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Nonalcoholic fatty liver disease
The global prevalence of nonalcoholic fatty 
liver disease (NAFLD) has risen to astro-
nomical proportions over the last several 
decades, totaling approximately 25% of 
the general population (1). Nonalcoholic 
steatohepatitis (NASH), which is a more 
severe stage of NAFLD, affects 1.5%–6.5% 
of the world population and that figure is 
predicted to dramatically rise in the years to 
come (1). One of the major reasons for this 
increase in NAFLD and NASH relates to 
sedentary lifestyles with excessive caloric  
intake and the associated upsurge of obe-
sity. Lifestyle modifications, including 
dietary changes and increased physical 
activity, represent an effective first line of 
treatment for NASH (2). It has been shown 
that 5% weight loss by lifestyle intervention 
has a 10% probability for NASH resolution 
and that this probability further increases 
to 90% when 10% weight loss is attained 
(3). Weight reduction by bariatric surgery 
has also proven to be an effective treat-

ment, as 1 year after surgery, NASH reso-
lution and improved fibrosis was obtained 
in 85% and 34% of patients, respectively 
(4). Furthermore, weight loss and lifestyle 
modification have also been shown to ame-
liorate NASH in lean patients, who often 
have excessive fat at ectopic sites, such as 
the waist and neck, but are not overweight 
or obese as per their body mass index (5). 
This information adds to the notion that 
visceral fat is particularly metabolically 
hazardous and contributes to NASH pro-
gression. However, the exact molecular 
mechanisms by which adipose tissue dys-
function contributes to the development of 
NAFLD remain obscure.

Role of adipose tissue  
in NAFLD
Adipose tissue consists of white adipose 
tissue (WAT) and brown adipose tissue 
(BAT), the former being the predominant 
type and commonly referred to as “fat.” 
WAT is composed of multiple cellular 

populations interwoven in a matrix of 
vascularized connective tissue, including 
adipocytes, adipocyte precursors, endo-
thelial cells, fibroblasts, and various types 
of immune cells. These cell populations 
are not static and can substantially change 
during obesity, which is believed to con-
tribute to NAFLD progression. Among 
lean adults and those with obesity, the 
number of adipocytes remain roughly 
constant and the adipocyte turnover rate 
is not altered by obesity. This relatively 
fixed feature implies that adipocyte hyper-
trophy (enlargement of adipocytes) is the 
predominant contributor to adult obesity, 
whereas adipocyte hyperplasia (increase 
in adipocyte numbers) associates more 
so with childhood obesity (6, 7). Hyper-
trophic adipocytes have impaired cellular 
functions that contribute to insulin resis-
tance (IR), which is the pathophysiological 
hallmark of NAFLD (8). At early stages of 
obesity, adipocyte hypertrophy contrib-
utes to IR through an impaired insulin- 
regulated glucose transporter, GLUT4, a 
process that is independent of inflamma-
tion (9). At later stages, however, adipose 
tissue inflammation is the major contrib-
utor to systemic IR. The release of proin-
flammatory cytokines can directly affect 
the insulin signaling pathway or stimulate 
inflammatory pathways, including the 
c-Jun N-terminal kinase (JNK) pathway 
and I-κ B kinase β (IKKβ)/NF-κB pathway 
that disrupt the insulin signaling path-
ways (10). Contrarily, adipose tissue can 
also release antiinflammatory adipokines, 
including adiponectin, which is downreg-
ulated during NASH (11), and neuregulin 4 
(Nrg4), which is hepatoprotective and can 
attenuate diet-induced NASH in mice (12).

Accumulating evidence suggests that 
adipocyte death and adipose tissue inflam-
mation play an important role in triggering 
liver injury and inflammation, and NAFLD 
progression (13). It is generally accepted 
that during obesity, adipocyte hypertrophy 
creates local areas of hypoxia within the 
WAT that induce adipocyte necrosis, which 
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Nonalcoholic steatohepatitis (NASH) is a leading cause of chronic liver 
disease, affecting 1.5%–6.5% of the world population. Currently, there 
are no FDA-approved drugs to treat this disease. Accumulating evidence 
suggests that metabolically hazardous visceral fat contributes to NASH 
progression by releasing fatty acids and proinflammatory mediators. 
Therefore, targeting adipose tissue to reduce adipose inflammation may 
provide an effective strategy to treat NASH. Another strategy is to target 
specific inflammatory mediators that are produced by adipose tissue and 
contribute to NASH progression. In this issue of the JCI, Liu, Xiang, et al. 
demonstrate that secreted protein acidic and rich in cysteine-like protein 
1 (SPARCL1) was highly upregulated in adipose tissue and played a role in 
exacerbating NASH progression in a mouse model of NASH. Thus, inhibition 
of SPARCL1 may provide another attractive strategy to tackle NASH.
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model used in standard liver function 
tests. The detrimental role of SPARCL1 
in promoting NAFLD progression was 
demonstrated by experiments in which 
mice were injected with recombinant 
SPARCL1 protein or in which Sparcl1 was 
transiently overexpressed. Further exper-
iments with deletion of the Sparcl1 gene, 
knockdown of Sparcl1 expression in WAT, 
or treatment with a SPARCL1-neutraliz-
ing antibody also supported the harmful  
function of SPARCL1 in the pathogene-
sis of NASH. Mechanistically, SPARCL1 
induced liver inflammation by binding 
to Toll-like receptor 4 (TLR4) on hepato-
cytes. Subsequently, NF-κB signaling 
induced C-C motif chemokine ligand 2 
(CCL2) to promote hepatic macrophage 
recruitment (Figure 1).

The study by Liu, Xiang, et al. (22) con-
vincingly describes the pathogenic roles of 
SPARCL1 in NASH. Yet, insufficient evi-
dence was provided to support the idea that 
WAT remains the main source of SPARCL1 
during NASH. Although the authors show 
that expression of Sparcl1 was higher in 
adipose tissues compared with skeletal 
muscle, liver, kidney, spleen, and testis of 
unchallenged mice, no comparative data 
were reported for diet-induced NASH 

SPARCL1 in adipose-liver 
interplay during NASH
Although many studies suggest that adi-
pose tissue–liver crosstalk plays an import-
ant role in promoting NASH (20, 21), a 
full understanding of how this crosstalk 
contributes to NAFLD progression is miss-
ing. In this issue of the JCI, Liu, Xiang, et 
al. (22) performed bulk RNA-sequencing 
analysis of epididymal WAT from mice 
with different stages of NAFLD, includ-
ing nonalcoholic fatty liver (NAFL) and 
NASH that were defined by short-term 
(12 weeks) and long-term (28 weeks) feed-
ing, respectively, with a high-fat, high- 
fructose, and high-cholesterol (HFHC) 
diet. The researchers found that secreted  
protein acidic and rich in cysteine-like 
protein 1 (SPARCL1) was highly upregu-
lated in WAT of NASH mice, compared 
with healthy mice or mice with NAFL. In 
human cohorts, plasma levels of SPARCL1 
were also elevated in patients afflicted 
with NASH. Notably, plasma levels cor-
related with NASH severity. The authors 
further proposed a SPARCL1–alanine ami-
notransferase–aspartate aminotransferase 
(SPARCL1-ALT-AST) model that improved 
the accuracy of identifying NASH 
patients compared with the ALT-AST  

promotes macrophage recruitment (14) 
(Figure 1). The infiltrated macrophages pro-
duce a variety of inflammatory cytokines, 
including TNF-α and IL-6, and chemokines 
such as CCL2, exacerbating tissue inflam-
mation (15, 16) (Figure 1). Our group recent-
ly provided direct evidence linking adipo-
cyte death and liver inflammation, showing 
that selective, acute adipocyte cell death 
in mice rapidly induces liver injury and 
inflammation by promoting CCR2-depen-
dent macrophage infiltration and lipolysis 
(17) (Figure 1). Transplantation of adipose 
tissue macrophages from obese mice also 
promotes neutrophil recruitment and mac-
rophage activation in NASH mouse mod-
els, highlighting the role of adipose tissue 
inflammation in NAFLD progression (18). 
E-selectin, a key adhesion molecule for 
neutrophils, is highly upregulated in adi-
pose tissues of NASH patients and of mice 
with NASH induced by high-fat diet (HFD) 
feeding plus adenovirus-Cxcl1 (AdCxcl1) 
overexpression compared with those with 
fatty liver (19). Such induction of E-selectin 
mediates neutrophil recruitment in adipose 
tissue, thereby accelerating NASH progres-
sion partially via the production of proin-
flammatory mediators such as S100A8 and 
S100A9 (19) (Figure 1).

Figure 1. Adipose tissue inflammation promotes NASH progression via proinflammatory mediators, including SPARCL1. Adipocyte hypertrophy during 
obesity can cause adipose tissue hypoxia and subsequent adipocyte death and adipose tissue inflammation, which further promote the recruitment of 
macrophages and neutrophils in adipose tissue. The infiltrated CCR2+ macrophages produce cytokines (such as TNF-α, IL-6, etc.) that perpetuate adipose 
tissue inflammation and promote hepatic macrophage infiltration (i) and liver inflammation. Recruitment of neutrophils in adipose tissue (ii), which is 
dependent on E-selectin, accelerates NASH progression by producing many inflammatory mediators (such as S100A8 and S100A9). In addition, adipose 
tissue inflammation activates adipocyte lipolysis to release free fatty acids (FFAs) (iii), leading to liver injury and inflammation. Finally, dysregulated 
adipose tissue can produce many proinflammatory mediators, including SPARCL1 (iv) whose function in NASH progression is reported by Liu, Xiang, et al. 
(22). Notably, SPARCL1 stimulates hepatocytes to produce CCL2 that induces hepatic macrophage recruitment and liver inflammation, thereby promoting 
NASH progression. Inhibition of SPARCL1 has therapeutic potential for the treatment of NASH.
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tissue–liver interplay may, therefore, be 
the basis for the development of therapies 
to treat NASH.

Conclusion
Collectively, the data presented by Liu, 
Xiang, et al. (22) reveal a function of  
SPARCL1, a protein for which association 
with adipose tissue or NAFLD was previ-
ously unappreciated. The authors docu-
ment a pathogenic effect of SPARCL1 that 
promotes the progression of NAFL to NASH 
in diet-induced mouse models. The clinical 
relevance of this molecule should, however, 
be further confirmed, particularly because 
expression differences have been reported 
between humans and mice (23).
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mice. Furthermore, it was previously found 
that Sparcl1 levels might be higher in other  
organs, such as the lung (in mice) or the 
stomach (in humans), and that although 
Sparcl1 is not expressed in murine livers, 
it is moderately expressed in human livers 
(23). The authors tried to specifically delete 
Sparcl1 in WAT by injecting AAV8-shRNA 
targeting Sparcl1 into inguinal WAT depots, 
which only partially reduced tissue Sparcl1 
expression and serum SPARCL1. Further 
studies with tissue-specific Sparcl1-knock-
out mice may help define the major sources  
of SPARCL1 in NASH mice. In addition, 
as indicated by the very low ALT and AST 
levels of the HFHC-fed control groups  
reported throughout the study (22), the 
HFHC diet failed to induce a high degree of 
liver damage. It would therefore be inter-
esting to investigate the role of SPARCL1 in 
other NASH models.

Targeting adipose tissue to 
treat NASH
Besides lifestyle modifications, including 
dietary changes and increased physical 
activity, there are currently no approved 
drugs to treat NASH. Pharmacotherapies 
to treat NASH should, however, also tar-
get the interplay between adipose tissue 
and the liver. Since a positive correlation 
between adipose tissue inflammation and 
NASH severity is documented in patients, 
targeting adipose inflammation may curb 
NASH progression (24). The E-selectin/
neutrophil/S100A8/S100A9 axis in adi-
pose tissues, which has been suggested 
to promote NASH progression in mice 
(19), is one potential therapeutic target 
for NASH treatment. As previously stated,  
dysregulated adipose tissues during 
NAFLD secrete a large number of adi-
pokines, inflammatory mediators, and 
soluble proteins, and many of them play 
an important role in promoting NASH 
(20, 21). Therefore, specifically targeting 
some of these mediators, such as SPAR-
CL1 as identified by Liu, Xiang, et al. (22), 
may provide another attractive strategy to 
tackle NASH. Further identification of the 
molecular mechanisms driving adipose 
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