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Methods 

Specimen and characteristics 
Diagnostic biopsy and/or blood samples representing 152 Mantle cell lymphoma (MCL) tumors were obtained 
from 134 MCL patients with written consent at the Institute of Hematology and Blood Disease Hospital, Chinese 
Academy of Medical Sciences and Peking Union Medical College. One hundred and two tumor samples were 
with matched normal tissues (from oral mucosa or peripheral blood), which were obtained from 89 of these 
patients. Enrollment of patients in the BDH-MCL01 clinical trial (NCT02858804) was approved by the local 
Institutional Review Board. 123 patients were newly diagnosed, and therefore previously untreated, and 11 
patients had relapsed. Longitudinal samples collected at initial diagnosis and relapse or first and second relapse 
were collected from 16 patients; for one patient, two samples were collected from bone marrow and lymph node 
at the diagnosis. Ninety-five of the patients (70.9%) received standard high dose cytarabine-based aggressive 
treatment regimen described in the prospective, non-randomized BDH-MCL01 clinical trial (NCT02858804). 
Patients on this clinical trial received rituximab combined with 4 cycles EDOCH (etoposide, dexamethasone, 
doxorubicin, cyclophosphamide and vincristine) alternating with DHAP (cisplatin, cytarabine and 
dexamethasone).  Patients who experienced at least partial remission (PR) on this regimen underwent either 
upfront autologous stem cell transplant (ASCT) or two more cycles of consolidation therapy.  Patients were 
treated with rituximab maintenance until disease progression, consent withdrawal, or unacceptable toxicity 
(Supplemental Figure 1B). The rest of the cohort (n=39) were treated with cyclophosphamide, doxorubicin, 
vincristine, prednisone (CHOP) with or without rituximab (n=15, n=10) or ibrutinib (n=14). All the 15 nnMCL 
patients adopt “watch-and-wait” approach. Treatment was initiated only at the time that patients become 
symptomatic. 10 of the 15 patients received standard cytarabine-based immuno-chemotherapy with a median 
time to treatment period of 9 months (1-25). Another two of the nnMCL patients received ibrutinib when there 
were indications for treatment. The characteristics of patients in this study are described in Table 1.  

Diagnostic specimens were reviewed by a panel of three hematopathologists in accordance with World Health 
Organization criteria(1).  All MCL samples harbored the IGH/CCND1 translocation as identified by fluorescence 
in situ hybridization (FISH). One hundred twenty-five samples (82.2%) were derived from fresh or cryopreserved 
peripheral blood (PB, n=35), bone marrow (BM, n=89) or cerebrospinal fluid (n=1) cells (Supplemental Figure 
1A).  Twenty-seven samples (17.8%) were derived from formalin fixed paraffin-embedded (FFPE) biopsy tissues; 
19 from lymph nodes (LN), 3 from spleen, 2 from intestine, and 3 from other organs. Matched normal samples 
(n=102 [67.1%] were obtained from 89 patients. These samples were collected from oral mucosa (n=28) or PB 
mononuclear cells (n=61) when the patients were in complete remission or negative for minimal residual disease 
(sensitivity level of 10−4) as evaluated by flow cytometry.  

Sample processing and DNA and RNA extraction 
Cryopreserved suspension tumor cells were thawed and washed with phosphate buffered saline (PBS).  Tumor 
cells were then enriched based on CD19 expression by magnetic conjugated bead selection (Miltenyi Biotec). 
Purity of the enriched tumor cells was validated by flow cytometry analysis for co-expression of CD19 and CD5. 

Genomic DNA was extracted using the QIAamp DNA Micro kit (Qiagen).  For FFPE MCL samples, prior to DNA 
extraction, the slides were reviewed by hematopathologists and samples with high tumor burden were selected 
(>60%).  DNA was extracted from FFPE samples using the QIAamp DNA FFPE Tissue kit (Qiagen).  Total RNA 
was extracted using TRIZOL Reagent (Thermo Fisher Scientific) according to the manufacturer’s protocol. 
Agarose (1%) gel electrophoresis was used to assess DNA and RNA degradation and contamination.  Purity of 
DNA and RNA was confirmed using a NanoPhotometer spectrophotometer (Implen). DNA and RNA 
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concentrations were measured using a Qubit 2.0 Flurometer (Life Technologies), and integrity was assessed 
using the Nano 6000 Assay Kit and a Bioanalyzer 2100 system (Agilent Technologies).  

Library preparation and whole exome sequencing (WES) 
Sequencing libraries were prepared using Agilent SureSelect Human All ExonV6 (Agilent Technologies) with 
optimized experimental procedures. Briefly, genomic DNA (1 μg per sample) was randomly fragmented to 180-
280 bp using a hydrodynamic shearing system (Covaris).  After fragmentation, DNA fragments were end polished, 
A-tailed, and ligated with the full-length adapter.  Fragments with specific indexes were hybridized with biotin-
labeled probes after pooling, and magnetic beads with streptomycin were used to capture the exons.  Captured 
libraries were enriched via PCR to add index tags and prepare them for hybridization.  Products were purified 
using the AMPure XP system (Beckman Coulter) and quantified using the Agilent Bioanalyzer 2100 system. 
Agilent liquid phase hybridization was used to efficiently enrich for whole exons, which were then sequenced on 
an Illumina Hiseq 4000 platform. Average depths for exomes of tumor cells and matched normal cells were 200x 
and 100x, respectively. 

Alignment and quality control 
The quality of the fastq sequence files exported by sequencer was checked using FastQC 
(http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc).  Adaptors and low-quality reads with lengths less than 
80 bp were removed using Trimmomatic(2).  The high quality paired-end reads were aligned to the human 
reference genome (GRCh37/hg19) using BWA with default parameters(3).  Duplicate reads were removed using 
the MarkDuplicates program in Picard tools (http://broadinstitute.github.io/picard/).  The amount of cross-
individual contamination in tumor-normal pairs was estimated using GATK4 CalculateContamination, and the 
median contamination was estimated to be 0.3% (interquartile-range 0.1-0.4%)(4).  Samples with contamination 
greater than 5% were filtered out.  Germline mutations were called using the GATK4 HaplotypeCaller pipeline 
on the DNAnexus server(5).  To ensure samples were paired correctly, NGSCheckMate was used to examine 
pairs using all detected germline mutations(6).  After these quality control procedures, data for 102 matched 
tumor and normal tissue pairs and 50 tumor-only samples were moved forward for downstream analysis. 

Somatic mutation calling 
Somatic single nucleotide variations (SNVs) as well as short somatic insertions and deletions (indels) were called 
and filtered over 6 steps according to the GATK4 best-practices pipeline(5).  1) Base quality scores were 
corrected by using base quality score recalibration.  2) An in-house panel of normal derived from 128 Chinese 
WES of buccal swab DNA was generated using tumor-only mode of Mutect2. 3) SNVs and short somatic indels 
were called by using Mutect2.  4) Cross-sample contamination was estimated.  5) Orientation bias artifacts were 
estimated by LearnReadOrientationModel. 6) Somatic mutations arising from error and bias caused by alignment 
artifacts, strand and orientation bias artifacts, polymerase slippage artifacts, germline risk, and possible 
contamination were filtered out using FilterMutectCalls. Annotation of SNVs was performed using ANNOVAR(7) 
based on public database 1,000 Genomes(8), dbSNP147(9), ExAC(10), COSMICv86(11) and functional 
prediction resources dbNSFPv3(12). Mutations listed or have an allele frequency more than 1% in 1,000 
Genomes(8), dbSNP147(9), or ExAC(10) and listed in in-house panel of normal files are filtered. All remaining 
recurrent non-silent mutations and mutations identified were confirmed by manual review using the Integrated 
Genome Viewer(13). The mutational landscape and mutation lollipop plots were generated using the R package 
Maftools(14) and Complexheatmap(15).  

For tumor-only samples, we used tumor-only pipeline to identify genetic lesions. Basically, this pipeline was 
adapted from pipeline we used for tumor-normal paired samples described above by running tumor-only mode 
of Mutect2. To confidently identify somatic mutations in tumor-only samples, the following panel of normal 
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datasets was applied to filter out germline risk mutation sites. This includes: 1)a panel of normal files from 
Novogene that was generated from 2800 WES data and 500 WGS from a Chinese population (provided by 
Novogene); 2) a panel of normal files from the ChinaMap database(16), which was created using 10,588 WGS 
of Chinese individuals.  3) a panel of normal files derived from 1800 WES and 380 WGS (provided by St. Jude 
Children's Research Hospital). 

Driver mutations were defined using MutSig2CV software(17).  Genes with q value ≤ 0.1 and frequency > 5% 
were defined as driver mutations(13-15). Recurrently mutated genes are identified mutation occurred in >5 
samples and with the mutation frequency >3%. To confirm the efficiency of the germline filter step, data for the 
102 tumor samples that had matched normal data were reanalyzed using the tumor-only pipeline.  After panel 
of normal filtration, the recurrent mutation landscape of matched normal samples analyzed as tumor-only was 
comparable with that of somatic mutations identified from normal pipeline with matched normal (Supplemental 
Figure 2C). The q values of candidate driver genes identified using either of the two Mutsig2CV modes were 
highly correlated (R2=0.887, P=2.31×10-5，supplemental Figure 2D). Fisher’s exact test was used to estimate 
occurrence bias between tumor-only mode and matched-normal mode for all SNVs present in more than 3 
samples. The expected P values were calculated using uniform distribution (Supplemental Figure 2E). 

Copy number analysis from WES data 
Somatic copy number alterations (SCNAs) and somatic allelic copy number variations were detected using best 
practices for the GATK4 somatic copy number variant discovery pipeline(4).  First, interval files were 
preprocessed and annotated.  Second, the coverage across intervals was calculated in tumor and normal 
samples.  Third, a panel of normal coverage files was generated using the 102 normal samples from matched 
tumor-normal pairs.  Fourth, segment copy ratio and allelic segment copy ratios were calculated and normalized. 
To generate an allelic copy number variation file that could work with ABSOLUTE, a WDL file from github was 
used 
(https://github.com/broadinstitute/gatk/blob/master/scripts/unsupported/combine_tracks_postprocessing_cnv).   

Significant CNA regions in the cohort were detected by using GISTIC2(18).  In brief, GISTIC2 assigns a G-score 
that considers the amplitude of the aberration as well as the frequency of its occurrence across samples for each 
aberration. Ninety-nine percent was used as the confidence level to determine wide peak boundaries and q value 
≤ 0.1 was used to determine significantly altered regions. 

To evaluate the consistence of copy number detection of tumor-only samples with samples have paired normal, 
the 102 matched normal samples were re-analyzed using tumor-only mode.  Allelic SCNAs identified using 
tumor-only mode showed high correlation with those identified using matched-normal mode (Supplemental 
Figure 7A). In addition, the significantly deleted and amplified regions were highly consistent between the modes 
(Supplemental Figure 7D).  

Mutual exclusivity and co-occurrence estimation 
Odds ratios (OR) were calculated to assess associations among different genetic lesions; Fisher’s exact test 
was used to determine significance.  Multiple testing correction was performed using the Benjamini and 
Hochberg method and a false-discovery rate of 5% (q ≤ 0.05) was defined as the threshold for significance. 

Estimation of purity, ploidy, and cancer cell fraction (CCF) 
The ABSOLUTE algorithm was used to calculate the tumor purity, ploidy, and cancer cell fraction for somatic 
mutations and copy number variations(19).  Candidate models were reviewed by three independent reviewers. 
For tumor samples that had matched normal samples, ABSOLUTE was run independently in both matched-
normal and tumor-only modes.  The resulting estimates of ploidy and purity showed high similarity between both 
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modes (Supplemental Figure 7B-C).  Fluorescence in situ hybridization (FISH) was used to independently 
validate the purity of samples.  Purity as determined using ABSOLUTE was highly consistent with purity 
estimated by FISH (Supplemental Figure 6C).   

Inference of the order of genetic alterations  
Statistical methods were adapted to infer the order of genetic alterations, as previously reported(20).  Briefly, 
CCFs of mutation and SCNA pairs were first calculated for each sample in the full 134 MCL sample cohort.  Then 
samples with paired clonal and subclonal genetic events were identified. All known driver pairs for which at least 
3 clonal-subclonal orderings were observed were considered. Next, a one-sided Fisher’s exact test was 
performed to test whether an event was more frequently changed from clonal evolution than random occurrence.  
Only mutations and SCNAs that occurred at a frequency > 5% were considered. 

Clonal evolution of longitudinally collected samples 
Phylogenetic analysis was performed on longitudinally collected samples (collected at diagnosis and at relapse 
or first and second relapse) using the PhylogicNDT package(21).  Briefly, raw CCF probability density 
distributions of the somatic genetic variants identified using the ABSOLUTE pipeline were used for multi-
dimensional nonparametric Dirichlet process to define the underlying clonal structure. The assignment of 
mutations to clusters were sampled and learned via a Markov Chain Monte Carlo (MCMC) Gibbs Sampler 
through a multinomial distribution. Tumor clone(s) with a CCF change between the two time points > 0.5 were 
defined as “extreme evolution”; a change between 0.2 and 0.5 defined as “modest evolution”; and a change <0.2 
defined as “no evolution”.  

Mutation signature analysis 
MutationalPattern was used to determine de novo mutation signatures(22).  Briefly, all SNVs were classified into 
96 trinucleotide changes in each sample.  SNVs were categorized into two groups “Cluster” and “Noncluster” 
according to the nearest mutation distance, using the threshold of 1Kb(23). Then, “Cluster” and “Noncluster” 
SNVs were split in each sample to generate a 96x2M (M is the sample number) matrix. MutationalPattern was 
applied to discover mutation signatures by using non-negative matrix factorization (NMF) to reduce the 
dimensions. Cosine similarity was calculated to determine whether “extracted_signatures” were in line with the 
COSMIC V3 mutational signature database(24) (https://cancer.sanger.ac.uk/cosmic/signatures).  The signature 
from COSMIC V3 with highest cosine similarity were choosed (Supplemental Figure 5B). The contribution of 
each mutation signature in each sample was plotted using the “plot_contribution” function in both “absolute” and 
“relative” modes.  

CLUMPS analysis 

The details of the calculation of the weighted average proximity (WAP) score are described previously(25). In 
brief, protein structures corresponding to each gene were downloaded from the PDB databank and the ones 
containing the majority of the mutated residues were used for WAP score calculation according to the following 

equation(25).  𝑊𝐴𝑃 =  ∑ 𝑛𝑞𝑛𝑟𝑒
−

𝑑𝑞,𝑟
2

2𝑡2  . Here q and r are distinct protein residues, dq,r is the distance in Å between 

the centroids of the two residues, and nq (and nr) are sigmoidal functions: 𝑛𝑞 =
𝑁𝑞

𝑚

𝜃𝑚+𝑁𝑞
𝑚. Nq is the number of patient 

samples where mutation q was observed, 𝜃  and m are constants with values 2 and 3, respectively. The 
significance of a given WAP score was calculated by estimating the P value from the null distribution. The null 
distribution was constructed by randomly selecting the residue positions from all over the protein structure and 
calculating the WAP scores, repeating the procedure 10,000 times. The following protein structures were used 
for calculating the WAP scores; ATM: (6K9L, 6K9K(26), 5NP1(27)), P53: (4IBY(28), 3IGK(29), 2BIQ(30), 
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2F1X(31), 3TG5(32)), NSD2: 5LSU(33), CCND1: 2W9Z(34), SP140: 6G8R, SMARCA4: 6LTJ(35), TRAF2: 
(1QSC(36), 3KNV(37)), PCDH10: (6VG4, 6VFW(38)), MPDZ: 2QG1, SAMHD1: 4MZ7(39). 

RNA sequencing library preparation 
Sequencing libraries were generated using the NEBNext UltraTM RNA Library Prep Kit for Illumina (NEB). Briefly, 
mRNA was purified from 1 μg of total RNA using poly-T oligo-attached magnetic beads. Fragmentation was 
carried out using divalent cations in NEBNext First Strand Synthesis Reaction Buffer (5X). First strand cDNA 
synthesis was performed using random hexamer primer and M-MuLV reverse transcriptase (RNase H-). Second 
strand cDNA was subsequently synthesized using DNA polymerase I and RNase H. Remaining overhangs were 
converted into blunt ends via exonuclease/polymerase activities. After adenylation of the 3’ ends of DNA 
fragments, NEBNext adaptors with hairpin loop structures were ligated to the fragments to prepare them for 
hybridization. The library fragments were purified using the AMPure XP system (Beckman Coulter) to select 
fragments of 250-300 bp in length. Library quality and size was assessed using an Agilent Bioanalyzer 2100 
system (Agilent Technologies). 

Integrative analysis of gene expression and copy number variations 
All the libraries were sequenced on Illumina Hiseq platform and 150bp paired-end 50 million reads were 
generated per library. Adaptors and low-quality bases were first removed from the sequencing reads using 
Trimmomatic(2).  The remaining reads were then aligned to the human reference genome (GRCh38/hg38) using 
STAR with default parameters(40).  Expression levels of mRNAs were normalized to transcript per million (TPM).  
To identify gene expression associated with SCNAs, mRNAs that were expressed independent of SNCAs were 
filtered out by performing Pearson correlation analysis between gene expression (log2 (TPM+1)) and copy 
number change of corresponding genes (log2(X/2)), where X indicates copy number of the corresponding gene.  
Transcripts with P value < 0.1 were defined as “SCNA sensitive mRNAs”.  SCNA-associated RNA expression 
was determined by assigning MCL samples into two groups based on the presence or absence of SCNAs.  
Genes with fewer than 3 samples in either group were filtered out for the statistical analysis.  Absolute log2 fold 
change > 0.5 with q value ≤ 0.05 (Mann-Whitney U test and Benjamini-Hocherg correction for multiple 
comparisons) was used as threshold to define significantly dysregulated mRNAs associated with SCNAs.  

Gene expression enrichment analysis  

Gene expression signatures in the different MCL subsets were identified using Gene Set Enrichment Analysis 
(GSEA) in the 48 samples that had paired WES and RNA-seq data.  These studies used three databases: KEGG 
pathway, HALLMARK, and Signature DB databases (updated 03/09/2020, 
https://lymphochip.nih.gov/signaturedb/)(41) to capture expression signatures associated with different clusters. 
Gene sets with P < 0.05 and FDR < 0.25 were considered significantly enriched pathways. 

To directly compare pathway expression for each cluster, the log2-transformed pseudo TPM values (TMP+1) for 
all genes in the gene set were averaged to provide a signature value for each sample.  The average signature 
value for samples assigned to each cluster was calculated as the cluster average expression of the signature.  
These values were then linearly transformed and F test used to compare each cluster.  

Allele-specific expression in RNA-seq 
Expression of mutations was called using the GATK4 RNA-seq short variant discovery pipeline for the 48 
samples with matched WES and RNA-seq data(4).  Briefly, reads were mapped to the human reference genome 
(GRCh37/hg19) in two-pass mode with STAR to better align the reads to novel splice junctions(40).  The 
alignment file was transformed into a DNA aligner-like format using splitNCigarReads from GATK4.  Then a 
somatic mutation calling module, including BaseRecalibrator, Apply Recalibration and HaplotypeCaller, was 
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used to detect expressed somatic mutations. Variants were filtered using the VariatFilteration command.  Many 
mutations could not be detected by RNA somatic mutation pipeline due to lack of read coverage of the base, 
which indicated low expression of the genes. Therefore, read coverage was calculated for each base using 
BEDTools(42). Only mutations covered by more than 20 reads were included in the analysis and those with more 
than 5 alternative reads were considered expressed mutations. Variants with |RNA_MAF – DNA_MAF|≥0.2 and 
a false discovery rate ≤ 0.01 (Fisher’s exact test) were considered to show allele-specific expression.  

FISH and IGHV mutation analyses 
FISH and IGHV mutation analyses were performed on the same sample collected for WES or RNA sequencing. 
Briefly, fresh tumor cells were spun onto slides and fixed in 3:1 (vol/vol) methanol–acetic acid reagent. The 
following enumeration probes were used in the panel: chromosome 12 centromere (CEP12), 13q14.3 (LSI 
D13S25 and RB-1), 17p13 (LSI TP53), and 11q22 (LSI ATM) (Vysis, Abbott). Hybridization was done on 
separate slides for each probe and at least 200 cells were examined. The cut-off values for trisomy 12, 
del(11q22), del(13q14.3) and del(17p13.1) were 1.94%, 1.81%, 6.17%, and 4.13%. The IGHV-IGHD-IGHJ 
junctions were amplified using the IGH Somatic Hypermutation Assay v2.0 (InvivoScribe) for the full cohort of 
134 MCL samples. Sequence data were analyzed using the IMGT/V-QUEST tool (http://www.imgt.org). IGHV 
was considered mutated when the percentage of identity to the closest germline IGHV sequence was less than 
97%. 

Survival and statistical analysis 

The primary endpoints were progression free survival (PFS) and overall survival (OS).  PFS was defined as the 
interval between diagnosis and first progression or date of the last follow-up.  OS was defined as the interval 
between diagnosis and death or last follow-up.  Survival curves were estimated using the Kaplan-Meier method 
and log-rank test was used to assess statistical significance for PFS and OS between cohorts.  Multivariate Cox 
regression analysis was used to assess the independent prognostic impact from MIPI risk, IGHV mutational 
status, and individual genetic factors for outcomes in the MCL cohort.  Student’s t test or Mann-Whitney U tests 
were used to evaluate differences between continuous variables.  Fisher’s exact test or chi-squared tests were 
used to examine the significance of differences in categorical variables.  Spearman correlation was used to 
measure the association between continuous variables.  Statistical analyses were performed using SPSS 
Version 21.0 or R version 3.6.2.  Differences were considered statistically significant when p values were less 
than 0.05.  P values for multiple comparisons were adjusted using the Benjamini-Hochberg correction. 

Quantitative Polymerase chain reaction (PCR) validation  

cDNA synthesis was performed by using 5X All-In-One RT MasterMix Synthesis System (Applied Biological 
Materials, Vancouver, Canada) following the manufacturer’s instructions. The SYBR premix Ex TaqTM assays 
(Takara, Dalian, China) was then utilized to amplify specific cDNA fragments in the Prism 7500 PCR system 
(Applied Biosystems) to evaluate the expression of selected genes, including NAA38 (17p13.3), PRPF8 
(17p13.3), NUP88 (17p13.3), PIK3CA (3q21.3), NUDT1 (7p22.3), CDK2 (12q13.3), UBE2Q2 (15q25.3), CDC16 
(13q33.3), MAP2K4 (17p13.3), SNRPA1 (15q25.3). All these selected genes were located in significant SCNVs. 
The sequences for the primers were provided below. Data were analyzed by comparative threshold cycle method 
using B2M as housekeeping reference gene. 
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Supplemental Figure Legends 

Sampling Status
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Supplemental figure 1

Supplemental Figure 1. Clinical sample information. A. Composition of the dataset. The dataset includes 
152 samples derived from 134 MCL patients (Row 1). Ninety-five patients received a standard treatment regimen 
(row 2). Eighty-nine patients provided paired normal samples (102 samples) (row 3). One hundred twenty-four 
tumor samples were from fresh-frozen peripheral blood or bone marrow cells (row 4). Samples used for 
transcriptome profiling (row 5) and for clonal evolution (row 6) are noted. B. Schema for the treatment regimen 
of REDOCH/RDHAP. R, Rituximab; EDOCH (etoposide, dexamethasone, vincristine, cyclophosphamide, and 
doxorubicin); DHAP (dexamethasone, high dose cytarabine, cisplatin).  
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Supplemental Figure 2. Quality control for mutation call pipelines. A. Scatter plots showing the correlation 
between the measured allele frequency (AF) and the predicted AF for germline events identified by using the 
tumor-only pipeline to analyze matched-normal samples. Left: positive correlation if events are predicted as 
germline events by the tumor-only pipeline. Right: no correlation if the events are predicted as germline events 
by the tumor-only pipeline. B. Scatter plots showing the correlation between the measured AF and the predicted 
AF for somatic events identified by using the tumor-only pipeline to analyze matched-normal samples. The 
correlation was more pronounced when the events were predicted as somatic events than as germline events. 
C. Recurrent somatic mutations present in the 89 tumor samples that had matched normal samples. Mutations
were determined using the paired pipeline (left) and the tumor-only pipeline (right). D. Scatter plot showing the
correlation of Mutsig2CV false discovery rate (FDR) values for recurrent mutations that were called by the paired
pipeline and tumor-only pipeline (events with FDR q value <0.1 were plotted). The plot shows the consistency of
two pipelines for Mutsig2CV analyses. E. Two-sided Fisher’s exact tests were used for somatic events
determined by paired pipeline and tumor only pipeline. The observed P values were lower than randomly
expected P value, indicating no significant bias of somatic mutation calls between the two pipelines.
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Supplemental Figure 4. Oncogenicity prediction for recurrently mutated mutations. A. Estimated p values 
calculated from the weighted average proximity (WAP) scores of protein crystal structures using the CLUMPS 
algorithm. Structures with significant WAP scores (P value < 0.05) are highlighted with asterisks. The PDB IDs 
of individual structures are mentioned within brackets in the labels for the bar graph. B. For each gene, the 
changes in WAP score p value due to removal of individual mutations are plotted as function of residue number. 
For mutation i, Δ[𝑙𝑝𝑣𝑎𝑙𝑢𝑒] = 𝑙𝑜𝑔10[𝑝𝑣𝑎𝑙𝑢𝑒𝑎𝑙𝑙,   𝑛𝑜 𝑖] −  𝑙𝑜𝑔10[𝑝𝑣𝑎𝑙𝑢𝑒𝑎𝑙𝑙 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠] . Mutations with Δ[𝑙𝑝𝑣𝑎𝑙𝑢𝑒] > 0

contribute significantly to the WAP score p value and therefore are expected to have high oncogenicity potential. 
∆lpvalue of WAP score for TP53 mutation between SOX11 negative and positive patients (student t test). C. 
Contributions of individual mutations to the collective WAP score. The radii of the circles around each point in 
the graphs represent the number of patients with that mutation. The SP140 had only two missense mutations 
and hence the Δ[𝑙𝑝𝑣𝑎𝑙𝑢𝑒] could not be calculated. D-G. Crystal structures of individual targets highlighting the 
oncogenic mutations. Mutations with Δ[𝑙𝑝𝑣𝑎𝑙𝑢𝑒] > 0 are colored in magenta. Mutations found in multiple patients 
are enclosed by boxes. D. ATM dimer, PDB ID: 6K9L. One of the monomer subunits is shown in green, while 
the other monomer is shown in grey. E. CCND1 bound to CDK4, PDB ID: 2W9Z. CCND1 is shown in magenta 
and CDK4 in grey. F.  SMARCA4 bound to DNA, PDB ID: 6LTJ. SMARCA4 is shown in blue and DNA in orange. 
G. SP140 bromodomain bound to scFv, PDB ID: 6G8R. SP140 is shown in blue and scFv in grey.
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Supplemental Figure 5. Mutational signatures in MCL. A. The mutational signatures operating in primary 
MCL. Shown is the relative contribution of each indicated trinucleotide change to the four mutational signatures
we identified by non-negative matrix (NMF) clustering analysis of all somatic mutations in our cohort of 134
samples. B. Cosine similarity between the 4 mutational signatures selected in our study and the COSMIC
signatures. Blue box shows selected COSMIC signatures with highest cosine similarity to detected signatures.
Signature 1 to Aging (SBS1) (cosine similarity =0.92), Signature 2 to SBS5 (cosine similarity = 0.80); Signature
3 to SBS84 (cosine similarity = 0.78); Signature 4 to SBS40 (cosine similarity = 0.76).   C. Numbers of clustered
and non-clustered mutations assigned to each mutational signature across the 134 MCL samples and sorted by
decreasing mutation count. D. Relative enrichment of mutational signature activities in each sample.
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Supplemental Figure 6. Recurrent CNAs and co-occurring genetic events. A. Receiver operating 
characteristic (ROC) analysis was performed for the presence of del(17p), del(13q), and del(11q) based on WES 
data. The areas under the curves were 0.934 for del(17p), 0.941 for del(13q), and 0.976 for del(11q), indicating 
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Correlation plot of CNAs called by cancer cell fraction (CCF) and FISH. C-D. Cellular pathway enrichment from 
dysregulated gene expression associated with genetic amplification (C) or deletion (D).   
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Supplemental Figure 7. Quality control for somatic CNA pipelines. A-C. Correlation of allelic CNAs (A), 
purity (B) and ploidy (C) measured using the paired pipeline and the tumor-only pipeline. D. Comparison of 
GISTIC2.0-defined significant CNAs in the 89 paired samples using the paired-pipeline (left sides of plots) and 
tumor-only pipeline (right sides of plots). 
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Supplemental Figure 8. Clinical impact of genetic co-occurring events in MCL. A. Kaplan-Meier plot of PFS 
and OS according to the co-occurrence of del(17p) and TP53 mutations. Patients who had del17p-only or TP53 
mutation-only showed similar inferior PFS and OS as compared with patients who had both del17p and TP53 
mutation. B. Kaplan-Meier plot of PFS and OS according to the presence of ATM and TP53 alteration. The two 
alterations show mutual exclusivity and different clinical outcomes. Patients who had ATM mutation had better 
survival than those with TP53 mutation. C. Kaplan-Meier plot of PFS and OS according to the co-occurrence of 
del(17p) and del(9p).  
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Supplemental Figure 9. Genetic alterations and their associations with clinical features. A-B. Numbers of 
non-silent somatic mutations (a) and SCNAs (b) and their associations with IGHV status, SOX11 expression, 
and MIPI risk.  C-D. Mutation signatures and their association with IGHV mutation status (c) and SOX11 
expression (d). E. The distribution of samples by number of SCNAs. Ninety percent of the MCL samples harbored 
at least one SCNA. F. Kaplan-Meier plots of PFS and OS according to number of SCNAs. G. Forest plots 
showing the enrichment analysis of IGHV mutation status (left panel) or SOX11 expression (right panel) with 
individual genetic factors. Dot represents odd ratio and bar represents 95% confidence interval (CI). Red 
indicates events enriched in IGHV unmuted samples or samples with SOX11 expression. Green denotes trends 
significantly enriched in IGHV mutated samples or samples lacking SOX11 expression (P<0.05).  
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Supplemental Figure 10. Recurrent mutations associated with 
outcomes. A-C. Kaplan-Meier plots of PFS and OS according to 
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TP53, NOTCH1(B-C) in 134 MCL patients. D-E. Kaplan-Meier plots of 
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Supplemental Figure 11. Recurrent SCNAs associated with outcomes. Kaplan-Meier plots of PFS (top panel) 
and OS (bottom panel) according to presence or absence of recurrent SCNAs. For novel MCL genetic events 
reported in this study, a Bonferroni P value is also shown. 
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Supplemental Figure 12. NMF consensus clustering identified four genetic subtypes in MCL. A. Schema 
of the solution of the consensus clustering method. Plots of cophenetic coefficients and silhouette values for k=2 
to k=10 cluster solutions (Bottom left). Consensus plot for k=4 cluster solutions (Bottom right). B. Kaplan-Meier 
plots of PFS and OS for the four genetic subtype clusters for the 95 patients treated with the standard regimen. 
C. Forest plots showing the multivariate analysis of MIPI risk groups, IGHV status, and genetic subtype clusters 
for PFS and OS in our 134 MCL cohort.  
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Supplemental Figure 13. Gene expression and its association with genetic subtypes in MCL. A-B. Most 
mutated alleles were expressed. A. Percentage of expressed mutations (red) categorized by DNA mutant allele 
fraction (MAF, x-axis) and RNA coverage (y-axis). Circle size represents mutation counts for each group. B. 
Scatter plot demonstrating the correlation between DNA and RNA MAF for expressed mutations. Red dots 
indicate genes that have a significant trend of mutated allele-specific expression (two-sided Fisher’s exact test 
P <0.05 and MAF effect size >0.05); blue dots indicate genes that have a trend of elevated expression in the 
wild-type allele (P <0.05 and MAF effect size >0.05); grey indicates not significant. Genes with high frequency 
mutations and allele-specific bias expression are indicated by name. C. Correlation between RNA sequencing 
transcripts per kilobase million (TPM) and qRT-PCR. Log2 ratios of TPM are plotted in comparison with log2 of 
2-∆Ct values obtained from qRT-PCR. Deletions are indicated in blue and amplifications in red. D. Validation of 
gene expression changes associated with SCNAs. Relative expression (-∆∆Ct) of samples with or without CNAs 
was compared using student’s t test. P values are displayed in the box plots. 
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Supplemental Figure 14. Gene expression signature in different clusters. A. Bar graphs of normalized 
average expression for samples assigned to each cluster. Error bars denote standard error of mean (SEM). P 
values were calculated using ANOVA F‐test. B. Validation of a 16-gene signature to distinguish cMCL and 
nnMCL in our cohort. 
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Supplemental Figure 15. Molecular features for each cluster. A-B.  TP53 mutation and their association 
with PFS and OS in C1 vs. C2-4 in both discovery and validation cohorts. C. SOX11 expression TPM value 
was extracted and the box-plot of SOX11 expression of the different clusters were plotted. D-E. Distribution of 
each cluster according to pathology and status of del(9p) or del(17p). Association of the genetic subtype 
clusters with number of SCNAs (D) and somatic mutations (E), and mutation signatures (F).
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Supplemental Figure 16. Genetic lesions in the longitudinally collected MCL samples. A. Schematic of 
collection timepoints and tissue source for the longitudinally collected MCL samples. Samples were derived from 
blood (PB), bone marrow (BM), lymph node (LN), or cerebrospinal fluid (CSF) of patients at time of initial 
diagnosis (blue circle) and at progression or relapsed (red circle). Each row indicates an individual patient.  Black 
triangle indicates patients was alive with disease at the time of the analysis, green triangle indicates patient was 
alive and in complete response at the time of the analysis, black vertical line indicates death of the patients at 
the indicated time. B. Change in cancer cell fraction (CCF) for tumor cells in samples at diagnosis and at 
progression/relapse. Only genetic alterations found in at least three patients are shown. Samples are grouped 
according to clonal evolution pattern. C-D Kaplan-Meier plots of OS according to the number of subclonal and 
clonal driver events. E. Sample interval in patients with and without cluster change. F. Kaplan-Meier plot of 
survival from either time of obtaining the first sample (left) or second sample (right) in patients who had or did 
not have a cluster change. 
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Supplemental Figure 17. Clonality changes of genetic events in our longitudinal samples. Dynamic 
changes in genetic alterations during disease progression from our longitudinal samples. Representative genetic 
alterations for each cluster are listed in the plot. 
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