

Supplemental Figure 1. DNA microarray screening for adipokines from adipocyte cell lines. (A) Schematic diagram for adipokine screening. Brown or 3T3-L1 pre-adipocytes (Day 0) were differentiated and harvested at Day 8 or Day 10 respectively. Gene profiling was performed by microarray expression analysis using GeneChip 3'IVT Express Kit (n=3/treatment group). (B) Venn diagram showing the numbers of secretory proteins with significant expression changes during brown and 3T3-L1 cell differentiation. Genes significantly altered during adipocyte differentiation ($p \le 0.05$, fold change ≥ 2) were subjected to subcellular location analysis using MetazSecKB database, secretory proteins were sorted out and compared between cell lines. (C) Expression levels of the identified 134 secretory factors during both adipocyte cell lines differentiation. High and low levels represent the value of Z-score. (D) *LRG1* mRNA expression in major organs of human tissues. Data was adapted from GTEx Portal (<u>https://gtexportal.org/home/</u>). (E) *Lrg1* mRNA expression in major organs of 4-month-old C57BL/6J male mouse (n=3~6 per organ). Data represent mean ± SEM.

Supplemental Figure 2. *Lrg1* knockout mice and wild-type littermates exhibited similar metabolic phenotypes under normal chow feeding condition. (A) Schematic diagram showing the strategy for generating *Lrg1* whole-body knockout mice (*Lrg1*^{KO}). (B) LRG1 protein levels in the serum and tissues of wild type and homozygous *Lrg1*^{KO} mice (4-month-old male littermates). The blot is a representative of 3 independent experiments with similar results. (C) Appearance of 2-month-old male wild type and homozygous *Lrg1*^{KO}. (D) Bodyweight of male *Lrg1*^{KO} mice and control littermates under chow diet (WT: n=7, KO: n=6). (E) Lean and fat mass of *Lrg1*^{KO} mice and control littermates under chow diet (male, 6-month-old, WT: n=7, KO: n=6). (F) Daily food intake of *Lrg1*^{KO} mice and control littermates under chow diet (male, n=3 per group). (G) Locomotor activity of *Lrg1*^{KO} mice in light/dark cycle. (I) Oxygen consumption, and (J) Respiratory exchange ratio (RER) of *Lrg1*^{KO} mice and control littermates under chow diet (male, 6-month-old, WT: n=7, KO: n=6). (K) Glucose tolerance test, (L) Insulin tolerance test, and (M) Overnight fasting serum insulin levels of *Lrg1*^{KO} mice and control littermates under chow diet conditions (male, 6-month-old, WT: n=7, KO: n=6). (WT: n=7, KO: n=6). (WT: n=7, KO: n=6). (WT: n=7, KO: n=6). (MT: n=7, KO: n=6) of *Lrg1*^{KO} mice and control littermates under chow diet (male, 6-month-old, WT: n=7, KO: n=6). (K) Glucose tolerance test, (L) Insulin tolerance test, and (M) Overnight fasting serum insulin levels of *Lrg1*^{KO} mice and control littermates under chow diet conditions (male, 6-month-old, WT: n=7, KO: n=6). (MT: n=7, KO: n=6). (DT: n=7, KO: n=6). (DT: n=7

Supplemental Figure 3. Effects of *Lrg1* knockout on adipose tissue metabolism. (A) Lipolysis, (B) Lipid uptake, (C) Lipogenesis, and (D) Fatty acid oxidation gene expression in the adipose tissues of 16-week HFD-fed *Lrg1*^{KO} (n=6) and control mice (n=5) measured by qPCR. (E) iWAT and (F) eWAT adipocyte numbers from 16-week HFD-fed mice. Data are representative of 3 independent experiments. (G) mRNA levels of adipokines in iWAT from mice fed with 16-week HFD (n=5/genotype). (H) Serum adiponectin levels in 16-week HFD-fed *Lrg1*^{KO} and control mice (n=4/genotype). (I) BAT and (J) iWAT were isolated from cold stressed mice and the expression of UCP1 protein was determined by western blot (n=3/treatment group). (K) Ca²⁺-dependent ATP hydrolysis thermogenic gene expression in iWAT of cold stressed mice (n=3/treatment group). (L) Creatine-substrate cycling thermogenic gene expression in iWAT of cold stressed mice (n=3/treatment group). Insulin-stimulated ERK signaling in mouse liver (M), iWAT (N), and skeletal muscle (O) from HFD-fed (16-weeks) *Lrg1*^{KO} mice and control littermates injected with insulin (1.5 U/kg bodyweight) afer fasting overnight. Mice were sacrificed 5 mins after injection and tissues were harvested for immunoblots (n=3/treatment group). Data represent mean ± SEM. Unpaired two-tailed t-test for (A) - (G), one-way ANOVA followed by Tukey's test for (K) and (L), *p≤0.05, **p≤0.01. "ns" indicate p>0.05.

Supplemental Figure 4. Impact of LRG1 on hepatic gene expression profile. (**A**) RNA-seq and biological process Go Term analysis showing most significantly altered gene expression in primary hepatocytes treated with PBS or LRG1 (20 µg/mL, 16 hours, n=3/treatment group). Total of 921 genes were significantly affected by LRG1 treatment (381 upregulated, 540 down-regulated) using the cut off value of 2-fold and $p \le 0.05$. Heatmaps of the insulin response genes (**B**) and lipid metabolism related genes (**C**) that were significantly altered from the RNA-seq data shown in (A). (**D**) RNA-seq and Go Term analysis showing most significantly altered biological processes in liver tissue of WT or *Lrg1*^{KO} mice after 16-week HFD feeding (n=1/treatment group). Total of 802 genes were affected by LRG1 knockout (381 upregulated, 421 down-regulated) using the cut off value of 1.5-fold. (**E**) Heatmap of glucose and lipid metabolism related genes from the RNA-seq data in (D). (**F**) qPCR measurement of inflammatory gene expression (n=6-10/treatment group) and (**G**) Hepatokine gene expression levels (n=3/treatment group) in the liver of WT or *Lrg1*^{KO} mice after 16-week HFD feeding . Data represent mean ± SEM. Unpaired two-tailed t-test, "ns" indicate p>0.05.

Supplemental Figure 5. LRG1 selectively regulates insulin signaling in hepatocytes through a TGF β signalingindependent mechanism. (A) The phosphorylation and/or protein expression of insulin signaling components in primary hepatocytes treated with or without LRG1 (20 µg/mL, 16 h), followed by insulin (10 nM, 5 min). The effects of LRG1 on Insulin signaling in differentiated 3T3-L1 adipocytes (B), mouse brown adipocytes (C), and differentiated mouse primary white adipocytes (D). Cells were treated with or without LRG1 at indicated dosage for 16 hours, followed by insulin treatment (10 nM, 5 min). (E) Insulin-stimulated Akt phosphorylation in primary hepatocytes isolated from wild type or liverspecific TGF β receptor II knockout mice treated with or without LRG1 (20 µg/mL) for 16 hours, followed by 10 nM insulin treatment for 5 min. (F) Insulin signaling in the normal and Smad4 knockdown Huh7 liver cancer cells. Cells were treated with LRG1 (20 µg/mL) for 16 hours, followed by 10 nM insulin for 5 min. Insulin-stimulated Akt phosphorylation and protein expression were determined by western blot using specific antibodies as indicated. All cell experiments were independently repeated for 3 times.

Supplemental Figure 6. Induction of LRG1 by refeeding does not affect insulin signaling and action in the liver. Male C57BL/6J mice (4-month-old, n=5/group) were fasted for 16 hrs followed by refeeding with or without NC for 2 hrs. Relative LRG1 protein levels in the serum (**A**), eWAT (**B**), iWAT (**C**), and BAT (**D**) of the mice were determined by western blots. Insulin signaling (n=3/treatment group) (**E**), gluconeogenic gene expression (n=4-6/treatment group) (**G**) in the livers of these mice were determined by western blot or qPCR. Data represent mean ± SEM. Unpaired two-tailed t-test for (A) - (D). One-way ANOVA followed by Tukey's test for (E) - (G). *p≤0.05, **p≤0.01, "ns" indicate p>0.05.

SUPPLEMENTARY TABLES

Supplemental Table 1: List of primers used.

Name	5'-3' Sequence	Name	5'-3' Sequence
Human Lrg1_F	AGAGCTTTCAGGCCGTGTAG	mouse Hmgcs2_F	ATACCACCAACGCCTGTTATGG
Human Lrg1_R	CCCTGGACACCCTGGTATTG	mouse Hmgcs2_R	CAATGTCACCACAGACCAC
Human β-Actin_F	GTCATTCCAAATATGAGATGCGT	mouse HSL_F	TGTGTCAGTGCCTATTCAG
Human β-Actin_R	GGTCAGACAGCTTGCGGAT	mouse HSL_R	GAACAGCGAAGTGTCTCT
mouse ACC_F	CCACAATGATCCTCCGAATCC	mouse IL-6_F	TTCCAATGCTCTCCTAACA
mouse ACC_R	ATACTCAGGACTCTCAAACTAAGC	mouse IL-6_R	GTCCACAAACTGATATGCTTA
mouse Adipoq_F	CCACAATGATCCTCCGAATCC	mouse IRS1_F	TCCTATCCCGAAGAGGGTCT
mouse Adipoq_R	ATACTCAGGACTCTCAAACTAAGC	mouse IRS1_R	TGGGCATATAGCCATCATCA
mouse ApoB_F	ACCAAGCTGGCATAAGAACCA	mouse IRS2_F	CACAATTCCAAGCGCCACAA
mouse ApoB_R	CCTCCATCCTGAGTTGGACA	mouse IRS2_R	CATCACCTCCTCCCAGGGTA
mouse ATGL_F	GCTGTGGAATGAGGACATAGGA	mouse Leptin_F	CAAGCAGTGCCTATCCAGA
mouse ATGL_R	GCATAGTGAGTGGCTGGTGAA	mouse Leptin_R	AAGCCCAGGAATGAAGTCCA
mouse CD36_F	ATTCCCTTGGCAACCAACCA	mouse LPL_F	GGCTGACACTGGACAAACAAA
mouse CD36_R	TACGTGGCCCGGTTCTACTA	mouse LPL_R	CCTGGGTTAGCCACCGTTTA
mouse ChREBP_F	CTGGGGACCTAAACAGGAGC	mouse Lrg1_F	CAGATTCCTCATTCCCTCAG
mouse ChREBP_R	GAAGCCACCCTATAGCTCCC	mouse Lrg1_R	CGTGTCAAAGCCAGATAAAC
mouse Ckmt1_F	TGAGGAGACCTATGAGGTATTTGC	mouse MCP1_F	GCATCCACGTGTTGGCTCA
mouse Ckmt1_R	TCATCAAAGTAGCCAGAACGGA	mouse MCP1_R	CTCCAGCCTACTCATTGGGATCA
mouse CPT1A_F	CCAGGCTACAGTGGGACATT	mouse MTTP_F	AGCGTTGCATTTCTACCCAC
mouse CPT1A_R	GAACTTGCCCATGTCCTTGT	mouse MTTP_R	GCCAACACGTCTAGCCAGTA
mouse Cyp7A1_F	GATTTAGGAAGGCCCGGAGG	mouse PEPCK_F	GGCCACAGCTGCTGCAG
mouse Cyp7A1_R	TGGAATAAGGAGAAGGCATTTGGA	mouse PEPCK_R	GGTCGCATGGCAAAGGG
mouse F4/80_F	CTTTGGCTATGGGCTTCCAGTC	mouse PPARa_F	TCGCTATCCAGGCAGAAG
mouse F4/80_R	GCAAGGAGGACAGAGTTTATCGTG	mouse PPARa_R	ACCACAGACCAACCAAGT
mouse FABP1_F	CCCGAGGACCTCATCCAGAA	mouse SCD1_F	CTGTACGGGATCATACTGGTTC
mouse FABP1_R	CCCCAGGGTGAACTCATTGC	mouse SCD1_R	GCCGTGCCTTGTAAGTTCTG
mouse FASN_F	GCGATGAAGAGCATGGTTTAG	mouse Sercar1_F	TGTTTGTCCTATTTCGGGGTG
mouse FASN_R	GGCTCAAGGGTTCCATGTT	mouse Sercar1_R	AATCCGCACAAGCAGGTCTTC
mouse FATP2_F	TTTCCGGTGGAAAGGAGA	mouse Sercar2a_F	GCTCATTTTCCAGATCACACCG
mouse FATP2_R	AGGTGCTCCTGATGTGTTG	mouse Sercar2a_R	GTTACTCCAGTATTGCGGGTTG
mouse G6Pase_F	AGCCTCCGGAAGTATTGTCTCA	mouse Sercar2b_F	ACCTTTGCCGCTCATTTTCCAG
mouse G6Pase_R	TCCACCCCTAGCCCTTTTAGTAG	mouse Sercar2b_R	AGGCTGCACACACTCTTTACC
mouse Gamt_F	GCAGCCACATAAGGTTGTTCC	mouse Sercar3_F	GGAGCAGTTTGAGGACCTCTT
mouse Gamt_R	CTCTTCAGACAGCGGGTACG	mouse Sercar3_R	GGCCACGAGAATTAGCATGATG
mouse Gatm_F	GACCTGGTCTTGTGCTCTCC	mouse Slc6a8_F	TGCATATCTCCAAGGTGGCAG
mouse Gatm_R	GGGATGACTGGTGTTGGAGG	mouse Slc6a8_R	CTACAAACTGGCTGTCCAGA
mouse β-Actin_F	GTTGGTTGGAGCAAACATC	mouse SREBP1_F	CCCTGTGTGTACTGGCCTTT
mouse β-Actin_R	CTTATTTCATGGATACTTGGAATG	mouse SREBP1_R	TTGCGATGTCTCCAGAAGTG
mouse TNFa_F	AGAGAAGCAACTACAGACC		
mouse TNFa_R	CAGTATGTGAGAGGAAGAGAA		

Supplemental Table 2: List of antibodies used.

Antibody	Source	Identifier
Rabbit polyclonal anti-ACC	Cell signaling technology	Cat.# 3662
Mouse monoclonal anti-AKT	Cell signaling technology	Cat.# 2966
Rabbit polyclonal anti-Phospho-Akt (Thr308)	Cell signaling technology	Cat.# 9275S
Rabbit polyclonal anti-Phospho-Akt (Ser473)	Cell signaling technology	Cat.# 9271S
Rabbit monoclonal anti-FAS	Cell signaling technology	Cat.# 3180
Rabbit polyclonal anti-IR β	Santa Cruz	Cat.# sc711
Rabbit polyclonal anti-IRS1	Cell signaling technology	Cat.# 2382S
Rabbit polyclonal anti-IRS2	Cell signaling technology	Cat.# 4502
Rabbit polyclonal anti-p44/42 MAPK (ERK1/2)	Cell signaling technology	Cat.# 9102S
Rabbit polyclonal anti-Phospho-ERK1/2	Cell signaling technology	Cat.# 4370S
Rabbit polyclonal anti-PI 3-kinase p85alpha	Santa Cruz	Cat.# sc423
Rabbit monoclonal anti-SCD1	Cell signaling technology	Cat.# 2794S
Mouse monoclonal anti-Smad4	Santa Cruz	Cat.# sc7966
Mouse monoclonal anti-SREBP1	Abcam	Cat.# ab3259
Rabbit polyclonal anti-β-Tubulin	Cell Signaling Technology	Cat.# 2146
Rabbit polyclonal anti-UCP1	Abcam	Cat.# ab10983
Rabbit polyclonal anti-Adiponectin	Liu et al., 2018, Homemade	N/A
Rabbit polyclonal anti-PDK1	Dong et al., 1999, Homemade	N/A
Rabbit polyclonal anti-LRG1	This paper, Homemade, see methods for details of production.	N/A

Supplemental Table 3: Sources of cell lines and animal lines used.

Cell line / Mouse line	Source
Brown fat cell line	Purchased from Millipore sigma (Cat.# SCC255)
3T3-L1 cell line	Purchased from ATCC (Cat.# CL-173)
Huh7 cell line	Gift from Dr. Luzhe Sun (UTHealth SA)
Huh7 sh-smad4 cell line	Gift from Dr. Luzhe Sun (UTHealth SA)
C57BL/6J mouse line	The Jackson Laboratory (Cat.# 000664)
Lrg1 wholebody-knockout mouse line	KOMP Repository, University of California (Line# ET11851)
Leptin receptor deficient mouse line (db/db)	The Jackson Laboratory (Cat.# 000697)
Alb-cre mouse line (for liver-specific TGFβ receptor II knockout)	The Jackson Laboratory (Cat.# 016832)
TGFβ receptor II loxp/loxp mouse line (for liver-specific TGFβ receptor II knockout)	The Jackson Laboratory (Cat.# 012603)

SUPPLEMENTARY REFERENCES

- Liu, M., *et al.* A disulfide-bond A oxidoreductase-like protein (DsbA-L) regulates adiponectin multimerization. 2008; Proc Nat Acad Sci USA. 105 (47), 18302-18307.
- Dong, L. Q., *et al.* Primary Structure, Tissue Distribution, and Expression of Mouse Phosphoinositide-dependent Protein Kinase-1, a Protein Kinase That Phosphorylates and Activates Protein Kinase Cζ. 1999; J Biol Chem. 274 (12), 8117–8122.