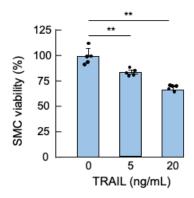
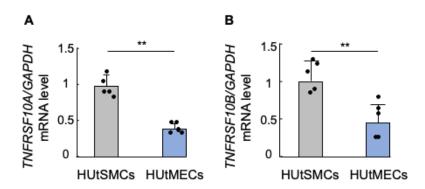
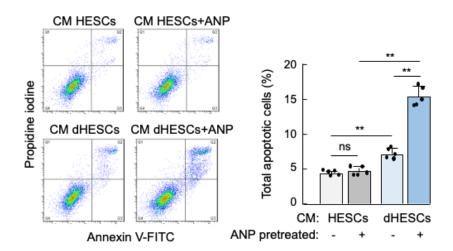
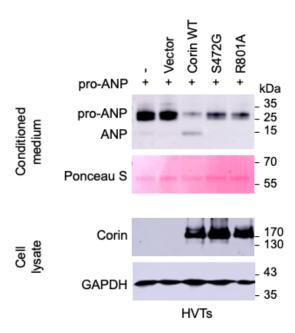

Atrial natriuretic peptide promotes uterine decidualization and a TRAIL-dependent mechanism in spiral artery remodeling

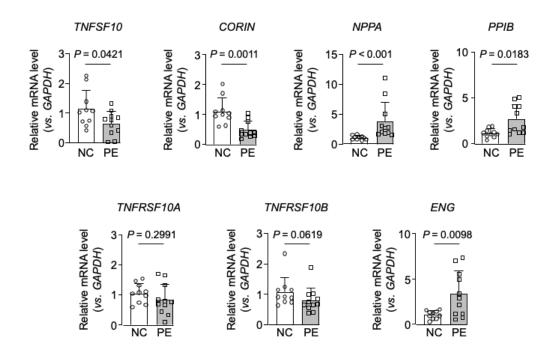

Supplemental Figures and Tables


Supplemental Figure 1. Reduced expression of prolactin gene family members in uterine tissues from pregnant *Nppa*-/- mice. Total RNAs isolated from pregnant WT and *Nppa*-/- mouse uteruses were used for gene expression analysis using MouseRef-8 v2.0 BeadChip (Illumina, BD-202-0202). Expression levels of prolactin family genes were analyzed with the Illumina GenomeStudio software. A heat map is shown (right). Data are representative of two replicates.


Supplemental Figure 2. *TNF* mRNA levels in HESCs and dHESCs. HESCs were cultured in non-differentiation or differentiation medium. mRNAs from HESCs and decidualized HESCs (dHESCs) were used for quantitative RT-PCR to examine *TNF* mRNA levels with *GAPDH* mRNA as a control. Data (mean \pm S.D.) from five experiments were analyzed by Student's t test. ns: not significant.

Supplemental Figure 3. TRAIL induces uterine SMC death. Human uterine SMCs were cultured with increasing concentrations of recombinant TRAIL. SMC viability was measured. Data (mean \pm S.D.) from five experiments were analyzed by one-way ANOVA. **P < 0.01.


Supplemental Figure 4. *TNPRSF10A* and *TNFRSF10B* mRNA levels in human uterine SMCs and ECs. (**A** and **B**) mRNAs were isolated from human uterine SMCs (HUtSMCs) and microvascular ECs (HUtMECs) and used for quantitative RT-PCR to examine *TNPRSF10A* (**A**) and *TNFRSF10B* (**B**) mRNA levels with *GAPDH* mRNA as a control. Data (mean \pm S.D.) from five experiments were analyzed by Student's t test. **P < 0.01.


Supplemental Figure 5. Apoptosis in human uterine SMCs. Human uterine SMCs were incubated with CM from HESCs or dHESCs without (-) or with (+) recombinant ANP pretreatment. Apoptosis was analyzed by flow cytometry with an FITC-conjugated anti-annexin V antibody. Data (mean \pm S.D.) from five experiments were analyzed by one-way ANOVA. **P <0.01. ns: not significant.

Supplemental Figure 6. Immunostaining of TRAIL in uteruses from pregnant mice. Uterine sections from pregnant (GD12.5) WT, $Nppa^{-/-}$ and $Corin^{-/-}$ mice were stained using an anti-TRAIL antibody. Stained sections were examined under a light microscope. Representative images are presented in Figure 6F. Relative TRAIL staining signals were quantified using ImageJ software. Data (mean \pm S.D.) from five experiments were analyzed by one-way ANOVA. **P <0.01. ns: not significant.

Supplemental Figure 7. Corin-mediated pro-ANP processing in human villus trophoblasts (HVTs). Plasmids expressing human pro-ANP and corin WT and mutants S472G (identified in preeclamptic women) and R801A (an inactive control) or a control vector were transfected in cultured HVTs. After 24 h at 37°C, the conditioned medium was collected. Pro-ANP and ANP fragments were analyzed by western blotting (top panel). A Ponceau S-stained non-specific band in the conditioned medium was used as a protein loading control (second panel). Corin proteins in the transfected HVTs were verified by western blotting with GAPDH as a control (bottom two panels). Data are representative of three experiments.

Supplemental Figure 8. Gene expression analysis in normal and preeclamptic placentas. Placental tissues from normal pregnant controls (NC) (n=10) and preeclamptic (PE) women (n=11) were used to isolated mRNAs. *TNFSF10* (encoding TRAIL), *CORIN*, *NPPA* (encoding pro-ANP), *PPIB* (encoding cyclophilin B), *TNFRSF10A* (encoding TRAIL receptor 1), *TNFRSF10B* (encoding TRAIL receptor 2), and *ENG* (encoding endoglin) mRNA levels were analyzed by quantitative RT-PCR. *GAPDH* mRNA levels were used to normalize the data. Statistical analysis was done with Student's *t* and Mann-Whitney tests.

Supplemental Table 1. Antibodies used in this study

Antibody	Source	Identifier	Dilution or concentration	
Caspase-3 (rabbit monoclonal)	Cell Signaling	14220	1:1000	
Human FAS ligand (goat polyclonal)	R&D Systems	AF126-SP	1:1000	
Mouse Fas ligand (rat monoclonal)	R&D Systems	MAB526-SP	1:1000	
Human TRAIL (rabbit polyclonal)	R&D Systems	AF375-SP	1:800	
Mouse TRAIL (rabbit polyclonal)	LSBio	LS-C331936-50	1:1000	
Mouse TRAIL (goat polyclonal)	R&D Systems	AF1121	1:150	
Human TRAIL R1 (goat polyclonal)	R&D Systems	AF347-SP	1:800	
Human TRAIL R2 (goat polyclonal)	R&D Systems	AF631-SP	1:800	
Mouse TRAIL R (rat monoclonal)	R&D Systems	MAB1540-SP	1:800	
Cyclophilin B (mouse monoclonal)	R&D Systems	MAB5410-SP	1:1000	
Mouse Prolactin (goat polyclonal)	Thermo Fisher	PA547140	1:500	
Mouse IGFBP1 (rabbit polyclonal)	Thermo Fisher	PA579447	1:1000	
SMA (rabbit monoclonal)	Cell Signaling	19245T	1:200	
vWF (rabbit polyclonal)	Thermo Fisher	PA5-16634	1:100	
Cytokeratin (mouse monoclonal)	Cell Signaling	4545S	1:100	
Cleaved caspase-3 (rabbit polyclonal)	Cell Signaling	9661T	1:200	
Cyclophilin B (mouse monoclonal)	Thermo Fisher	MAB5410-SP	1:200	
AP-anti-mouse secondary antibody (goat polyclonal)	Thermo Fisher	31320	1:200	
HRP-anti-rat secondary antibody (goat polyclonal)	GenScript	A00167	1:8000	
HRP-anti-mouse secondary antibody (donkey polyclonal)	Fisher Scientific	OB641005	1:8000	
HRP-anti-rabbit secondary antibody (goat polyclonal)	Cell Signaling	7074S	1:1000	
V5 (mouse monoclonal)	Thermo Fisher	R96025	1:1000	

HRP-V5 (mouse monoclonal)	Thermo Fisher	R96125	1:5000	
HRP-anti-goat secondary antibody (donkey polyclonal)	Abcam	Ab97110	1:5000	
Alexa Fluor 488-anti-rabbit secondary antibody (goat polyclonal)	Thermo Fisher	A-11008	1:1000	
Alexa Fluor 594-anti-mouse secondary antibody (donkey polyclonal)	Thermo Fisher	A-21203	1:1000	
Normal goat isotype control immunoglobulin Biotin (goat polyclonal)	Fisher Scientific	BAF108	5 µg/ml	
Normal rabbit isotype control immunoglobulin Biotin (rabbit polyclonal)	Fisher Scientific	AB105C	5 μg/ml	
Normal mouse isotype control immunoglobulin Biotin (mouse polyclonal)	Santa Cruz	Sc-2025	5 μg/ml	
p44/42 MAPK (ERK1/2) (rabbit monoclonal)	Cell Signaling	4695S	1:1000	
Phospho-p44/42 MAPK (ERK1/2) (Thr202/Tyr204) (rabbit polyclonal)	Cell Signaling	9101S	1:1000	

Supplemental Table 2. Primers used in qRT-PCR

Gene	Locus	Primer	Sequence
CORIN	NM_016869.3	forward reverse	CAAGTCTGAGGTCAACTGC TGTCCACTTCTGCATTCCAC
ENG (endoglin)	NM_000118	forward reverse	CGGTGGTCAATATCCTGTCGAG AGGAAGTGTGGGCTGAGGTAGA
FASLG (FAS ligand)	NM_000639.3	forward reverse	GCAGCCCTTCAATTACCCAT CAGAGGTTGGACAGGGAAGAA
GAPDH	NM_003842.5	forward reverse	GTCTCCTCTGACTTCAACAGCG ACCACCCTGTTGCTGTAGCCAA
PPIB (cyclophilin B)	NM_000942	forward reverse	AACGCAGGCAAAGACACCAACG TCTGTCTTGGTGCTCTCCACCT
TNF	NM_000594.4	forward reverse	CCGAGGCAGTCAGATCATCTT AGCTGCCCCTCAGCTTGA
TNFRSF10A (TRAIL receptor 1)	NM_003844.4	forward reverse	ACCTTCAAGTTTGTCGTCGTC AACTCTCCCAAAGGGCTATGT
TNFRSF10B (TRAIL receptor 2)	NM_003842.5	forward reverse	AAGACCCTTGTGCTCGTTGT AGGTGGACACAATCCCTCTG
TNFSF10 (TRAIL)	NM_003810.4	forward reverse	AGTCAAGTGGCAACTCCGTC GAGCTGCTACTCTCTGAGGAC

Supplemental Table 3. Characteristics of pregnant women

Characteristics	NC (n=10)	PE (n=11)	P value
Age (y)	29.1 ± 3.3	29.3 ± 6.3	0.847
BMI (kg/m²)	26.6 ± 3.6	31.1 ± 6.5	0.046
Smoking	0	0	1
Pre-existing diabetes	2	4	0.6351
Parity	1.1 ± 0.1	1.5 ± 0.2	0.0789
Blood pressure Systolic (mmHg)	124.0 ± 8.5	149.0 ± 10.1	<0.0001
Diastolic (mmHg)	72.0 ± 10.4	99.0 ± 9.5	<0.0001
Proteinuria	0	6	0.0124
Gestational age (w)	39.3 ± 0.9	36.5 ± 2.1	0.0018
Abnormal Doppler	0	0	1
Mode of delivery			
Vaginal	10	1	<0.0001
Cesarean	0	10	<0.0001
Fetal birth weight (g)	3433.3 ± 446.5	2860.0 ± 671.2	0.0256

BMI: body mass index; NC: normal pregnant control; PE: preeclampsia; y: year; w: week; g: gram. Mean ± SD for continuous variables and numbers for categorical variables are presented. *P* values between NC and PE groups were analyzed by Student's *t* test for continuous data or Fisher's exact test for categorical data.