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Supplemental Figure 1.  DNA microarray screening for adipokines from adipocyte cell lines. (A) Schematic 
diagram for adipokine screening. Brown or 3T3-L1 pre-adipocytes (Day 0) were differentiated and harvested at Day 8 
or Day 10 respectively. Gene profiling was performed by microarray expression analysis using GeneChip 3’IVT 
Express Kit (n=3/treatment group). (B) Venn diagram showing the numbers of secretory proteins with significant 
expression changes during brown and 3T3-L1 cell differentiation. Genes significantly altered during adipocyte 
differentiation (p≤ 0.05, fold change ≥2) were subjected to subcellular location analysis using MetazSecKB database, 
secretory proteins were sorted out and compared between cell lines. (C) Expression levels of the identified 134 
secretory factors during both adipocyte cell lines differentiation. High and low levels represent the value of Z-score. 
(D) LRG1 mRNA expression in major organs of human tissues. Data was adapted from GTEx Portal 
(https://gtexportal.org/home/). (E) Lrg1 mRNA expression in major organs of 4-month-old C57BL/6J male mouse 
(n=3~6 per organ). Data represent mean ± SEM. 
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Supplemental Figure 2. Lrg1 knockout mice and wild-type littermates exhibited similar metabolic phenotypes under 
normal chow feeding condition. (A) Schematic diagram showing the strategy for generating Lrg1 whole-body knockout 
mice (Lrg1KO). (B) LRG1 protein levels in the serum and tissues of wild type and homozygous Lrg1KO mice (4-month-old male 
littermates). The blot is a representative of 3 independent experiments with similar results. (C) Appearance of 2-month-old 
male wild type and homozygous Lrg1KO. (D) Bodyweight of male Lrg1KO mice and control littermates under chow diet (WT: 
n=7, KO: n=6). (E) Lean and fat mass of Lrg1KO mice and control littermates under chow diet (male, 6-month-old, WT: n=7, 
KO: n=6). (F) Daily food intake of Lrg1KO mice and control littermates under chow diet (male, n=3 per group). (G) Locomotor 
activity of Lrg1KO mice and control littermates under chow diet (male, 6-month-old, WT: n=7, KO: n=6). (H) Quantification of 
locomotor activity of mice in light/dark cycle. (I) Oxygen consumption, and (J) Respiratory exchange ratio (RER) of Lrg1KO
mice and control littermates under chow diet (male, 6-month-old, WT: n=7, KO: n=6). (K) Glucose tolerance test, (L) Insulin 
tolerance test, and (M) Overnight fasting serum insulin levels of Lrg1KO mice and control littermates under chow diet 
conditions (male, 6-month-old, WT: n=7, KO: n=6). Data represent mean ± SEM. Unpaired two-tailed t-test, “ns (not 
significant)” indicate p>0.05.
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Supplemental Figure 3. Effects of Lrg1 knockout on adipose tissue metabolism. (A) Lipolysis, (B) Lipid uptake, (C)
Lipogenesis, and (D) Fatty acid oxidation gene expression in the adipose tissues of 16-week HFD-fed Lrg1KO (n=6) and control
mice (n=5) measured by qPCR. (E) iWAT and (F) eWAT adipocyte numbers from 16-week HFD-fed mice. Data are
representative of 3 independent experiments. (G) mRNA levels of adipokines in iWAT from mice fed with 16-week HFD
(n=5/genotype). (H) Serum adiponectin levels in 16-week HFD-fed Lrg1KO and control mice (n=4/genotype). (I) BAT and (J)
iWAT were isolated from cold stressed mice and the expression of UCP1 protein was determined by western blot
(n=3/treatment group). (K) Ca2+-dependent ATP hydrolysis thermogenic gene expression in iWAT of cold stressed mice
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indicate p>0.05.
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Supplemental Figure 4. Impact of LRG1 on hepatic gene expression profile. (A) RNA-seq and biological process 
Go Term analysis showing most significantly altered gene expression in primary hepatocytes treated with PBS or LRG1 
(20 μg/mL, 16 hours, n=3/treatment group). Total of 921 genes were significantly affected by LRG1 treatment (381 up-
regulated, 540 down-regulated) using the cut off value of 2-fold and p≤0.05. Heatmaps of the insulin response genes 
(B) and lipid metabolism related genes (C) that were significantly altered from the RNA-seq data shown in (A). (D) RNA-
seq and Go Term analysis showing most significantly altered biological processes in liver tissue of WT or Lrg1KO mice 
after 16-week HFD feeding (n=1/treatment group). Total of 802 genes were affected by LRG1 knockout (381 up-
regulated, 421 down-regulated) using the cut off value of 1.5-fold. (E) Heatmap of glucose and lipid metabolism related 
genes from the RNA-seq data in (D). (F) qPCR measurement of inflammatory gene expression (n=6-10/treatment 
group) and (G) Hepatokine gene expression levels (n=3/treatment group) in the liver of WT or Lrg1KO mice after 16-
week HFD feeding . Data represent mean ± SEM. Unpaired two-tailed t-test, “ns” indicate p>0.05.
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white adipocytes (D). Cells were treated with or without LRG1 at indicated dosage for 16 hours, followed by insulin 
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treatment for 5 min. (F) Insulin signaling in the normal and Smad4 knockdown Huh7 liver cancer cells. Cells were treated 
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Supplemental Figure 6. Induction of LRG1 by refeeding does not affect insulin signaling and action in the 
liver. Male C57BL/6J mice (4-month-old, n=5/group) were fasted for 16 hrs followed by refeeding with or without NC 
for 2 hrs. Relative LRG1 protein levels in the serum (A), eWAT (B), iWAT (C), and BAT (D) of the mice were 
determined by western blots. Insulin signaling (n=3/treatment group) (E), gluconeogenic gene expression (n=4-
6/treatment group) (F), and lipogenic gene expression (n=4-6/treatment group) (G) in the livers of these mice were 
determined by western blot or qPCR. Data represent mean ± SEM. Unpaired two-tailed t-test for (A) - (D). One-way 
ANOVA followed by Tukey’s test for (E) - (G). *p≤0.05, **p≤0.01, “ns” indicate p>0.05.
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SUPPLEMENTARY TABLES 

Supplemental Table 1: List of primers used. 

Name 5'-3' Sequence Name 5'-3' Sequence 
Human Lrg1_F AGAGCTTTCAGGCCGTGTAG mouse Hmgcs2_F ATACCACCAACGCCTGTTATGG 

Human Lrg1_R CCCTGGACACCCTGGTATTG mouse Hmgcs2_R CAATGTCACCACAGACCAC 

Human β-Actin_F GTCATTCCAAATATGAGATGCGT mouse HSL_F TGTGTCAGTGCCTATTCAG 

Human β-Actin_R GGTCAGACAGCTTGCGGAT mouse HSL_R GAACAGCGAAGTGTCTCT 

mouse ACC_F CCACAATGATCCTCCGAATCC mouse IL-6_F TTCCAATGCTCTCCTAACA 

mouse ACC_R ATACTCAGGACTCTCAAACTAAGC mouse IL-6_R GTCCACAAACTGATATGCTTA 

mouse Adipoq_F CCACAATGATCCTCCGAATCC mouse IRS1_F TCCTATCCCGAAGAGGGTCT 

mouse Adipoq_R ATACTCAGGACTCTCAAACTAAGC mouse IRS1_R TGGGCATATAGCCATCATCA 

mouse ApoB_F ACCAAGCTGGCATAAGAACCA mouse IRS2_F CACAATTCCAAGCGCCACAA 

mouse ApoB_R CCTCCATCCTGAGTTGGACA mouse IRS2_R CATCACCTCCTCCCAGGGTA 

mouse ATGL_F GCTGTGGAATGAGGACATAGGA mouse Leptin_F CAAGCAGTGCCTATCCAGA 

mouse ATGL_R GCATAGTGAGTGGCTGGTGAA mouse Leptin_R AAGCCCAGGAATGAAGTCCA 

mouse CD36_F ATTCCCTTGGCAACCAACCA mouse LPL_F GGCTGACACTGGACAAACAAA 

mouse CD36_R TACGTGGCCCGGTTCTACTA mouse LPL_R CCTGGGTTAGCCACCGTTTA 

mouse ChREBP_F CTGGGGACCTAAACAGGAGC mouse Lrg1_F CAGATTCCTCATTCCCTCAG 

mouse ChREBP_R GAAGCCACCCTATAGCTCCC mouse Lrg1_R CGTGTCAAAGCCAGATAAAC 

mouse Ckmt1_F TGAGGAGACCTATGAGGTATTTGC mouse MCP1_F GCATCCACGTGTTGGCTCA 

mouse Ckmt1_R TCATCAAAGTAGCCAGAACGGA mouse MCP1_R CTCCAGCCTACTCATTGGGATCA 

mouse CPT1A_F CCAGGCTACAGTGGGACATT mouse MTTP_F AGCGTTGCATTTCTACCCAC 

mouse CPT1A_R GAACTTGCCCATGTCCTTGT mouse MTTP_R GCCAACACGTCTAGCCAGTA 

mouse Cyp7A1_F GATTTAGGAAGGCCCGGAGG mouse PEPCK_F GGCCACAGCTGCTGCAG 

mouse Cyp7A1_R TGGAATAAGGAGAAGGCATTTGGA mouse PEPCK_R GGTCGCATGGCAAAGGG 

mouse F4/80_F CTTTGGCTATGGGCTTCCAGTC mouse PPARα_F TCGCTATCCAGGCAGAAG 

mouse F4/80_R GCAAGGAGGACAGAGTTTATCGTG mouse PPARα_R ACCACAGACCAACCAAGT 

mouse FABP1_F CCCGAGGACCTCATCCAGAA mouse SCD1_F CTGTACGGGATCATACTGGTTC 

mouse FABP1_R CCCCAGGGTGAACTCATTGC mouse SCD1_R GCCGTGCCTTGTAAGTTCTG 

mouse FASN_F GCGATGAAGAGCATGGTTTAG mouse Sercar1_F TGTTTGTCCTATTTCGGGGTG 

mouse FASN_R GGCTCAAGGGTTCCATGTT mouse Sercar1_R AATCCGCACAAGCAGGTCTTC 

mouse FATP2_F TTTCCGGTGGAAAGGAGA mouse Sercar2a_F GCTCATTTTCCAGATCACACCG 

mouse FATP2_R AGGTGCTCCTGATGTGTTG mouse Sercar2a_R GTTACTCCAGTATTGCGGGTTG 

mouse G6Pase_F AGCCTCCGGAAGTATTGTCTCA mouse Sercar2b_F ACCTTTGCCGCTCATTTTCCAG 

mouse G6Pase_R TCCACCCCTAGCCCTTTTAGTAG mouse Sercar2b_R AGGCTGCACACACTCTTTACC 

mouse Gamt_F GCAGCCACATAAGGTTGTTCC mouse Sercar3_F GGAGCAGTTTGAGGACCTCTT 

mouse Gamt_R CTCTTCAGACAGCGGGTACG mouse Sercar3_R GGCCACGAGAATTAGCATGATG 

mouse Gatm_F GACCTGGTCTTGTGCTCTCC mouse Slc6a8_F TGCATATCTCCAAGGTGGCAG 

mouse Gatm_R GGGATGACTGGTGTTGGAGG mouse Slc6a8_R CTACAAACTGGCTGTCCAGA 

mouse β-Actin_F GTTGGTTGGAGCAAACATC mouse SREBP1_F CCCTGTGTGTACTGGCCTTT 

mouse β-Actin_R CTTATTTCATGGATACTTGGAATG mouse SREBP1_R TTGCGATGTCTCCAGAAGTG 

mouse TNFα_F AGAGAAGCAACTACAGACC     

mouse TNFα_R CAGTATGTGAGAGGAAGAGAA     
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Supplemental Table 2: List of antibodies used. 

Antibody Source Identifier 

Rabbit polyclonal anti-ACC Cell signaling technology Cat.# 3662 

Mouse monoclonal anti-AKT Cell signaling technology Cat.# 2966 

Rabbit polyclonal anti-Phospho-Akt (Thr308) Cell signaling technology Cat.# 9275S 

Rabbit polyclonal anti-Phospho-Akt (Ser473) Cell signaling technology Cat.# 9271S 

Rabbit monoclonal anti-FAS Cell signaling technology Cat.# 3180 

Rabbit polyclonal anti-IR β Santa Cruz Cat.# sc711 

Rabbit polyclonal anti-IRS1 Cell signaling technology Cat.# 2382S 

Rabbit polyclonal anti-IRS2 Cell signaling technology Cat.# 4502 

Rabbit polyclonal anti-p44/42 MAPK (ERK1/2) Cell signaling technology Cat.# 9102S 

Rabbit polyclonal anti-Phospho-ERK1/2 Cell signaling technology Cat.# 4370S 

Rabbit polyclonal anti-PI 3-kinase p85alpha Santa Cruz Cat.# sc423 

Rabbit monoclonal anti-SCD1 Cell signaling technology Cat.# 2794S 

Mouse monoclonal anti-Smad4 Santa Cruz Cat.# sc7966 

Mouse monoclonal anti-SREBP1 Abcam Cat.# ab3259 

Rabbit polyclonal anti-β-Tubulin Cell Signaling Technology Cat.# 2146 

Rabbit polyclonal anti-UCP1 Abcam Cat.# ab10983 

Rabbit polyclonal anti-Adiponectin Liu et al., 2018, Homemade N/A 

Rabbit polyclonal anti-PDK1 Dong et al., 1999, Homemade N/A 

Rabbit polyclonal anti-LRG1 This paper, Homemade, see methods for 
details of production. N/A 
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Supplemental Table 3: Sources of cell lines and animal lines used. 

Cell line / Mouse line Source 

Brown fat cell line Purchased from Millipore sigma (Cat.# SCC255) 

3T3-L1 cell line Purchased from ATCC (Cat.# CL-173) 

Huh7 cell line Gift from Dr. Luzhe Sun (UTHealth SA) 

Huh7 sh-smad4 cell line Gift from Dr. Luzhe Sun (UTHealth SA) 

C57BL/6J mouse line The Jackson Laboratory (Cat.# 000664) 

Lrg1 wholebody-knockout  mouse line KOMP Repository, University of California (Line# ET11851) 

Leptin receptor deficient mouse line (db/db)  The Jackson Laboratory (Cat.# 000697) 

Alb-cre mouse line  (for liver-specific TGFβ 
receptor II knockout) The Jackson Laboratory (Cat.# 016832) 

TGFβ receptor II loxp/loxp mouse line (for 
liver-specific TGFβ receptor II knockout) The Jackson Laboratory (Cat.# 012603) 
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