1 or 
CTNNB1 mutations.

Is mTOR inhibition effective for the treatment 
of HCCs with GOF CTNNB1 mutations? As we 
discussed above, activated β-catenin leads to 
mTORC1 activation, and mouse HCCs with 
GOF Ctnnb1 mutations are sensitive to mTOR 
inhibition (90). On the other hand, monother-
apy of everolimus, an mTOR inhibitor, has 
limited efficacy against advanced HCC (148). 
However, no biomarker-based patient selec-
tion was conducted in this clinical trial. This 
issue represents a major drawback of the trial, 
as the mTOR pathway is modulated by multiple 
cascades in cancer (149), including HCC (150); 
in addition, HCC is a highly heterogeneous 
disease. One can envision that the selection of 

patients with GOF CTNNB1 mutations might be helpful to demon-
strate the clinical efficacy of this drug. Furthermore, everolimus is 
a first-generation and partial mTORC1 inhibitor. The second-gen-
eration mTOR inhibitors, including mTORC1/mTORC2 inhibitors 
and mTOR/PI3K inhibitors, might have improved efficacy against 
HCCs with GOF CTNNB1 mutations (151). Additional preclinical 
and clinical studies are required to address this critical issue.

Can gene editing to reverse CTNNB1 mutation be useful for HCC 
treatment? Recent progress with CRISPR/Cas9–based gene edit-
ing technology opens the door to genetic modification of tumor 
cells. GOF CTNNB1 mutations, especially point mutations, are 
attractive targets for such a gene editing approach for cancer treat-
ment. One can imagine delivering the proper guide RNA into HCC 
cells and reversing the mutant form of the CTNNB1 allele into the 
wild-type sequence. However, small molecules directly targeting 
Wnt/β-catenin are frequently associated with significant gastro-
intestinal toxicity, as Wnt/β-catenin is necessary for intestinal 
stem cell renewal and proliferation. This toxicity substantially 
limits the clinical application of these small molecules. The gene 
editing approach has the advantage of not affecting the Wnt/β-cat-
enin pathway in any other cells besides HCC cells that harbor the  
CTNNB1 mutations. However, we do not know whether conversion 
into the wild-type CTNNB1 sequence will lead to HCC regression, 
since wild-type β-catenin may be sufficient to support HCC pro-
gression. In addition, an efficient delivery method so that the guide 
RNAs can target all HCC cells should be developed.

Wnt inhibitors: monotherapy or combination therapy? As we dis-
cussed above, animal studies have demonstrated that the activa-
tion of Wnt/β-catenin alone is insufficient to promote HCC devel-

Table 2. Distinct features of HCCs with AXIN1 or CTNNB1 mutations

HCC features AXIN1 mutant class CTNNB1 mutant class
Mutation rate in HCC ~8% ~27%
Canonical Wnt pathway gene expressionA No Yes
Molecular classification

Major group Proliferation group Nonproliferation group
TCGA (clusters 1–3) Cluster 1/3 Cluster 2
Boyault (G1–G6) G1/G2 G5/G6
Lee (clusters A/B) Cluster A Cluster B
Hoshida (S1–S3) S1/S2 S3

Major signaling pathways NOTCH signaling, YAP signaling Canonical Wnt/β-catenin signaling, 
mTOR signaling

Genetic features
Chromosomal stability Instability Stability
Gene alteration TP53 mutation, RPS6KA3 mutation TERT promoter mutation, NFE2L2/

KEAP1 mutation, ARID2 mutation
Epigenetic features DNA hypomethylation Promoter hypermethylation
Clinical features

Prognosis More aggressive Less aggressive
Differentiation Poor Moderate to well
Vascular invasion Frequent Uncommon
Serum α-fetoprotein High levels Low levels
Etiology HBV Alcohol, HCV

ASLC13A3, NKD1, AXIN2, LGR5, RHBG, GLUL, SP5, TBX3, REG3A, ODAM, NOTUM, ZNRF3, RNF43, 
LAMA3, TRIB2, TNFRSF19, OAT, LEF1, SLC1A2, CYP2E1, LECT2, HAL, GLS2.
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opment. Instead, a second oncogenic signal is required for liver 
tumor formation (Table 1). Therefore, it is conceivable that target-
ing Wnt/β-catenin alone, either directly or indirectly (such as with 
mTOR inhibitors), is not sufficient to induce tumor regression. In 
contrast, combination therapies that target multiple signaling cas-
cades might be required for efficient therapeutics. This point is 
highlighted by a recent study in murine HCC models coexpress-
ing c-Met and ΔN90–β-catenin proto-oncogenes. In these mice, 
combined treatment with cabozantinib, which targets c-Met, and 
the dual mTOR inhibitor MLN0128, which targets activated β-cat-
enin effectors, leads to tumor regression, whereas cabozantinib 
or MLN0128 monotherapy does not (152). As HCC is a heteroge-
neous disease, it would be critical to determine the specific path-
ways aberrantly activated in each HCC. Then one could design 
effective anti–Wnt/β-catenin–based combination therapies.

In summary, in the era of precision medicine, we can readily 
detect HCCs harboring activated Wnt/β-catenin signaling. These 
HCCs have peculiar molecular and pathological features and might 

be treated with effective and specific targeted therapies. However, 
our understanding of how the Wnt/β-catenin pathway contrib-
utes to HCC molecular pathogenesis remains incomplete. There-
fore, additional molecular and biochemical studies are required 
to investigate this vital issue to identify novel targeted therapies 
against HCC with aberrant Wnt/β-catenin activation.
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