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Introduction
Systemic lupus erythematosus (SLE) is a potentially devastating 
autoimmune disease. It is a leading cause of death in young women 
in the United States, predominantly affecting those of Hispanic and 
African American ancestry (1). Although recent advances in diagno-
sis and treatment have led to substantial improvement in prognosis, 
the disease still has considerable morbidity and associated costs (2, 
3). The currently available treatment options are not free of compli-
cations, and it is estimated that the percentage of deaths attributed 
to disease activity is similar to the percentage that can be attributed 
to infections secondary to immunosuppressive medications (4).

Unmet needs in patients with SLE include uncontrollable 
disease, recurrent flares, need for long-term immunosuppressive 
treatment, increased rates of infections, damage accrual that 
impairs quality of life, and diminished long-term survival. For 
these reasons, we need to develop new therapeutic strategies to 
treat SLE. These strategies must be based on knowledge about the 
mechanisms that drive inflammation and damage.

Despite the fact that some patients with SLE have low titers of 
autoantibodies, autoantibodies, especially of the IgG isotype, are 
considered the main effectors of SLE inflammation and damage. 
Anti–double-stranded DNA (anti-dsDNA) antibodies, in particu-
lar, are present in the kidneys of patients with lupus nephritis (LN) 
and in the skin. Transfer of anti-dsDNA antibodies from lupus-
prone mice or SLE patients to healthy animals can cause nephritis 
(5–7) and induce the expression of inflammatory and profibrotic 
genes in renal cells (8, 9). Antibodies and immune complexes can 
induce local inflammation in the endothelium and interstitium, 
which in turn contributes to the inflammatory response (10). Evi-
dence also supports CNS pathogenicity by a subset of anti-dsDNA 

antibodies that cross-reacts with the NMDA receptor (NMDAR) 
(11, 12). Other antibodies are also pathogenic: anti-phospholipid 
antibodies induce thrombosis (13, 14); anti–ribosomal P antibod-
ies contribute to CNS manifestations (15); and anti-ribonucleop-
rotein (anti-RNP) antibodies induce neutrophil death by NETosis, 
which leads to production of type I interferon (IFN) by plasmacy-
toid dendritic cells (pDCs) (16). Supporting the relevance of this 
phenomenon, an association between IFN expression, anti-RNP 
antibodies, and kidney disease has been described (17). Impor-
tantly, it is not clear for all these antibodies whether affinity or fine 
specificity is critical for pathogenicity.

Antibodies are exclusively produced by plasma cells (PCs), 
which are terminally differentiated B cells. Thus, B cells are an 
obvious therapeutic target in SLE. However, B cells and antibodies 
also have critical functions in normal host defense against patho-
gens, and some autoantibodies, especially of the IgM isotype, have 
a protective role against the development of autoimmunity. IgM 
antibodies assist in the clearance of cellular debris. In the context 
of complement C1q and LAIR-1 activation, they inhibit inflamma-
tory responses (18–21).

B cell function in health and SLE
B cells have functions in addition to being the precursors of PCs. B 
cells are important antigen-presenting cells (APCs) and are partic-
ularly instrumental in activating autoreactive T cells by presenting 
novel peptides of self-antigens (22–24). B cells function as APCs to 
drive the activation of autoreactive T cells in many autoimmune dis-
eases, and this is presumed to be the basis for the benefit of B cell 
depletion therapy in multiple sclerosis and seronegative rheuma-
toid arthritis (25). Lupus-prone mice expressing a mutant transgene 
that allows the expression of surface immunoglobulin, but blocks 
the secretion of antibodies, develop nephritis (26); while this obser-
vation suggests that alternative functions of B cells in addition to 
secretion of autoantibodies are relevant in SLE pathogenesis, there 
is no clear evidence that B cells are important APCs in SLE.

B cells have a prominent role in the pathogenesis of systemic lupus erythematosus (SLE). They are mediators of inflammation 
through the production of pathogenic antibodies that augment inflammation and cause direct tissue and cell damage. 
Multiple therapeutic agents targeting B cells have been successfully used in mouse models of SLE; however, these preclinical 
studies have led to approval of only one new agent to treat patients with SLE: belimumab, a monoclonal antibody targeting B 
cell–activating factor (BAFF). Integrating the experience acquired from previous clinical trials with the knowledge generated 
by new studies about mechanisms of B cell contributions to SLE in specific groups of patients is critical to the development 
of new treatment strategies that will help to improve outcomes in patients with SLE. In particular, a sharper focus on B cell 
differentiation to plasma cells is warranted.
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that arrive through the hematogenous route (46). They are high-
ly responsive to TLR activation and costimulatory molecules, 
and rapidly differentiate into PCs (46–52) without a requirement 
for cognate T cell help. MZ B cells can also present antigen to T 
cells in the follicles and initiate T cell activation (53). In humans, 
IgM+CD27+ peripheral B cells are suggested to be a circulating 
population of MZ B cells (54, 55).

Follicular B cells have the most diverse repertoire among B 
cells and are the main contributor to the T cell–dependent respons-
es, as well as to the GC response and memory B cell development.

B cell activation
After an encounter with antigen, follicular B cells migrate to the 
T-B border in lymph nodes or the spleen, where they interact with 
T cells (56, 57) that provide the costimulation and cytokines that 
contribute to B cell activation, proliferation, and differentiation. 
BCR engagement without costimulation induces B cell anergy. 
B cells receiving adequate signals become short-lived PCs in an 
extrafollicular response or enter into a GC response in which long-
lived PCs (LLPCs) and memory cells are generated.

B cells in SLE have an increased response after BCR ligation 
(58, 59). This hyperresponsiveness can be intrinsic to the B cell 
(35), but also can be induced by the external milieu, as many mol-
ecules modify the threshold for BCR activation (60–62). Endo-
somal TLRs, TLR7 and TLR9, are activated by nucleic acids and 
enhance B cell activation. A higher expression of TLR9 in memo-
ry B cells and PCs has been observed in blood from patients with 
SLE and is associated with disease activity and the presence of 
anti-dsDNA antibodies (63–65).

Cytokines, such as IFNs, IL-21, and BAFF, can also contribute 
to B cell activation (66–68). Type I IFNs are considered central 
in SLE pathogenesis (69), and high levels of type I IFNs favor an 
extrafollicular over a GC response (41). BAFF and IL-21 stimulate 
B cell survival and proliferation and can induce IgM-to-IgG class 
switching (49, 70–72). Among cytokines, IL-21 is considered the 
strongest inducer of PC differentiation (73). IL-6 also induces PC 
differentiation (74); additionally, IL-6 induces IL-21 production by 
CD4+ T cells (75). B cells are also subject to inhibitory signals: Fcγ-
RIIb, an inhibitory receptor that modulates B cell activation, is the 
only Fcγ receptor expressed on B cells. Although the mechanisms 
are not fully understood, impaired function of FcγRIIb is associat-
ed with SLE in mouse models and in humans (76).

Memory B cells initiate the secondary immune response, which 
arises faster than a primary response, and leads to higher titers of 
IgG antibodies with greater specificity and increased affinity for the 
antigen (77). Many anti-dsDNA antibodies possess features of sec-
ondary response antibodies (78–81). Delayed recovery of memory B 
cells in SLE patients who received B cell depletion therapy has been 
linked to better responses (82). Recently, a subpopulation of B cells 
called ABCs (83) has been described. This population is increased 
in patients with autoimmune disease. Its origin is related to B cell 
activation with TLR7, IL-21, and IFN-γ (84). ABCs are reported to 
be enriched in autoreactivity, and some evidence suggests they are 
precursors of PCs in patients with SLE. The presence of high num-
bers of ABCs in peripheral blood is associated with LN (85, 86).

The subpopulation of B cells that are the precursors of the 
autoreactive PCs in patients with SLE has not been clearly defined. 

B cells make cytokines that can help support an immune 
response. For example, B cell–derived TNF is critical for the 
function of follicular dendritic cells in the germinal center (GC) 
response (27). A population of B cells with regulatory function 
(Bregs) has been also identified. The identification and presum-
ably the function of these cells depend on their increased produc-
tion of IL-10. Bregs can suppress inflammatory immune responses 
in mouse models of inflammatory arthritis, experimental allergic 
encephalitis, and lupus in an IL-10–dependent fashion (28, 29). 
The induction and suppressive activity of Bregs have been report-
ed to be altered in SLE patients (30). However, IL-10 is considered 
to be pathogenic in SLE (31), and anti–IL-10 antibody has been 
used with success in a limited number of patients with SLE (32). 
Thus, the antiinflammatory role of IL-10–producing B cells and 
their relevance in SLE have yet to be defined.

B cell development
B cells are derived from a common lymphoid progenitor that also 
gives rise to T cells and NK cells. The main characteristic that dif-
ferentiates B cells from other lymphoid cells is the expression in 
each cell of a unique immunoglobulin heavy and light chain, which 
allows recognition of antigen and is part of the B cell’s signaling 
system. The diversity of the antibody repertoire derives from VDJ 
(or VJ) recombination and somatic hypermutation (33). All B cells 
initially express IgM with or without IgD; class switch recombina-
tion causes a change in the Ig isotype to IgG, IgA, or IgE, with each 
isotype having different functional characteristics.

The diversity of the B cell receptor (BCR) repertoire enables rec-
ognition of numerous pathogens but also generates a large number 
of immature B cells that recognize self-components, termed autore-
active B cells (34). As B cells mature, the percentage of autoreactive 
B cells is gradually reduced. This reduction is achieved by various 
tolerance mechanisms, including receptor editing, deletion, and 
anergy. Nonetheless, the mature B cell compartment still has a con-
siderable percentage of autoreactive B cells (35, 36). The fact that IgG 
anti-dsDNA or anti-RNP antibodies are not detectable in the healthy 
population, while IgM autoantibodies are, highlights the importance 
of the peripheral tolerance checkpoints that prevent these autoreac-
tive B cells from differentiating into IgG-producing PCs (37–40).

B cell subsets. There are different types of mature cells within 
the B cell lineage: B-1, marginal zone (MZ), and follicular cells. All 
types can differentiate into PCs, but they differ in many relevant 
characteristics, including their requirements for activation and 
differentiation and their role in the normal immune response in 
healthy subjects. B-1 cells are thought to represent a distinct lin-
eage, and while they can produce autoantibodies, they are not 
thought to be a major contributor to SLE pathogenesis (41).

MZ and follicular B cells derive from immature B cells egress-
ing from the bone marrow, termed transitional B cells (42). Tran-
sitional B cells are dependent for maturation on B cell–activating 
factor (BAFF) (43). Increased levels of BAFF allow autoreactive 
B cells to mature to immunocompetence. An expansion of tran-
sitional B cells has been reported in patients with SLE (44). This 
may relate to elevated levels of BAFF (45), which can be secondary 
either to disease activity or to therapy.

In mice, MZ B cells are localized within the MZ in the spleen, 
where they can serve as a first line of defense against antigens 
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a fundamental catalyst of disease. MRL/lpr mice develop promi-
nent splenomegaly and lymphadenopathy and multiple autoanti-
bodies (including anti-DNA, anti-SM, anti-Ro, and anti-La); their 
clinical manifestations are more diverse and include glomerulo-
nephritis, arthritis, vasculitis, and skin rash (100).

There are multiple ways to interfere with B cell inflammato-
ry function in SLE (Figure 1). These strategies can be classified as 
(a) B cell depletion, (b) anti-BAFF therapy, (c) therapy directed 
against PCs, (d) interference with B cell costimulation and activa-
tion, and (e) antigen-based therapies, each aimed to affect B cells 
with pathogenic specificities.

B cell depletion. A straightforward, but nonspecific, way to 
interfere with B cell function is by directly diminishing their num-
ber. There are multiple mechanisms to induce B cell depletion. 
Cyclophosphamide, which has been a mainstay of SLE therapy for 
decades, preferentially targets B cells.

Cytotoxic antibodies directed against markers present on the B 
cell surface are a more recently explored approach. As they mature, 
B cells express different programs of cell surface markers; thus, dif-
ferent subpopulations of B cells will be affected according to the 
molecule used as a target for B cell depletion. CD20 is expressed 
on the surface of most mature B cells, with the exception of PCs. 
The exact function of CD20 has not been clearly established. This 
receptor is the target of rituximab, a chimeric IgG1 monoclonal 
antibody. In lupus-prone mice that express a transgenic human 
CD20, rituximab was able to induce B cell depletion and amelio-
rate the manifestations of disease (103). Early administration of 
rituximab in young led to a long-term delay in disease onset. The 
mechanism of action included reduction in T cell activation (104). 
More recently, the use of chimeric antigen receptor T cells has been 
proposed as an alternative method to induce B cell depletion (105).

Selective depletion of autoreactive B cells by targeting of BAFF. 
BAFF is part of the TNF family. It is secreted by activated T cells, 
monocytes, macrophages, and dendritic cells and signals through 
three receptors: BAFF receptor (BAFF-R), transmembrane activa-
tor and calcium modulator interactor (TACI), and B cell maturation 
antigen (BCMA). The administration of exogenous BAFF increas-

Using BCR sequencing to identify potential precursors of PCs, 
clones with similar BCRs to PCs were found in the naive, ABC, 
and memory compartments in patients with SLE (86, 87). There is 
also evidence suggesting that either the extrafollicular or the GC 
pathway is preferentially activated in patients with increased cir-
culating plasmablasts (88).

Tolerance in SLE: selection versus activation 
defects
IgG autoantibodies in blood precede the clinical onset of SLE and 
are present in all patients at diagnosis. The origin and defects that 
lead to the production of autoantibodies have not been clearly 
established and may vary between patients (89). Some studies 
suggest an aberrant selection of B cells with defects in antigen-spe-
cific central tolerance or defective B cell anergy (38, 90–97), while 
other studies suggest that the major alteration in SLE is polyclonal 
activation and increased IgG PC differentiation (98, 99). This dif-
ference is not trivial, as the therapeutic strategies might be differ-
ent in each case. Antigen-based therapies can be used in the case 
of selection defects; in contrast, in the case of abnormal polyclonal 
activation, the treatment might be focused on blocking the differ-
entiation of B cells into PCs.

B cell–based therapeutics: approaches and 
experience with mouse models
Much of our understanding of SLE pathogenesis and treatment 
comes from mouse models. These models have been used to test 
therapeutic strategies prior to clinical trials. A full review of the 
available mouse models of SLE is beyond the scope of this article 
and can be found elsewhere (100, 101). The two strains that are 
more commonly used are NZB/NZWF1 (also known as NZB/W) 
and MRL/lpr. NZB/W mice develop splenomegaly and hyper-
gammaglobulinemia with anti–nuclear antigen (ANA) and anti- 
dsDNA antibodies. Their clinical manifestations are immune 
complex glomerulonephritis and vasculitis (102). MRL/lpr mice 
have a complex genetic background but harbor a mutation in the 
FAS gene that reduces apoptosis in B and T cells and is considered 

Figure 1. Different strategies to interfere with B 
cell proinflammatory function in patients with 
SLE. Strategies include B cell and plasma cell 
depletion (e.g., antibodies directed at surface 
proteins or proteasome inhibitors), selective 
depletion of autoreactive B cells (e.g., BAFF 
inhibition), antigen-based therapies that block 
pathogenic antibodies, and prevention of B cell 
activation (e.g., blockade of B-T cell costimula-
tion or B cell–activating cytokines).
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tion to lupus-prone mice improved nephritis and caused reduction 
in the titers of autoantibodies (133, 134). Bruton’s tyrosine kinase 
(Btk) is an enzyme that modulates signaling downstream of the 
BCR and is required for BCR signaling. Btk inhibitors have shown 
improvement of nephritis and reduction of autoantibodies in mul-
tiple mouse models of lupus (135–138). Notably, Btk inhibitors are 
already approved for use in hematologic malignancies.

Antigen-based therapies. Use of antigen conjugates may, in the-
ory, block pathogenic autoantibodies from interacting with their 
target. Also, in the absence of costimulation, recognition and 
binding of a cognate antigen by the membrane-bound antibody 
molecule on the surface of B cells might induce B cell tolerance.

There are examples in animal models of successful use of “tol-
erizing molecules.” The administration to BXSB male lupus-prone 
mice of polyethylene glycol with tetrameric oligonucleotides, a 
molecule that mimics DNA, decreased the number of anti-dsDNA–
producing cells and significantly increased survival (139). Adminis-
tration of nucleosomal peptides to SNF1 mice delayed the onset of 
nephritis and improved survival (140); in the mechanistic analysis, 
an increment of regulatory T cells was shown, and a direct effect on 
B cells was not investigated. Finally, peptides that bind anti-DNA 
antibodies can prevent their pathogenicity in vivo (141, 142).

B cell–based treatment in patients with SLE
Information about relevant finished and ongoing clinical trials tar-
geting B cells in patients with SLE is summarized in Tables 1 and 2.

B cell depletion. As mentioned, one of the earliest therapies for 
SLE, albeit not FDA approved, is cyclophosphamide, which targets 
B cells as well as other lymphoid cells. There is also evidence that 
mycophenolate mofetil causes a reduction of circulating plasmab-
lasts (143), among other therapeutic mechanisms.

Rituximab was approved for rheumatoid arthritis in 2006 
and since then has been used off label in patients with SLE. A 
benefit of rituximab was suggested in multiple nonrandomized 
observational studies (144, 145). Two randomized, double-blind, 
placebo-controlled clinical trials failed to show a beneficial effect 
of rituximab. In the LUNAR trial, 144 patients with LN were ran-
domized to receive rituximab or placebo with concomitant myco-
phenolate and steroids. Treatment with rituximab did not improve 
clinical efficacy, even though statistically significant changes in 
serum complement and anti-dsDNA levels were found in com-
parison with placebo (146). In the EXPLORER trial, 257 patients 
with moderate to severe nonrenal SLE were randomized to receive 
rituximab or placebo. No differences were observed in the clinical 
response at week 24. There were increased complement levels and 
decreased anti-dsDNA levels in the rituximab arm (147). Despite 
the findings of the EXPLORER and LUNAR trials, current guide-
lines from the European League Against Rheumatism and the 
European Renal Association, and from the American College of 
Rheumatology, recommend the use of rituximab as a second- or 
third-line option in patients with LN (148, 149).

Clinical response in patients with SLE who received ritux-
imab correlates with the degree (150, 151) and duration (152) of B 
cell depletion. Thus, there has been interest in higher-affinity and 
higher-activity anti-CD20 antibodies. Obinutuzumab, a type 2 gly-
coengineered anti-CD20 monoclonal antibody, has a more potent 
cytotoxic effect, probably because of more efficient engagement 

es the levels of serum immunoglobulin (68), and BAFF-transgenic 
mice develop an SLE-like disease (106, 107). Deletion of the BAFF 
gene in lupus-prone mice prevents initiation of disease, and neu-
tralization of BAFF improves lupus manifestations (108–112).

Excess BAFF rescues self-reactive early B cells from deletion 
(113). In murine studies, elevated levels of BAFF promote matura-
tion of autoreactive B cells, and reduction of BAFF levels follow-
ing B cell depletion reduces the number of autoreactive cells in 
the reconstituted B cell repertoire (114). The efficacy of anti-BAFF 
therapy is independent of an intensive reduction in total B cell 
numbers (115). As BAFF is most relevant for protecting autoreac-
tive B cells, anti-BAFF therapy has a certain degree of specificity 
against this population.

Therapy directed against PCs. B cell depletion therapy with 
anti-CD20 antibodies spares LLPCs. It has been reported that the 
longevity of these cells is more than 10 years (116), highlighting 
their importance as long-term producers of antibodies or autoan-
tibodies. Proteasome inhibitors cause accumulation of misfolded 
proteins within the endoplasmic reticulum, leading to apoptosis 
(117). Proteasome inhibitors affect predominantly the PC popu-
lation, because of their extremely high rate of antibody synthe-
sis. pDCs also have a high rate of protein synthesis and are also 
affected, causing a reduction in type I IFN levels. This may also be 
therapeutic, in part by diminishing B cell activation (118). In lupus-
prone mice, proteasome inhibitors reduced the titers of autoanti-
bodies and improved nephritis (118).

B cell activation and costimulation blockade. Because of the 
relevance of the B-T cell costimulation pathways to autoantibody 
production, they have been considered a potential target for many 
years. Studies conducted 25 years ago already showed a beneficial 
effect of CD40/CD40L blockade therapy in lupus-prone mice 
(119, 120), with both strategies characterized by reduced antibody 
titers and improved nephritis (121). However, clinical trials with 
anti-CD40L antibody in lupus patients were terminated because 
of thromboembolic events (122). This effect was not seen in mice 
(123), which precluded earlier detection of the phenomenon. Sec-
ond-generation molecules for CD40/CD40L blockade with low 
prothrombotic effect have been developed (121).

IFN is a potent stimulator of B cells. An IFN signature has 
been described in patients with SLE; this signature correlates with 
disease activity in some studies (69). In most mouse models of 
SLE, including the NZB/W and MRL/lpr strains, overexpression 
of IFN-induced genes is observed but occurs with less magni-
tude than in humans, with the exception of the pristane-induced 
model of SLE (124). In some lupus-prone strains, treatment with 
anti–type I IFN receptor antibody (125) or deficiency of type I IFN 
receptor (126–128) increased survival and improved autoimmune 
manifestations, including levels of autoantibodies. Interestingly, 
in MRL/lpr mice, deletion of the type I IFN receptor increased 
autoantibody titers and worsened organ damage (129).

Use of an anti–IL-21 antibody reduced antibody titers and 
delayed glomerulonephritis progression in lupus-prone mice. This 
effect was associated with a reduction in GC B cells and plasmablasts 
(130). Anti–IL-6 and anti–IL-6 receptor antibodies caused reduc-
tion in anti-dsDNA titers and improvement in nephritis (131, 132). 
Administration of synthetic oligodeoxynucleotides with immuno-
regulatory sequences that specifically block TLR7 or TLR7/9 activa-
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titers, and C3 and C4 levels, with no unexpected safety concerns. 
The benefits were sustained at 104 weeks (154).

Other antibodies that target CD20 have been studied in SLE. 
Ocrelizumab failed to meet its primary outcome in a random-
ized trial of patients with LN, and raised safety concerns due to 

of Fcγ receptors on NK cells and neutrophils (153). Obinutuzumab 
was evaluated in a placebo-controlled randomized trial including 
125 patients with active class III or IV LN on background cortico-
steroids and mycophenolate. Patients who received obinutuzumab 
demonstrated a sustained benefit in renal response, anti-dsDNA 

Table 1. Relevant clinical trials targeting B cells in patients with SLE

Treatment (mechanism of action) References Type of study Number of  
patients

Follow-up  
 time

Main results

Rituximab (chimeric anti-CD20) LUNAR trial (146) Phase III 144 52 wk Primary endpoint not met; significant changes in serum 
complement and anti-dsDNA levels were found in rituximab arm

Rituximab (chimeric anti-CD20) EXPLORER trial (147) Phase II/III 257 52 wk Primary and secondary endpoints not met; increased complement 
levels and decreased anti-dsDNA levels in rituximab arm

Ofatumumab (fully human anti-CD20) Masoud et al. (157) Retrospective  
case series 

16 24 wk B cell depletion was achieved in 12 of 14 patients;  
50% of patients with LN achieved renal remission

Obinutuzumab (humanized anti-CD20) NOBILITY trial (154) Phase II 125 104 wk Sustained benefit of greater improvement in complete renal 
response, anti-dsDNA, C3, C4, and estimated glomerular  

filtration rate

Ocrelizumab (humanized anti-CD20) BE-LONG trial (155) Phase III 378 48 wk Terminated early due to serious infection

Epratuzumab (humanized anti-CD22) ALLEVIATE-1 and 
ALLEVIATE-2 trials (158)

Phase III 36 and 54 48 wk Both studies terminated early due to an interruption  
of the drug supply

Epratuzumab (humanized anti-CD22) EMBLEM trial (159) Phase IIb 227 12 wk Responder rate higher in epratuzumab arm

Epratuzumab (humanized anti-CD22) EMBODY 1 and EMBODY 2 
trials (160)

Phase III 793 and 791 48 wk Primary endpoint not met

Obexelimab (bispecific antibody for 
CD19 and FcγRIIb)

Merrill et al. (190) Phase II 104 ~32 wk Primary endpoint was not met, time to flare was  
significantly longer, and less recurrent disease was  

observed in the treatment group

Belimumab (anti-BAFF) BLISS-52 (163) and BLISS-
76 (164)

Phase III 867 and 819 52 wk The trial met its endpoint and significantly higher SRI rates  
were noted in belimumab group

Belimumab (anti-BAFF) BLISS-LN (167) Phase III 448 104 wk Improved primary efficacy renal response and complete  
renal response in belimumab arm

Belimumab (anti-BAFF) EMBRACE trial (166) Phase IV 503  52 wk Primary endpoint (SRI-4 response) not met

Belimumab (anti-BAFF) CALIBRATE trial (177) Phase II 43 96 wk Combination is safe, induced a more sustained B cell depletion

Atacicept (blocks BAFF and APRIL) Ginzler et al. (168) Phase II/III 6 52 wk Terminated early due to serious infections

Atacicept (blocks BAFF and APRIL) ADDRESS II (170) Phase IIb 306 24 wk Primary endpoint (SRI-4 response) not met

Atacicept (blocks BAFF and APRIL) Isenberg et al. (169) Phase II/III 461 48 wk Primary endpoint not met; atacicept 150 mg arm  
discontinued due to 2 deaths

Blisibimod (inhibits soluble and 
membrane-bound BAFF)

PEARL-SC trial (171) Phase IIb 547 24 wk Primary endpoint (SRI-5 response) not met;  
blisibimod 200 mg superior over placebo

Blisibimod (inhibits soluble and 
membrane-bound BAFF)

CHABLIS-SC1 trial (172) Phase III 442 52 wk Primary endpoint (SRI-6 response) not met

Tabalumab (inhibits soluble and 
membrane-bound BAFF)

ILLUMINATE-1 trial (173) Phase III 1164 52 wk Primary endpoint (SRI-5 response) not met

ILLUMINATE-2 trial (174) Phase III 1124 52 wk Primary endpoint (SRI-5 response) met with tabalumab  
120 mg every 2 weeks superior over placebo

Telitacicept (TACI-Fc fusion protein) Wu et al. (175) Phase IIb 249 48 wk All treatment groups met primary endpoint (SRI-4 response)

Rontalizumab (anti–IFN-α) ROSE trial (198) Phase II 238 24 wk Primary endpoint (BILAG index 2004) not met

Anifrolumab (type I IFN inhibitor) TULIP-1 trial (183) Phase III 457 52 wk Primary endpoint (SRI-4 response) not met

Anifrolumab (type I IFN inhibitor) TULIP-2 trial (184) Phase III 362 52 wk BICLA response was 47.8% and 31.5% in anifrolumab  
and placebo groups, respectively

Sifalimumab (anti–IFN-α) Khamashta et al. (199) Phase II 431 52 wk Treatment groups met primary endpoint (SRI-4 response)

PF-04236921 (anti–IL-6 antibody) Wallace at al. (186) Phase II 183 24 wk Primary endpoint (SRI-4 response) not met

Sirukumab (anti–IL-6 antibody) Rovin et al. (187) Phase II 25 24 wk Primary endpoint (reduction in proteinuria) not met

BICLA, Based Composite Lupus Assessment; SRI, SLE responder index.
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increased infection risk (155). Ofatumumab was reported to be 
effective in case series of patients with SLE (156, 157). Epratuzum-
ab, an anti-CD22 antibody that engages an inhibitory receptor on 
B cells, showed some promising results in phase II studies that 
were not confirmed in a phase III clinical trial (158–160).

Anti-BAFF therapies. In patients with SLE, serum levels of 
BAFF are elevated, and these levels correlate with disease sever-
ity (161, 162). Belimumab is an IgG1 human monoclonal antibody 
directed against soluble BAFF. It interferes with the binding of 
BAFF with BCMA, TACI, and BAFF-R. The efficacy of belimumab 
in SLE has been tested in multiple trials, and it is now approved by 
the FDA for treatment of both adult and pediatric SLE.

The BLISS-52 and BLISS-76 trials randomized 867 and 819 
patients, respectively, to receive belimumab or placebo with back-
ground treatment. Both trials met their clinical endpoints (163, 
164). There were modest reductions in autoantibody titers and 
reduced flares at 76 weeks, perhaps related to lower antibody titers. 
Belimumab efficacy was confirmed in populations from China, 
Japan, and South Korea (165). The EMBRACE study, conducted to 
evaluate the efficacy of belimumab in African American patients 
with SLE, did not achieve its primary endpoint; however, signifi-
cant improvement was found in patients who had high disease 

activity (166). A recent trial, BLISS-LN, randomized 448 patients 
with active LN to receive belimumab or placebo, plus standard 
therapy. Significantly more patients in the belimumab arm had 
renal response at week 104 than those who received placebo (167).

A trial of atacicept, which blocks BAFF and the related mole-
cule APRIL (168–170), was terminated because of increased infec-
tions. Blisibimod, an inhibitor of soluble and membrane-bound 
BAFF (171, 172), tabalumab, a human molecular antibody that 
binds soluble and membrane-bound BAFF (173, 174), and telitac-
icept, a recombinant fusion protein constructed with the extracel-
lular domain of the TACI receptor, thereby binding both BAFF and 
APRIL (175), have been tested in patients with SLE without success. 
Their failure despite the success of belimumab may reflect both the 
modest effect of belimumab and differences in trial design.

Combination therapy. Based on the observations that BAFF 
levels rise after induction of B cell depletion with rituximab (176), 
and that B cell reconstitution in a milieu of low BAFF leads to a 
reduction in the number of autoreactive B cells (114), a clinical trial 
testing the sequential administration of rituximab and belimumab 
was performed. The CALIBRATE study (177) included 43 patients 
with recurrent or refractory LN who were randomly assigned to be 
treated with rituximab, cyclophosphamide, and glucocorticoids or 

Table 2. Relevant ongoing clinical trials targeting B cells in patients with SLE

Drug (mechanism of action) Study title Current status Study phase Estimated study  
completion date

Clinical trial 
number

Rituximab (chimeric anti-CD20) Rituximab Objective Outcome Measures Trial in SLE (ROOTS) Recruiting Phase II February 2020 NCT03054259

Rituximab (chimeric anti-CD20) Efficacy of Individualized Rituximab in Maintaining Remission of 
Moderate and Severe Systemic Lupus Erythematosus

Recruiting Phase IV July 2023 NCT04127747

Obinutuzumab (humanized  
anti-CD20)

A Study to Evaluate the Efficacy and Safety of Obinutuzumab  
in Patients with ISN/RPS 2003 Class III or IV LN (REGENCY)

Recruiting Phase III January 2028 NCT04221477

Belimumab (anti-BAFF) Study of Subcutaneous (SC) Belimumab in Pediatric Participants 
with Systemic Lupus Erythematosus (SLE)

Recruiting Phase II March 2023 NCT04179032

Belimumab (anti-BAFF) Trial of Belimumab in Early Lupus Recruiting Phase IV January 2023 NCT03543839

Rituximab and belimumab A Randomized Trial to Investigate the Reset of Humoral 
Autoimmunity by Combining Belimumab with Rituximab 

in Severe Systemic Lupus Erythematosus Synergetic B-cell 
Immunomodulation in SLE – 2nd Study (SynBioSe-2)

Recruiting Phase II September 2025 NCT03747159

Rituximab and belimumab A Study to Evaluate the Efficacy and Safety of Belimumab 
Administered in Combination with Rituximab to Adult Subjects 

with Systemic Lupus Erythematosus (SLE) (BLISS-BELIEVE)

Active Phase III July 2021 NCT03312907

Rituximab and belimumab Belimumab after B cell depletion therapy as a new treatment for 
patients with systemic lupus erythematosus (BEAT-LUPUS)

Completed Phase II March 2021 ISRCTN47873003

KZR-616 (proteasome inhibitor) A Study of KZR-616 in Patients with SLE With and Without LN 
(MISSION)

Recruiting Phase I, phase II June 2022 NCT03393013

Orelabrutinib (Btk inhibitor) A Study of ICP-022 in Patients with Systemic Lupus 
Erythematosus (SLE)

Recruiting Phase I, phase II October 2021 NCT04305197

Ianalumab (VAY736) (anti-BAFF 
receptor mAb)

Study the Efficacy and Safety of VAY736 and CFZ533 in SLE 
Patients

Recruiting Phase II October 2024 NCT03656562

Anifrolumab (type I IFN inhibitor) Long Term Safety of Anifrolumab in Adult Subjects with Active 
Systemic Lupus Erythematosus (TULIP SLE LTE)

Active Phase III December 2021 NCT02794285

Telitacicept (TACI-Fc fusion protein  
that inhibits BLyS and APRIL)

Study of Recombinant Human B Lymphocyte (RC18) 
Administered Subcutaneously to Subjects with Systemic  

Lupus Erythematosus (SLE)

Recruiting Phase III December 2021 NCT04082416
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the same treatment followed by belimumab. The trial demonstrat-
ed that the combination is safe, and induced a more sustained B 
cell depletion. Addition of belimumab diminished the maturation 
of transitional to naive B cells, and enhanced the negative selec-
tion of autoreactive B cells. The trial did not find any significant 
clinical benefit of adding belimumab to treatment; however, the 
study was not powered to ascertain clinical outcome.

Theoretically, the order in which the combination of rituximab 
and belimumab is administered might have differential effects. 
Belimumab reduces the number of B cells in lymphoid tissues 
(178), so initial administration of belimumab might cause mobili-
zation of memory B cells into the circulation, where they would be 
more susceptible to rituximab-mediated cell death. This strategy 
of administering belimumab followed by rituximab is being exam-
ined in a clinical trial of nonrenal SLE, the BLISS-BELIEVE study. 
Rituximab and belimumab combinations are also currently being 
evaluated in the BEAT-LUPUS and SynBioSe-2 trials.

Therapy directed against PCs. Proteasome inhibitors have been 
tested in trials with small numbers of patients with SLE. Bortezo-
mib has shown some clinical responses in patients with refracto-
ry SLE; however, a high percentage of patients developed severe 
adverse effects (179, 180), and for this reason, proteasome inhib-
itors are not part of the arsenal that is commonly used in patients 
with SLE. New-generation proteasome inhibitors that are relative-
ly selective for immune cells also have significant toxicity.

Daratumumab is a human monoclonal antibody that targets 
CD38, a molecule expressed on PCs and plasmablasts (although 
not exclusive to these populations). Administration of daratu-
mumab causes depletion of PCs and is approved for use in mul-
tiple myeloma. Successful use of daratumumab was reported in 
two patients with life-threatening manifestations of SLE (181). 
The clinical response was associated with depletion of LLPCs and 
reduction of type I IFN activity.

B cell activation and costimulation blockade. Multiple trials have 
been performed with anti-IFN therapy in patients with SLE. While 
this therapy might be expected to reduce PC differentiation (182), 
only small reductions in autoantibodies were seen (183, 184). In 
the TULIP-1 study, a phase III randomized trial of anifrolumab, a 
human monoclonal antibody against type I IFN receptor subunit 1, 
the primary clinical endpoint was not met (183). A second trial of 
anifrolumab, in which the primary clinical endpoint was selected 
based on the results from the first trial, showed efficacy; howev-
er, only a modest reduction in autoantibodies was observed (184). 
This phenomenon might reflect stable continued autoantibody 
production by LLPCs.

Tocilizumab, an anti–IL-6 antibody, caused reduction of PCs 
and memory cells in patients with SLE (185); however, two phase 
II clinical trials with anti–IL-6 antibodies failed to meet their pri-
mary outcomes (186, 187). A monoclonal antibody that interferes 
with IL-21 activity is being tested in a phase I/II study in patients 
with SLE (188). Initial trials in patients with SLE showed encour-
aging results for CD40/CD40L blockade, including reduced 
number of circulating PCs and anti-dsDNA antibodies (189). 
After the setback caused by the increased rate of thrombotic 
events with the first-generation antibodies targeting this path-
way, second-generation molecules without thrombotic risk are 
currently being tested (121).

Iberdomide, a cereblon ligand, increases the ubiquitination 
and subsequent degradation of the transcription factors Ikaros 
and Aiolos in the proteasome. The genes encoding these tran-
scription factors are risk alleles for SLE. Ikaros is necessary for the 
development of B cells and pDCs, and Aiolos is necessary for PC 
differentiation. Iberdomide affects both total B cell number and 
PC differentiation. Preliminary results showed a reduction in B 
cell number, with the higher dose inducing a significant clinical 
response compared with placebo (154). Whether there is also an 
effect on PC differentiation is not clear.

Dual-specificity antibodies. Obexelimab, a bispecific antibody 
that targets CD19 and simultaneously acts as an agonist of the 
inhibitory receptor FcγRIIb, was studied in a randomized phase II 
trial of 104 patients with SLE. In the obexelimab group, the time to 
flare was significantly longer and patients had less recurrent dis-
ease after treatment. The primary endpoint was not met, but a sub-
group of patients with higher expression of genes associated with B 
cell and PC activation improved in comparison with placebo (190).

Antigen-based therapies. The experience with these molecules  
in patients with SLE has been limited. In a clinical trial, abetimus 
(LJP-394), a molecule that contains four strands of dsDNA bound 
to a carrier, caused reduction of the anti-dsDNA antibody levels 
but did not prolong the time to renal flares (191). It is not clear 
whether the reduction in titer reflected B cell tolerance or the gen-
eration and subsequent removal of immune complexes.

Perspectives and future directions
Selection of B cells as a target for therapy in SLE has a solid basis 
according to our knowledge of the disease. It is surprising, there-
fore, that BAFF inhibition is the only approved therapy that tar-
gets B cells and that this strategy has been successful with only 
one agent, belimumab. It is possible that trial design may have 
contributed to some trial failures. It is important to remember that 
success in a clinical trial requires achieving a predetermined effect 
size in a predetermined number of patients.

It has not been possible to show an association between chang-
es in autoantibodies and clinical responses in clinical trials. This 
highlights the fact that we do not know the extent to which auto-
antibody titers need to be reduced to lead to diminished disease 
activity or whether a reduction to a threshold level is required. 
Other features of the antibodies besides titers are involved in 
immunogenicity, such as affinity and glycosylation state (192). 
The determination of these characteristics is labor intensive, and 
they have not been explored in clinical trials in SLE; however, they 
might represent a mechanism by which treatment alters antibody 
pathogenicity and should be considered in future trials.

While therapies targeting B cells have been disappointing 
in clinical trials, and those targeting PCs hazardous, none of the 
currently available therapeutic options have focused specifically 
on PC differentiation. We have demonstrated that abnormal PC 
differentiation might represent a critical checkpoint in patients 
with SLE. SLE patients have a similar frequency of ANA reactivity 
in all B cell compartments, including PCs, when compared with 
healthy subjects, suggesting no defect in antigen-specific toler-
ance. These patients have, however, more IgG PCs. Thus, they 
have more autoreactive IgG PCs and higher serum titers of IgG 
ANAs. This suggests an increased differentiation of IgG PCs (36). 
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associated with LN have also been described (196, 197) and are 
mutually exclusive (196). We have previously proposed that in 
some patients, myeloid cells are the drivers of SLE, while in oth-
ers, SLE is driven by B cells. Indeed, a study of risk alleles in SLE 
showed that they are predominantly expressed in either myeloid 
cells or B cells. It may be that only those patients with a B cell–
intrinsic pathway to SLE will benefit in the long term from a B cell–
directed therapy. If so, clinical trials that do not select for patients 
with intrinsic B cell hyperresponsiveness may be underpowered 
for clinical efficacy. It would be a shame to discard potentially 
useful therapeutics because of trials that do not select for those 
patients with pathways of disease pathogenesis that are targeted 
by the therapeutic. A better understanding of SLE patient subsets 
is critical; in some, B cell–targeted therapies, especially those that 
block PC differentiation, may have long-term benefit.
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Thus, targeting of pathways to reduce PC differentiation should be 
further explored. Some medications currently under study, such 
as iberdomide and Btk inhibitors, reduce PC differentiation. The 
hope would be that these treatments can dampen autoreactivity 
without causing global immunosuppression.

Furthermore, B cell activation can occur through an extra-
follicular or GC pathway. Both pathways are considered to con-
tribute to autoantibody production in patients with SLE (87, 193). 
Data from our laboratory suggest that SLE patients with increased 
circulating plasmablasts have different patterns of antigen-ex-
perienced autoreactive B cells and can be classified as having a 
predominant GC or a predominant extrafollicular response (88). 
The molecules that are differentially involved in each of these 
pathways are not clearly defined, but studies to identify them are 
currently ongoing. These molecules might represent a therapeutic 
tool for precision medicine.

Heterogeneity of SLE has been proposed as a major cause of 
failure in clinical trials. Microarray analysis and RNA sequencing 
(RNA-Seq) studies have allowed an interrogation of the transcrip-
tome of immune cells in patients, and more recently, single-cell 
RNA-Seq has further increased the resolution of this analysis. 
Using these technologies, an IFN signature was described in SLE 
almost two decades ago (194, 195). A plasmablast signature that 
correlates with disease activity and a neutrophil signature that is 
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