
Introduction
The renin-angiotensin system is a regulatory cascade
that plays an essential role in the regulation of blood
pressure, electrolyte, and volume homeostasis. The first
and rate-limiting component of this cascade is renin, a
protease synthesized and secreted predominantly by
the juxtaglomerular (JG) apparatus in the nephron.
Renin cleaves angiotensin I (Ang I) from liver-derived
angiotensinogen, which is then converted to Ang II by
the angiotensin-converting enzyme. Ang II, through
binding to its receptors, exerts diverse actions that
affect the electrolyte, volume, and blood pressure
homeostasis (1). Inappropriate stimulation of the
renin-angiotensin system has been associated with
hypertension, heart attack, and stroke.

The renin-producing granulated cells are mainly
located in the afferent glomerular arterioles in the 
kidney (2). It is well established that renin secretion is
regulated by renal perfusion pressure, renal sympa-

thetic nerve activity, and tubular sodium load (1, 2).
Renin secretion is stimulated by factors such as
prostaglandins, NO, and adrenomedullin, and inhib-
ited by other factors, including Ang II (feedback),
endothelin, vasopressin, and adenosine (1, 2). Stimu-
lation of renin secretion is often mediated by an
increase in intracellular cAMP and is accompanied by
increases in renin gene transcription (3). In the renin
gene promoter, several cAMP response elements have
been identified. Recently, steroid hormone receptors
LXRα and RAR/RXR complex, transcriptional factors
CREB/CREM and USF1/USF2, and HOX gene family
members have been found to be involved in the acti-
vation of murine renin gene transcription (4–7).

Vitamin D is a primary regulator of calcium home-
ostasis. Genetic inactivation of either the vitamin D
receptor (VDR), a member of the nuclear receptor
superfamily that mediates the action of 1,25-dihy-
droxyvitamin D3 [1,25(OH)2D3], or 25-hydroxyvita-
min D3 1α-hydroxylase, the rate-limiting enzyme for
the biosynthesis of 1,25(OH)2D3, results in impaired
calcium homeostasis, leading to hypocalcemia, sec-
ondary hyperparathyroidism, and rickets (8–11).
However, the wide tissue distribution of VDR sug-
gests that the vitamin D endocrine system has addi-
tional physiological functions beyond calcium
homeostasis. Indeed, vitamin D and VDR have been
shown to play important roles in the immune sys-
tem, cardiovascular system, reproductive system,
and hair growth.
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In the last two decades, clinical studies have revealed
an inverse relationship between the plasma
1,25(OH)2D3 concentration and the blood pressure
and/or the plasma renin activity in both normotensive
men and patients with essential hypertension (12–16).
Ultraviolet light exposure, which is required for vita-
min D biosynthesis, is inversely related to the rise of
blood pressure and the prevalence of hypertension in
the general population and was shown to have blood
pressure–lowering effects (17, 18). Furthermore, it has
been reported that vitamin D3 supplementation
reduces blood pressure in patients with essential
hypertension (19, 20), and 1,25(OH)2D3 treatment
reduces blood pressure, plasma renin activity, and 
Ang II levels in hyperparathyroidism patients (21, 22).
Despite the significance of these observations, howev-
er, the mechanism underlying the relationship
between vitamin D and blood pressure and plasma
renin activity is unknown.

To explain these observations, we hypothesized that
vitamin D is a negative regulator of renin expression in
vivo. If this hypothesis is correct, disruption of the vita-
min D signaling pathway should lead to a deregulated
elevation of renin expression, and an increase in serum
vitamin D levels should lead to a suppression of renin
expression. We have tested this hypothesis. Here we
provide in vivo and in vitro evidence that establishes
vitamin D as a potent negative endocrine regulator of
the renin-angiotensin system.

Methods
Animals and treatment. The generation and characteri-
zation of VDR–/– and Gcm2–/– mice have been described
previously (10, 23). VDR–/– and Gcm2–/– mice were gen-
erated through breeding of heterozygous mice and
identified by PCR with tail genomic DNA as the tem-
plate, and the wild-type littermates were used as con-
trols in all experiments. Mice were housed in a
pathogen-free barrier facility in a 12-hour light/
12-hour dark cycle, and fed an autoclaved standard
rodent chow. To normalize the blood ionized calcium
level of VDR–/– mice, 2-month-old animals were placed
on the HCa-Lac diet (Harlan Teklad, Madison, Wis-
consin, USA) containing 2% calcium, 1.25% phospho-
rus, 4 IU/g vitamin D, and 20% lactose (24) for 5 weeks.
To increase the sodium load, mice were fed the normal
rodent diet supplemented with 8% NaCl for 1, 3, 5, and
7 days. In dehydration experiments, mice were restrict-
ed from water, but had free access to food, for 24 hours
before sacrifice. To block 1,25(OH)2D3 synthesis, 
1.5-month old wild-type mice were placed on the nor-
mal diet supplemented with 2.5% strontium chloride
until hypocalcemia was detected. To investigate the
effect of 1,25(OH)2D3 in vivo, wild-type mice were
injected intraperitoneally with vehicle or 30 pmol of
1,25(OH)2D3 dissolved in propylene glycol as detailed
in Results. In all experiments, mice were sacrificed by
exsanguination under anesthesia, and the blood was
collected into ice-cold tubes for serum isolation, or into

ice-cold tubes containing 50 µl of EDTA (pH 8.0) and
100 U/ml aprotinin for plasma isolation. The determi-
nation of water and food intake, as well as urine collec-
tion, was carried out by using metabolic cages.

Measurement of blood and urine parameters. The concen-
tration of blood ionized calcium was determined using
a 634 Ca++/pH analyzer (Chiron Diagnostics, East Wal-
pole, Massachusetts, USA) from 50 µl of whole blood
obtained from tail snipping. Blood glucose concentra-
tions were determined by using One Touch SureStep
test strips (LifeScan Inc., Milpitas, California, USA).
Serum intact parathyroid hormone (iPTH) was deter-
mined using a commercial ELISA kit (Immutopics Inc.,
San Clemente, California, USA). The concentration of
serum and urinary Na+, K+, and creatinine was deter-
mined by a CX5 Autoanalyzer (Beckman Coulter Inc.,
Brea, California, USA) as described previously (25).

Measurement of Ang II. Mouse plasma Ang II concen-
trations were determined by RIA, using a commercial
RIA kit (Phoenix Pharmaceuticals Inc., Mountain
View, California, USA) according to the manufactur-
er’s instructions.

Measurement of blood pressure. Mouse blood pressure
was determined as described previously (26). Briefly,
mice were anesthetized by an intraperitoneal injection
of sodium pentobarbital (50 mg/kg body weight). The
left carotid artery was isolated from surrounding tis-
sues, and cannulated with a polyethylene catheter filled
with sterile PBS containing heparin (50 U/ml) under a
dissecting microscope. Arterial blood pressure was
measured using a pressure transducer model 60-3002
(Harvard Apparatus Co., Hilliston, Massachusetts,
USA) and recorded. To investigate whether the increase
in blood pressure in VDR–/– mice was directly due to the
increase in the Ang II level, wild-type and VDR–/– mice
were treated with captopril (100 mg/d/kg body weight,
dissolved in drinking water) for 5 days before blood
pressure was determined. Wild-type and VDR–/– mice
fed normal drinking water were used as controls.

Immunohistochemistry. Kidneys freshly dissected from
wild-type and VDR–/– mice were fixed overnight with
4% formaldehyde in PBS (pH 7.2), processed, embedded
in paraffin, and cut into 5-µm sections with a Leica
Microtome 2030 (Leica Microsystems Nussloch
GmbH, Nussloch, Germany). The slides were stained
with a rabbit polyclonal anti-renin antiserum (1:1,600
dilution) (kindly provided by T. Inagami, Vanderbilt
University, Nashville, Tennessee, USA). After incuba-
tion with a peroxidase-conjugated anti-rabbit IgG
(Kirkegaard & Perry Laboratories Inc., Gaithersburg,
Maryland, USA), the renin signal was visualized with a
DAB peroxidase substrate kit (Vector Laboratories Inc.,
Burlingame, California, USA), followed by a light
hematoxylin counterstaining.

RNA isolation and Northern blot. The kidney and liver
were dissected and immediately placed into Trizol
reagent (Invitrogen Life Technologies, Carlsbad, Cali-
fornia, USA) for total RNA isolation according to the
manufacturer’s instruction. To determine renin or
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angiotensinogen mRNA expression, total RNA (20
µg/lane) was separated on a 1.2% agarose gel contain-
ing 0.6 M formaldehyde, transferred onto a nylon
transfer membrane (Micron Separations Inc., West-
borough, Massachusetts, USA), and cross-linked in an
ultraviolet  cross-linker (Bio-Rad Laboratories Inc., Her-
cules, California, USA). Hybridization was performed
as described previously (25). Mouse renin and
angiotensinogen cDNA probes were labeled with 
32P-dATP (ICN Biomedicals Inc., Costa Mesa, Califor-
nia, USA) using the Prime-a-Gene Labeling System
(Promega Corp., Madison, Wisconsin, USA). After
hybridization and washing, membranes were exposed
to x-ray films at –80°C for autoradiography. The rela-
tive amount of mRNA was quantitated using a Phos-
phorImager (Molecular Dynamics, Sunnyvale, Califor-
nia, USA) and normalized with 36B4 mRNA as
described previously (25).

As4.1 cell culture and transfection. As4.1 cells (American
Type Culture Collection, Manassas, Virginia, USA) were
cultured in DMEM supplemented with 10% FBS at
37°C and 5% CO2. For transient transfection, the cells
were grown in 10-cm dishes to 50% confluence and
transfected with pcDNA3.1, pcDNA-hVDR, or pcDNA-
PTH/PTHrPR plasmid (10 µg DNA per dish) by the
standard calcium phosphate method. Twenty-four
hours after transfection, the cells were treated for 24
hours with 5 × 10–8 M 1,25(OH)2D3 or ethanol in
serum-free media, or with different doses of bovine
PTH(1-34) as indicated. Total RNA was isolated and
analyzed for renin mRNA expression by Northern blot.
For stable transfection, As4.1 cells were transfected
with pcDNA3.1 or pcDNA-hVDR plasmid by the use of
SuperFect reagent (QIAGEN Inc., Valencia, California,
USA) and selected with 350 µg/ml of G418 for 2 weeks.
Individual colonies were picked, expanded, and select-
ed for VDR expression. The As4.1-hVDR stable clones
were treated with different doses of 1,25(OH)2D3 for 24
hours in serum-free media, and total RNA was analyzed
by Northern blot to examine renin expression.

Renin gene promoter analysis. Plasmid pR1C-4.1CAT
that contains 4.1 kb 5′-flanking sequence of mouse
Ren-1c gene (27) was provided by K.W. Gross (Roswell
Park Cancer Institute, Buffalo, New York, USA). To
generate pGL-117bp reporter plasmid, the 123-bp
renin minimal promoter fragment (+6 to –117) was
released from pR1C-4.1CAT with XbaI and BamHI
and inserted into the HindIII site of pGL3-basic vec-
tor (Promega Corp.). To generate pGL-4.1kb reporter
plasmid, the BamHI fragment (–4.1 kb to –118 bp)
from pR1C-4.1CAT was inserted into the BglII site of
pGL-117bp. To analyze the activity of renin gene pro-
moter, As4.1-hVDR cells were transfected with the
reporter plasmids by electroporation according to the
method of Shi et al. (5) using a Gene Pulser (Bio-Rad
Laboratories Inc.). pCMV–β-galactosidase (β-gal) plas-
mid was cotransfected as an internal control. pGL3-
control plasmid (Promega Corp.) was used as the pos-
itive control. The transfected cells were treated with

ethanol or 10–8 M 1,25(OH)2D3 in Opti-MEM medi-
um (Invitrogen Life Technologies) containing 2%
charcoal-treated FBS 4 hours after electroporation,
and luciferase activity was determined at 48 hours
after initial transfection using the Luciferase Assay
System (Promega Corp.). Luciferase activity was nor-
malized to β-gal activity obtained from the same elec-
troporation, and presented as fold induction based on
the basal activity of pGL3-basic empty vector deter-
mined in the same experiment.

Statistical analysis. Data were presented as mean ± SD
and analyzed with Student’s t test to assess signifi-
cance. P values of 0.05 or lower were considered sta-
tistically significant.

Results
Renin expression and plasma Ang II production are elevated
in VDR-null mice. To test our hypothesis we first ana-
lyzed VDR–/– mice. We reasoned that if the hypothesis
is correct, renin expression should be increased in the
mutant mice because of the disruption of the vitamin
D signaling pathway. By quantitative Northern blot
analysis, we found that the renin mRNA level in the
kidneys of adult VDR–/– mice was more than threefold
higher than that of wild-type littermates (Figure 1, a
and b). Immunohistochemical analysis of the renal cor-
tex with an anti-renin antibody confirmed a dramatic
increase in renin immunoreactivity in the afferent
glomerular arterioles of the JG region in VDR–/– mice
(Figure 1c). The plasma Ang II level of VDR–/– mice was
also increased more than 2.5-fold as compared with
that of wild-type mice (Figure 1d). However, the expres-
sion of angiotensinogen, the precursor of Ang II, in the
liver of VDR–/– mice was the same as in wild-type mice
(Figure 1e), suggesting that the increase in plasma 
Ang II was mainly due to the increase in renin activity.

VDR-null mice are hypertensive. Ang II is a potent vaso-
constrictor (1). We therefore compared the blood pres-
sure of VDR–/– and wild-type mice. We found that both
the systolic and the diastolic pressures of VDR–/– mice
were significantly higher (>20 mmHg) than those of
wild-type littermates (Figure 2a), indicating that
VDR–/– mice are hypertensive. Furthermore, the heart
weight/body weight ratios of the mutant mice were
also significantly higher (Figure 2b), suggesting that
the adult VDR–/– mice had developed cardiac hypertro-
phy. When the mice were treated with captopril, an
angiotensin-converting enzyme inhibitor, the blood
pressure of both wild-type and VDR–/– mice was
reduced as expected. However, no difference was seen
between the blood pressures of the treated wild-type
and VDR–/– mice (Figure 2c). This result confirms that
the increase in the blood pressure of VDR–/– mice is due
to renin and plasma Ang II elevation.

VDR-null mice show abnormal drinking behavior. Ang II
is known to be a very potent stimulus for thirst and
salt craving as well as an inducer of intestinal water
and sodium absorption (1, 28). We therefore meas-
ured water and food intake as well as blood and 
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urinary electrolyte parameters. As shown in Table 1,
VDR–/– mice ingested about twice as much water as
the wild-type littermates and, consequently, excreted
approximately twice as much urine. The abnormal
drinking behavior is not due to diabetes, since the
blood glucose and insulin levels of VDR–/– mice were
normal (Table 2). Food intake of VDR–/– mice was
similar to that of wild-type mice, but VDR–/– mice
excreted 37% and 19% more Na+ and K+ in the urine,
respectively (Table 1), while maintaining a normal
concentration of blood Na+ and K+ (Table 2). Thus,
VDR–/– mice appeared to have an increase in intestin-
al salt absorption due to the Ang II elevation.

VDR-null mice respond properly to salt load or volume
change. As renin production is very sensitive to changes
in tubular salt load or extracellular fluid volume (29,
30), we investigated the effect of high-salt diet or dehy-
dration on the expression of renin in VDR–/– and wild-
type littermates. When placed on a normal diet sup-
plemented with 8% NaCl, both VDR–/– and wild-type

mice responded by reducing the expression of renin
mRNA, but VDR–/– mice still maintained a significant-
ly higher renin mRNA level even after 7 days on the
high-salt diet (Figure 3a). Similar changes were seen in
the plasma Ang II levels in these animals (Figure 3b).
On the other hand, when the mice were dehydrated for
24 hours, which leads to hypovolemia, they responded
by increasing renin mRNA synthesis, but the increase
in wild-type mice was more dramatic than in VDR–/–

mice (Figure 3c), suggesting that the basal renin pro-
duction in VDR–/– mice was already near the maximal
capacity. The changes of plasma Ang II concentrations
in the dehydrated mice were consistent with the
changes in the renin expression (Figure 3d). These
observations indicated that, despite a high basal renin
synthesis, the regulatory mechanisms activated by
tubular salt load changes or volume depletion are still
intact in VDR–/– mice. These data also suggest that the
elevation of the basal renin expression in VDR–/– mice
is through a mechanism different from that of the
physiological inducers.

Inhibition of 1,25(OH)2D3 biosynthesis also leads to renin
upregulation. Dietary strontium has been shown to
block the biosynthesis of 1,25(OH)2D3 and has been
widely used to render animals vitamin D–deficient
(31). To confirm that the disruption of the vitamin D
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Figure 1
Effect of VDR inactivation on renin expression and plasma Ang II pro-
duction. (a) Renin mRNA expression in the kidney. Kidney total RNAs
were isolated from wild-type (+/+) and VDR–/– (–/–) mice and ana-
lyzed by Northern blot. The same membrane was sequentially
hybridized with mouse renin and 36B4 cDNA probes. Each lane rep-
resents an individual animal. (b) Quantitative results of the North-
ern blot analyses shown in a. Values represent the ratio of renin
mRNA to 36B4 mRNA. *P < 0.001 vs. wild-type mice. (c) Immuno-
histochemical staining of the kidney cortex from wild-type and VDR–/–

mice with anti-renin antiserum. Arrows indicate the afferent glomeru-
lar arterioles in the JG region. Scale bar, 25 µm. (d) Plasma Ang II
concentrations in wild-type and VDR–/– mice. *P < 0.001 vs. wild-type
mice; n = 15 in each group. (e) Liver angiotensinogen mRNA expres-
sion in wild-type and VDR–/– mice, determined by Northern blot. The
membrane was sequentially hybridized with mouse angiotensinogen
and 36B4 cDNA probes. Each lane represents an individual mouse.

Figure 2
Effect of VDR inactivation on blood pressure and heart weight/body weight ratio. (a) Systolic and diastolic blood pressures of wild-type
(white bars) and VDR–/– (black bars) mice. *P < 0.01 vs. corresponding wild-type mice; n = 9 for wild-type mice; n = 8 for VDR–/– mice. (b)
Ratio of heart weight to body weight of wild-type and VDR–/– mice. *P < 0.05 vs. wild-type mice; n = 9 in each genotype. (c) Mean blood
pressure (BP) of wild-type (white bars) and VDR–/– (black bars) mice untreated or treated with captopril for 5 days. *P < 0.05 vs. corre-
sponding untreated wild-type mice; n = 4 in each genotype in each group.



signaling can lead to renin upregulation, we treated
wild-type mice with strontium. We monitored the
blood ionized calcium, instead of the blood
1,25(OH)2D3 level, during the treatment because of 
the extreme difficulty of measuring the serum
1,25(OH)2D3 concentration in live mice. As shown in
Figure 4, after 7 weeks of treatment, the wild-type mice
became hypocalcemic (Figure 4c), indicating that the
concentration of 1,25(OH)2D3 was already reduced,
since 1,25(OH)2D3 is required to maintain the calcium
homeostasis. As expected, the treated mice showed a
significant increase in renin mRNA expression (Figure
4, a and b), consistent with the suppressive role of
1,25(OH)2D3 in renin expression.

1,25(OH)2D3 treatment suppresses renin expression in wild-
type mice. To further confirm that 1,25(OH)2D3 indeed
suppresses renin expression in vivo, we treated wild-type
mice with 1,25(OH)2D3 or vehicle and then determined
the renin mRNA level in the kidney. After two doses of
1,25(OH)2D3 (30 pmol/dose) in 2 consecutive days,
renal renin expression was decreased by 35%, and after
five doses in 3 days, the expression was decreased by 50%
(Figure 5, a and b). As a control, the mRNA of renal cal-
bindin-D9k, a well-known vitamin D target gene (25),
was significantly increased by the 1,25(OH)2D3 treat-
ment (Figure 5a). Thus, the data obtained from VDR–/–

mutant mice and from strontium- and 1,25(OH)2D3-
treated wild-type mice confirm the existence of a nega-
tive regulatory interaction between vitamin D and the
renin-angiotensin system in vivo.

Elevation of renin expression is independent of hypocal-
cemia. As vitamin D is a primary regulator of calcium
homeostasis, changes in the vitamin D status
inevitably alter the blood levels of calcium and PTH in
animals. For instance, adult VDR–/– mice developed
hypocalcemia and secondary hyperparathyroidism
(10). As shown in Figure 6, their blood ionized calci-
um level was decreased by 30% and serum PTH con-
centration increased about 150-fold at 3 months of
age (Figure 6, a and b). A key question, therefore, is
whether the effect of VDR inactivation on renin
expression in vivo is direct, or is only secondary to
changes in the blood calcium or PTH level, as hypocal-
cemia may reduce the intracellular calcium concen-
tration and cause the renin upregulation (32), and
high PTH may also stimulate renin secretion (33). To

address this question, we examined 20-day-
old VDR–/– mice that were still normocal-
cemic (Figure 6a) but already showed a six-
fold increase in the serum PTH level (Figure
6b), likely due to the lack of the VDR-medi-
ated vitamin D inhibition of PTH biosyn-
thesis (34). A significant increase in renin
expression was seen in these preweaned
VDR–/– mice (Figure 6, c and d). We also
examined the adult VDR–/– mice treated
with the HCa-Lac diet containing 2% calci-
um, 1.25% phosphorus, and 20% lactose
(24). Five weeks of dietary treatment nor-

malized the blood ionized calcium level in VDR–/–

mice (Figure 6a) and reduced the serum PTH concen-
tration of VDR–/– mice to about seven times the wild-
type value (Figure 6b) but had no effects on the con-
centration of blood electrolytes (Table 2). However,
renin mRNA and plasma Ang II levels in these nor-
mocalcemic adult VDR–/– mice were still significantly
elevated (Figure 6, e–g). Similarly, their water intake
and urinary excretion were also significantly higher
(data not shown). In addition, renin expression was
still elevated in VDR–/– mice whose alopecia was res-
cued by targeted expression of human VDR in the skin
(35), indicating that the upregulation of renin expres-
sion is not due to alopecia (data not shown).

To further exclude the possibility that hypocalcemia
may increase renin expression, we examined renin
expression in Gcm2–/– mice, which lack the parathyroid
glands (Gcm2 is a master regulatory gene for parathy-
roid gland development) but have normal circulating
PTH (derived from the thymus) and 1,25(OH)2D3 con-
centrations (23). Although the blood ionized calcium
of Gcm2–/– mice was as low as that of VDR–/– mice, no
increase in renin mRNA expression was detected in
Gcm2–/– mice (data not shown). Taken together, these
data demonstrate that the elevation of renin expression
is not due to hypocalcemia but resulted from VDR
inactivation per se and/or hyperparathyroidism.

Vitamin D directly suppresses renin expression in cell cul-
tures. To prove that vitamin D directly suppresses
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Table 1
Twenty-four-hour water and food intake, urinary volume, and urinary electrolyte
concentrations

Wild-type VDR–/– P value

Water (ml/mouse/day) 2.7 ± 0.3 (n = 29) 5.4 ± 0.4 (n = 29) < 0.01
Food (g/kg BW/day) 138.9 ± 12.2 (n = 29) 142.9 ± 13.1 (n = 29) NS
Urine (ml/mouse/day) 1.1 ± 0.4 (n = 9) 1.8 ± 0.5 (n = 9) < 0.01
Urinary Na+/Cr 2.9 ± 0.6 (n = 9) 3.9 ± 0.7 (n = 9) 0.09
Urinary K+/Cr 3.8 ± 0.4 (n = 9) 4.5 ± 0.4 (n = 9) < 0.01

BW, body weight; Cr, creatinine; NS, not significant.

Table 2
Blood parameters under normal and high-calcium dietary conditions

Wild-type VDR–/– P value

Normal diet

Na+ (mmol/l) 148.7 ± 4.9 (n = 10) 148.3 ± 2.6 (n = 8) NS
K+ (mmol/l) 5.2 ± 0.9 (n = 10) 4.8 ± 0.6 (n = 8) NS
Creatinine (mg/dl) 0.29 ± 0.1 (n = 10) 0.24 ± 0.1 (n = 8) NS
Glucose (mg/dl) 116.2 ± 4.1 (n = 3) 115 ± 13.3 (n = 5) NS
Insulin (ng/ml) 0.42 ± 0.2 (n = 6) 0.38 ± 0.1 (n = 8) NS

HCa-Lac diet for 5 weeks

Na+ (mmol/l) 143.7 ± 3.9 (n = 5) 143.1 ± 1.7 (n = 5) NS
K+ (mmol/l) 4.4 ± 0.9 (n = 5) 4.2 ± 0.3 (n = 5) NS
Creatinine (mg/dl) 0.26 ± 0.1 (n = 5) 0.25 ± 0.1 (n = 5) NS

NS, not significant.



renin gene expression, we examined the effect of
1,25(OH)2D3 treatment on renin mRNA expression in
As4.1 cells, a JG cell–like cell line that was derived
from kidney tumors of SV40 T antigen transgenic
mice and maintains a high level of renin synthesis
(36). Treatment with 5 × 10–8 M 1,25(OH)2D3 caused
a moderate reduction in renin mRNA expression;
however, when the cells were transiently transfected
with the pcDNA-hVDR plasmid that contained the
full-length coding sequence of human VDR cDNA,
the same 1,25(OH)2D3 treatment reduced renin
mRNA expression by about 90% (Figure 7, a and b).
Thus, 1,25(OH)2D3 directly suppresses renin expres-
sion in a VDR-dependent manner.

To investigate whether the high PTH level in VDR–/–

mice also contributes to the renin upregulation, As4.1
cells were treated with different doses of PTH(1-34), or
transfected with the plasmid pcDNA-PTH/PTHrPR
that contains the full-length rat PTH/PTHrP receptor

cDNA and then treated with PTH(1-34). No increase
in renin expression was observed in either of the PTH-
treated cells (Figure 7c).

Vitamin D suppresses renin gene promoter activity. It has
been shown that As4.1 cells have lost expression of
some nuclear receptors, such as LXR (4), and we found
that VDR mRNA transcript was undetectable in As4.1
cells by Northern blot (not shown). To confirm the
VDR-mediated suppression of renin expression, As4.1
clones stably transfected with the pcDNA3.1 vector or
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Figure 3
Effect of high sodium load and volume depletion on renin mRNA expression and plasma Ang II production in wild-type and VDR–/– mice.
(a) Northern blot analysis of renal renin mRNA from mice treated, for different numbers of days as indicated, with the normal rodent diet
supplemented with 8% NaCl. Each lane represents an individual mouse. Control mice were untreated. (b) Plasma Ang II concentrations in
the 8% NaCl diet–treated animals. White bars, wild-type mice; black bars, VDR–/– mice. *P < 0.01 vs. corresponding wild-type mice at the
same time point; **P < 0.05 vs. untreated control wild-type mice; n = 3 in each genotype at each time point. (c) Northern blot analysis of
renal renin mRNA expression in mice dehydrated for 24 hours (24 h). Each lane represents an individual mouse. Control mice were untreat-
ed. (d) Plasma Ang II levels in untreated control and dehydrated (24 h) mice. White bars, wild-type mice; black bars, VDR–/– mice. *P < 0.01
vs. corresponding wild-type mice; **P < 0.01 vs. untreated control wild-type mice; n = 3 in each genotype in each group.

Figure 4
Elevation of renin expression in strontium-treated wild-type mice. Two-month-old
wild-type mice were fed the normal diet supplemented with 2.5% strontium chlo-
ride for 7 weeks before sacrifice. (a) Northern blot analysis of renin mRNA expres-
sion in the kidney from untreated and strontium-treated wild-type mice. Each lane
represents an individual animal. (b) Quantitative results of the Northern analysis.
(c) Blood ionized calcium concentration determined at the end of the treatment 
(n = 5 in each group). *P < 0.01 vs. untreated value (in b and c). NT, not treated;
STR, strontium-treated.



pcDNA-hVDR were established (Figure 8a). When the
stable clones were treated with 1,25(OH)2D3, a dose-
dependent suppression of renin expression was seen in
As4.1-hVDR cells, but not in As4.1-pcDNA cells (Figure
8b). Again, the level of renin mRNA was reduced by
about 90% in As4.1-hVDR cells treated with 10–8 M
1,25(OH)2D3. Time-course studies showed that the
suppression of renin mRNA was evident after 6 hours
of 1,25(OH)2D3 treatment (data not shown). To inves-
tigate whether the VDR-mediated suppression is at the
transcriptional level, we measured the activity of the
renin gene promoter in As 4.1-hVDR cells. As shown in
Figure 8c, transfection of the cells with the pGL-4.1kb

reporter plasmid containing the 4.1-kb 5′-flanking
sequence of the murine renin gene (Ren-1c) (27) result-
ed in a 25-fold increase in luciferase activity. Treatment
of the transfected cells with 1,25(OH)2D3 reduced the
activity of the 4.1-kb renin gene promoter by more than
80% but had no effect on the activity of the SV40 pro-
moter in pGL3-control plasmid. Thus, the suppression
of the renin gene promoter by 1,25(OH)2D3 is potent
and specific. As reported previously, the 117-bp 
5′-flanking fragment had very low activity (27). These
results provide compelling evidence that 1,25(OH)2D3

directly and negatively regulates renin gene transcrip-
tion through a VDR-mediated mechanism.

Discussion
The primary physiological function of the renin-
angiotensin system is to maintain vascular resistance
and extracellular fluid volume homeostasis. This is
mainly accomplished by the regulatory actions of Ang
II on the peripheral vasculature, heart, CNS, kidney,
and adrenal glands. As the rate-limiting component
of the renin-angiotensin cascade, renin secretion and
production is mostly stimulated by volume or salt
depletion, reduction in renal vascular perfusion pres-
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Figure 5
1,25-Dihydoxyvitamin D3 suppresses renin expression in wild-type mice. (a)
Wild-type mice (3 months old) were injected intraperitoneally with two or five
doses of 30 pmol of 1,25(OH)2D3 (VD) dissolved in propylene glycol or vehi-
cle (V). The two doses were given in 2 consecutive days at 9 am. The five doses
were given in 3 consecutive days at 9 am and 7 pm on the first 2 days and 9
am on the third day. Total renal RNA was isolated 6 hours after the last injec-
tion. Renin, calbindin-D9k (CaBP-D9k), and 36B4 mRNA levels were deter-
mined by Northern blot analysis. (b) Quantitation of renin mRNA levels.
Black bars, vehicle treatment; white bars, 1,25(OH)2D3 treatment. *P < 0.05
vs. vehicle treatment; n ≥ 3 in each group.

Figure 6
Renin upregulation is independent of the
calcium status. (a and b) Blood ionized
calcium levels (a) and serum iPTH con-
centrations (b) in wild-type (white bars)
and VDR–/– (black bars) mice at 20 days of
age, at 3 months of age, or treated with
the HCa-Lac diet for 5 weeks (5 wks Ca).
*P < 0.01 vs. corresponding wild-type
value; n ≥ 5 in each group. Note that the
white bars are barely visible in b. (c) North-
ern blot analysis of renal renin mRNA from
20-day-old wild-type and VDR–/– mice. (d)
Quantitative data of the Northern blot
analyses from 20-day-old mice. *P < 0.001
vs. wild-type mice. (e) Northern blot analy-
sis of renin mRNA expression in the kidney
of wild-type and VDR–/– mice treated with
the HCa-Lac diet for 5 weeks. (f) Quanti-
tative result of the Northern blot analysis
in shown in e. *P < 0.001 vs. wild-type
mice. (g) Plasma Ang II concentrations of
the mice analyzed in e. *P < 0.01 vs. wild-
type mice; n = 5 in each genotype.



sure, and sympathetic nerve activity (1, 2). In the pres-
ent study we demonstrate that VDR-null mice have a
sustained elevation of renin expression while still
maintaining a normal level of blood electrolytes. The
augmentation of renin synthesis leads to increased
plasma Ang II production from angiotensinogen,
which drives VDR-null mice to increase water intake
and intestinal salt absorption, since Ang II is a very
potent thirst-inducing agent that acts on the CNS, as
well as a potent stimulator of intestinal sodium
absorption (1, 28). As a result, the mutant mice have
to excrete more urine and salt to maintain volume
and electrolyte homeostasis. Since Ang II is a potent
vasoconstrictor, its augmentation also leads to the
development of hypertension and cardiac hypertro-
phy in VDR null mice, although the latter effect still
needs more experimental verification. This is not
unexpected, as hypertension and cardiac hypertrophy
have been well documented in patients and animals
with high renin and Ang II (37, 38). Thus, a new
steady state of the renin-angiotensin system is estab-
lished in VDR-null mice, in which the basal renin
expression is higher but still responds appropriately
to the same tubular salt load and volume stimuli as in
the normal state. Based on these assessments, it is
believed that the upregulation of renin expression is
a primary defect in VDR-null mice.

That VDR-null mice maintain a high level of renin
expression is, to our knowledge, a novel finding, but

the underlying physiological cause can be complicated.
The observation that renin expression in VDR-null
mice reacts properly to high salt load or dehydration
indicates that the mechanism underlying the sustained
renin elevation is independent of the pathways activat-
ed by tubular salt load or volume depletion. In fact, the
involvement of cyclooxygenase-2 (COX-2), which may
play an important role in macula densa–mediating
renin release (39), in renin elevation in VDR-null mice
is unlikely, since we observed the same low COX-2 pro-
tein level in the kidneys of both VDR-null and wild-
type mice (data not shown). Since adult VDR-null mice
develop hypocalcemia and secondary hyperparathy-
roidism, the upregulation of renin expression could be
due to VDR inactivation per se, hypocalcemia, and/or
high PTH. However, several lines of evidence from our
study strongly suggest that vitamin D regulation of
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Figure 7
Suppression of renin mRNA expression by 1,25(OH)2D3 in
As4.1 cells. (a) As4.1 cells were transiently transfected with
(+) or without (–) pcDNA-hVDR plasmid containing the full-
length human VDR cDNA and then treated with 5 × 10–8 M
1,25(OH)2D3 (+) or ethanol (–) for 24 hours. Total cellular
RNA was isolated and analyzed by Northern blot with renin
and 36B4 cDNA probes. (b) Quantitative results of North-
ern blot analyses obtained from three independent experi-
ments. C, ethanol-treated; VD, 1,25(OH)2D3-treated; T,
transfected with pcDNA-hVDR and treated with ethanol;
T/VD, transfected with pcDNA-hVDR and treated with
1,25(OH)2D3. *P < 0.001 vs. C, VD, or T value. (c) Renin
mRNA expression in As4.1 cells (left panel), and in As4.1
cells transfected with pcDNA-PTH/PTHrPR containing the
rat PTH/PTHrP receptor cDNA (right panel) and treated
with bovine PTH(1-34) as indicated. –, untreated.

Figure 8
1,25(OH)2D3 suppresses renin gene transcription. (a) Expression of
hVDR mRNA in stable As4.1 clones. P, parental As4.1 cells; #57, As4.1
clone 57 stably transfected with pcDNA-hVDR; V, As4.1 clone stably
transfected with the empty vector pcDNA3.1. (b) Renin mRNA expres-
sion in As4.1 clone V (Vector) and #57 treated with ethanol (E) or dif-
ferent doses of 1,25(OH)2D3 as indicated. (c) As4.1-hVDR cells (clone
#57) were transfected with pGL3-control, pGL-4.1kb, or pGL-117bp
luciferase reporter plasmid and then treated with ethanol (black bars)
or 10–8 M 1,25(OH)2D3 (white bars). Luciferase activity was deter-
mined 48 hours after transfection. Similar results were obtained in
other stable clones (data not shown).



renin gene expression is direct and independent of the
calcium status: (a) Preweaned VDR-null mice that have
not yet developed hypocalcemia already show an ele-
vated renin expression; (b) when the blood ionized cal-
cium of adult VDR-null mice is normalized by the
HCa-Lac diet, their renin expression and Ang II level are
still elevated; (c) conversely, Gcm2-null mice, which are
as hypocalcemic as VDR-null mice, do not manifest ele-
vated renin expression; (d) in wild-type mice, reduction
of 1,25(OH)2D3 biosynthesis also results in elevated
renin expression, whereas injection of 1,25(OH)2D3

leads to reduced renin expression; and (e) 1,25(OH)2D3

directly suppresses renin gene transcription in As4.1
cells by a VDR-mediated mechanism. Therefore, our
data provide very compelling evidence to establish that
vitamin D is a potent negative endocrine regulator of
renin expression in vivo.

Although we did not observe a stimulation of renin
expression in As4.1 cells either treated with PTH, or
transfected with the PTH/PTHrP receptor and then
treated with PTH, we cannot, at this time, completely
exclude the possibility that, in vivo, secondary hyper-
parathyroidism may also contribute to the renin upreg-
ulation in VDR-null mice. This is because the serum
PTH level in the normocalcemic preweaned or HCa-Lac
diet–treated VDR-null mice is still significantly higher
than that of the wild-type mice (even though it is much
lower than that of the untreated adult VDR-null mice).
Previous studies have shown that intravenous infusion
of PTH increases plasma renin activity and renin
release in humans and animals (33, 40), but the molec-
ular mechanism whereby PTH regulates renin expres-
sion in vivo remains unknown. PTH may indirectly
regulate renin expression in vivo.

1,25(OH)2D3 exerts its actions by binding to the
VDR. In most cases where 1,25(OH)2D3 acts as a pos-
itive regulator, the liganded VDR heterodimerizes
with the RXR and binds to specific DNA sequences
(VDRE) in the promoter of target genes to regulate
gene expression. On the other hand, 1,25(OH)2D3 can
also act as a negative regulator, but the mechanism of
the negative regulation is more complicated and only
partially understood. For instance, inhibition of other
transcriptional complexes by VDR-RXR heterodimer
or VDR homodimer (41, 42), interaction of VDR-RXR
heterodimer with corepressors (43), and binding of
VDR to a negative VDRE (44) have been reported for
the VDR-mediated transcriptional repression. We
postulate that 1,25(OH)2D3 suppresses renin gene
expression through a cis-DNA element(s) in the renin
gene promoter. Analysis of the renin gene promoter is
underway to elucidate the molecular mechanism.

In summary, we have demonstrated that vitamin D
functions as a novel negative endocrine regulator of
the renin-angiotensin system in animals. Our data
indicate that maintaining a normal level of serum
1,25(OH)2D3 is important not only for calcium
homeostasis, but also for the homeostasis of elec-
trolytes, volume, and blood pressure.
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