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Introduction
Hematopoietic stem cell transplantation (HSCT) is a well-estab-
lished and effective stem cell–based therapy and is used to treat 
many hematological and nonhematological diseases (1–3). How-
ever, transplantations that are performed with limited numbers 
of HSCs, as with CB or gene-edited HSCs, may cause incomplete 
hematopoietic reconstitution or hematopoietic failure (4). Ex vivo 
expansion is one potential means to overcome the limitations of 
the rarity of HSCs (5–8). Given the extensive loss of stemness upon 
ex vivo culturing of HSCs, clinically applicable ex vivo expansion
systems have not yet been developed for extensive clinical use 
(8, 9). The inconsistency between phenotyping and function 
of human HSCs after ex vivo culturing has been reported (10). 
Deciphering mechanisms and the regulation of human HSC self- 
renewal, especially under stress conditions such as ex vivo cultur-
ing, would facilitate the development of ex vivo expansion systems 

of functional HSCs for clinical use and improve our understanding 
of the regulation of stem cell biology, which is still in its infancy.

Results and Discussion
Functional CB HSCs are enriched in mitochondrial ROS low CD34+ 
cell populations upon ex vivo culture–induced mitochondrial oxi-
dative stress. To explore molecular mechanisms of human HSC 
maintenance under stress conditions, we first compared the 
reconstituting capacity of freshly isolated or ex vivo–cultured 
human cord blood (CB) CD34+ HSCs and hematopoietic pro-
genitor cells (HPCs) by transplanting the exact same number of 
CD34+ cells into sublethally irradiated immune-compromised 
NOD-scid IL2Rg null (NSG) recipient mice. SCID repopulating 
cells (SRCs) in day-4–cultured CB CD34+ cells and freshly iso-
lated CB CD34+ cells were assessed by limiting dilution analysis 
(LDA) (1). Poisson distribution analysis revealed an SRC frequen-
cy of 1:3424 in uncultured day-0 CB CD34+ cells and 1:27,194 in 
day-4 ex vivo–cultured CB CD34+ cells, suggesting the presence 
of, respectively, 92 SRCs and 37 SRCs (7.9-fold decrease upon 
ex vivo culturing using stem cell factor [SCF], thrombopoietin 
[TPO], and Flt3L in serum-free expansion medium [SFEM]) in 1 × 
106 freshly isolated and ex vivo–cultured cells, respectively (Fig-
ure 1, A and B, Supplemental Figure 1A, and Supplemental Tables 
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cell–infused group in both primary and secondary recipient mice 
(Supplemental Figure 1, B–E). These data demonstrate that the 
stemness of human CB HSCs and HPCs decreased upon ex vivo 
culturing with cytokines.

1 and 2; supplemental material available online with this article; 
https://doi.org/10.1172/JCI148329DS1). Human cell chime-
rism of the fresh CB CD34+ cell–infused group was significantly 
increased compared with that of the ex vivo–cultured CB CD34+ 

Figure 1. Functional CB HSCs are enriched in mitoROS low CD34+ cells upon ex vivo culture–induced mitochondrial oxidative stress. (A and B) Frequency 
of human SRCs in freshly isolated CB CD34+ cells or ex vivo–cultured CB CD34+ cells, as determined by LDA. n = 4–5 mice per group. **P < 0.01; Poisson 
statistical analysis. (C) Histogram of mitoROS levels of fresh human CB CD34+ cells or cultured CB CD34+ cells. Representative histograms from 4 inde-
pendent experiments are shown. (D) Strategy for SRC determination by LDA in mitoROS low CB CD34+ cells or mitoROS high CB CD34+ cells upon ex vivo 
culturing. (E and F) Percentage of hCD45+ cell chimerism in the BM of NSG mice 16 weeks after transplantation with 10,000 mitoROS low CB CD34+ cells or 
mitoROS high CB CD34+ cells upon ex vivo culturing. n = 10 mice per group. (F) Statistical data are shown as dot plots (mean ± SEM). **P < 0.01, by 2-tailed 
Student’s t test. (G and H) Frequency of human SRCs in mitoROS low CB CD34+ cells or mitoROS high CB CD34+ cells upon ex vivo culture stress. n = 4–15 
mice per group. ***P < 0.001; Poisson statistical analysis. (I) Percentage of hCD45+ cell chimerism in the BM of NSG mice 4 months after transplantation 
with 50,000 mitoROS low CB CD34+ cells, mitoROS medium CB CD34+ cells, or mitoROS high CB CD34+ cells following ex vivo culturing. Representative data 
from 2 independent experiments are shown. n = 5 mice per group. ***P < 0.001, by 1-way ANOVA. NS, nonsignificant.
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Single-cell RNA-Seq analysis reveals that adhesion GPCR G1 
marks functional human CB HSCs upon expansion. Single-cell RNA-
Seq (scRNA-Seq) analysis is an established approach to study cell 
heterogeneity and characterize different cell subsets (11, 12). 
Next, we performed parallel transcriptomic analysis of mitoROS 
low and mitoROS high CD34+ cells at a single-cell level to identify 
HSC populations in CD34+ cells upon oxidative stress by ex vivo 
culturing. A total of 7663 mitoROS low CD34+ cells and 12,688 
mitoROS high CD34+ cells were effectively sequenced and char-
acterized, respectively (Supplemental Figure 3, A–D, and Supple-
mental Figure 4, A and B). We identified a total of 19 distinct cell 
clusters as shown in the uniform manifold approximation and pro-
jection (UMAP). Among them, populations of clusters 10, 11, 12, 
and 16 dramatically increased in mitoROS low CD34+ cells (Fig-
ure 2A). Established human HSC signature genes including argi-
nine vasopressin (AVP) and hepatic leukemia factor (HLF) were 
substantially enriched in cluster 11, particularly for mitoROS low 
CD34+ cells (Figure 2, B and C). Moreover, many HSC functional 
regulators (13–17) such as aldehyde dehydrogenase 1 family mem-
ber A1 (ALDH1A1), mixed-lineage leukemia translocated to chro-
mosome 3 (MLLT3), musashi RNA-binding protein 2 (MSI2), and 
thioredoxin-interacting protein (TXNIP) were highly expressed in 
cluster 11 of the mitoROS low CD34+ cells (Figure 2D), suggesting 
that cluster 11 of mitoROS low CD34+ cells upon ex vivo culturing 
might be the more functional subset of HSCs.

We then checked whether cluster 11 could be colabeled by any 
cell-surface markers. Protein-protein interaction (PPI) network 
analysis demonstrated that adhesion GPCR G1 (ADGRG1) was 
associated with HSC surface markers including CD34 and CD133 
(PROM1) (Supplemental Figure 4C). ADGRG1 was specifically 
expressed in cluster 11 cells, which were enriched in the CD34+ 

CD133+ADGRG1+ population (Figure 2, E and F).
Approximately 90% of day-0 CB CD34+ cells were ADGRG1+, 

and the percentages of ADGRG1+ cell populations in day-4 and 
day-7 ex vivo–cultured CB CD34+ cells were, respectively, approx-
imately 30% and 25% (Supplemental Figure 5A). We found that 
ADGRG1 was highly expressed in freshly isolated CB HSCs, multi-
potent progenitors, and CD34+CD38– cells, whereas its expression 
was relatively lower in CD34+CD38+ and CD34– CB cells (Supple-
mental Figure 5B). Surface expression of ADGRG1 was significant-
ly decreased in day-4 and day-7 ex vivo–cultured CD34+CD133+ 
cells compared with that of day-0 CD34+CD133+ cells (Figure 
2G and Supplemental Figure 5C). After ex vivo culturing, we 
found that ADGRG1 expression was notably higher in mitoROS 
low CD34+ cells than in mitoROS high CD34+ cells (Figure 2H). 
Meanwhile, CD34+CD133+ADGRG1+ cells had significantly lower 
levels of mitoROS compared with CD34+CD133+ADGRG1– cells 
(Figure 2I and Supplemental Figure 5D), and OCR analysis indi-
cated that mitochondrial respiration activity was lower in CD34+ 

CD133+ADGRG1+ cells (Supplemental Figure 5E). The percentage 
of G0-stage cells was notably higher in CD34+CD133+ADGRG1+ 
cells than the that in CD34+CD133+ADGRG1– cells (Figure 2J and 
Supplemental Figure 5F). Our data indicate that ADGRG1 might 
be used for the enrichment of functional HSCs upon expansion.

ADGRG1 enriches for functional human CB HSCs upon expan-
sion-induced oxidative stress. We performed long-term transplanta-
tion experiments using 3 different cell doses to determine whether 

We performed RNA-Seq analysis to compare differentially 
expressed genes between freshly isolated and ex vivo–cultured 
CD34+ HSCs and HPCs with different engraftment capacities. 
Gene set enrichment analysis (GSEA) and gene ontology (GO) 
analysis suggested that many mitochondrion-related genes were 
apparently highly expressed in ex vivo–cultured CB CD34+ cells 
rather than freshly isolated CB CD34+ cells (Supplemental Figure 
2, A and B). We measured the extracellular oxygen consumption 
rate (OCR) with a Seahorse XF extracellular flux instrument. 
Consistent with the RNA-Seq results, we observed that the OCR 
of ex vivo–cultured CB CD34+ cells was significantly higher than 
the OCR of freshly isolated CB CD34+ cells (Supplemental Figure 
2C). Mitochondrial ROS (mitoROS), mitochondrial mass, and 
mitochondrial membrane potential all markedly increased after 
ex vivo culturing (Figure 1C and Supplemental Figure 2, D–I), 
demonstrating that mitochondrial oxidative stress in CB HSCs 
and HPCs was induced by ex vivo expansion.

We then sought to determine whether human CB HSCs could 
be enriched in CD34+ cells with low levels of mitoROS upon ex 
vivo culture stress. We sorted CD34+ cells with low levels of mito-
ROS (mitoROS low, 15%) and CD34+ cells with high levels of 
mitoROS (mitoROS high, 15%) after 4 days of culturing, and then 
transplanted these 2 cell populations into sublethally irradiated 
NSG mice (Figure 1D). The human cell chimerism in the mitoROS 
low group was significantly higher than that in the mitoROS high 
group (Figure 1, E and F). Poisson distribution analysis revealed 
an SRC frequency of 1:8918 in the mitoROS low CB CD34+ cells 
and 1:112,939 in the mitoROS high CB CD34+ cells, suggesting the 
presence of 112 SRCs and 9 SRCs (12.4-fold decrease) in 1 × 106 
mitoROS low versus mitoROS high ex vivo–cultured CD34+ cells, 
respectively (Figure 1, G and H, and Supplemental Tables 3 and 
4). We also compared the engraftment capacity of mitoROS low, 
mitoROS high, and mitoROS medium (the remaining 70% of cells 
that were not mitoROS low or mitoROS high) CD34+ cells after 
ex vivo culturing. Human CD45 (hCD45) cell chimerism in the 
mitoROS low group was significantly higher than that in the mito-
ROS medium group (5.7-fold increase; Figure 1I and Supplemental 
Figure 2J). These results demonstrate that functional HSCs were 
mainly enriched in mitoROS low CD34+ cells under mitochondrial 
oxidative stress conditions due to ex vivo culturing.

Figure 2. scRNA-Seq identifies ADGRG1 as a marker of functional CB 
HSCs upon mitochondrial oxidative stress induced by ex vivo culturing. 
(A) mitoROS high and mitoROS low CB CD34+ cells upon ex vivo culturing 
were analyzed by scRNA-Seq. (B and C) Violin plots show the expression of 
HSC signature genes (AVP and HLF) in different clusters. (D) Heatmap of 
differentially expressed genes in 18 cell clusters of mitoROS low CB CD34+ 
cells upon oxidative stress. (E and F) Violin plots show the expression of 
CD133 (PROM1) and ADGRG1 in different clusters of both mitoROS low and 
mitoROS high CB CD34+ cells upon oxidative stress. (G) Dot plots showing 
the MFI of surface ADGRG1 in day-0, day-4, and day-7 ex vivo–cultured CB 
CD34+ cells. **P < 0.01 and ***P < 0.001, by 1-way ANOVA. (H) Represen-
tative flow histogram showing ADGRG1 expression in mitoROS low and 
mitoROS high CD34+ cells. (I) Representative flow histogram showing 
mitoROS level in ADGRG1+CD34+CD133+ cells and ADGRG1–CD34+CD133+ 
cells. (J) Quantification data showing the percentage of G0-, G1-, and  
S/G2/M-stage cells in ADGRG1+CD34+CD133+ and ADGRG1–CD34+CD133+ cell 
populations. **P < 0.01, by 1-way ANOVA. SSC, side scatter.
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Figure 3. ADGRG1 enriches for functional CB HSCs upon mitochondrial oxidative stress induced by ex vivo culturing. (A and B) The percentage of hCD45+ 
cells in BM of NSG recipients transplanted with 50,000 CD34+CD133+ADGRG1+ CB cells or CD34+CD133+ADGRG1– CB cells was determined by FACS. Quanti-
fication data are shown as dot plots (mean ± SEM) in B. n = 10 mice per group. **P < 0.01, by 2-tailed Student’s t test. Ctrl, control. (C and D) Human SRCs 
in ADGRG1+ and ADGRG– CB CD34+CD133+ cells upon ex vivo culturing, as determined by LDA. n = 10 mice per group. ***P < 0.001, by Poisson statistical 
analysis. (E) The percentage of hCD45+ cells in PB of secondary recipient mice was determined 4 months after transplantation (mean ± SEM). n = 8–9 mice 
per group. *P < 0.05, by 2-tailed Student’s t test. (F and G) BM cells (5 × 106) from primary recipient mice transplanted with CD34+CD133+ADGRG1+ CB cells 
or CD34+CD133+ADGRG1– CB cells were infused into secondary recipient mice. The percentage of hCD45+ cells in BM was determined 4 months after trans-
plantation (mean ± SEM). n = 8–9 mice per group. **P < 0.01, by 2-tailed Student’s t test. (H and I) Flow cytometric plots showing the homing efficiency of 
CD34+CD133+ADGRG1+ CB cells and CD34+CD133+ADGRG1– CB cells (mean ± SEM). n = 7 mice per group. Two-tailed Student’s t test.
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CD133+ADGRG1– cells, suggesting the presence of 99 SRCs and 7 
SRCs (14.1-fold increase) in 1 × 106 ex vivo–cultured CD34+CD133+ 
cells (Figure 3, C and D, and Supplemental Tables 5 and 6). In 
order to assess whether ADGRG1 enriches for functional long-
term HSCs with self-renewal capacity, we performed secondary 
transplantation experiments for another 4 months using BM cells 
from the primary recipient mice. The engraftment of human cell 
chimerism including both myeloid and lymphoid cells in BM and 
PB of the secondary recipients were significantly higher in CD34+ 

CD34+CD133+ADGRG1+ cells were bona fide HSCs and to assess 
the number of functional HSCs under oxidative stress upon ex 
vivo expansion. CD34+CD133+ADGRG1+ cells demonstrated sig-
nificantly higher engraftment in both the bone marrow (BM) and 
peripheral blood (PB) of the primary recipient mice 4 months 
after transplantation compared with CD34+CD133+ADGRG1– 
cells (Figure 3, A and B, and Supplemental Figure 6, A–F). LDA 
and Poisson distribution analysis revealed an SRC frequency of 
1:10,077 in CD34+CD133+ADGRG1+ cells and 1:135,972 in CD34+ 

Figure 4. ADGRG1 enriches for HSC activity but is not involved in the regulation of self-renewal. (A) FACS plots showing GFP+hCD45+ chimerism from BM 
of recipient mice transplanted with CB CD34+ cells infected by control (shCtrl) or shADGRG1 lentivirus 4 months after transplantation. (B) Quantification 
of GFP+hCD45+ chimerism from BM of recipient mice transplanted with CB CD34+ cells infected by shCtrl or shADGRG1 lentivirus 4 months after transplan-
tation. n = 6 mice per group. Data are shown as dot plots (mean ± SEM). Two-tailed Student’s t test.(C) FACS plots showing GFP+hCD45+ chimerism from 
BM of recipient mice transplanted with CB CD34+ cells infected by vector or ADGRG1 OE lentivirus. (D) Quantification of GFP+hCD45+ chimerism from BM 
of recipients transplanted with CB CD34+ cells infected by shCtrl or shADGRG1 lentivirus 4 months after transplantation. n = 8 mice per group. Data are 
shown as dot plots (mean ± SEM). Two-tailed Student’s t test. (E) GSEA plots showing enrichment of HSC signature genes in ADGRG1+CD34+CD133+ CB 
cells (cluster 11 cells) after ex vivo culture. (F) GSEA plots showing the downregulation of MYC target genes in ADGRG1+CD34+CD133+ CB cells (cluster 11 cells) 
compared with ADGRG1–CD34+CD133+ CB cells. NES, normalized enrichment score. For E and F, Kolmogorov-Smirnov test was used. (G) Quantification of 
hCD45 chimerism from BM of recipients transplanted with ADGRG1+, CD38–, CD45RA–, or CD90+ cell populations sorted from CB CD34+ cells after ex vivo 
culturing (mean ± SEM). n = 6 mice per group. *P < 0.05 and **P < 0.01, by 1-way ANOVA.
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may improve the understanding of the regulation of human HSC 
maintenance and provide an alternative means for drug screening 
of agonists of HSC expansion.

Methods
Detailed methods are described in the Supplemental Methods.

Data availability. Bulk RNA-Seq data and scRNA-Seq data were 
deposited in the NCBI’s Gene Expression Omnibus (GEO) database 
(GEO GSE179928 and GSE179361, respectively).

Study approval. All animal procedures were approved by the 
IACUC of Shanghai Jiao Tong University School of Medicine.
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CD133+ADGRG1+ cells than in CD34+CD133+ADGRG1– cells (Fig-
ure 3, E–G and Supplemental Figure 6, G and H). We also checked 
human cell reconstitution in the PB of both primary and secondary 
recipient mice at earlier time points. At week 8 after primary trans-
plantation and at weeks 4 and 8 after secondary transplantation, 
the hCD45 chimerism in PB was apparently higher in the CD34+ 

CD133+ADGRG1+ group than in the CD34+CD133+ADGRG1– group 
(Supplemental Figure 6, I and J). Moreover, we did not detect any 
significant differences in homing efficiencies between CD34+ 

CD133+ADGRG1+ and CD34+CD133+ADGRG1– cells (Figure 3, H 
and I). These data suggest that ADGRG1 enriched for functional 
HSCs with long-term repopulating and self-renewing activity in 
CB CD34+CD133+ cells under mitochondrial oxidative stress con-
ditions upon ex vivo culturing.

ADGRG1 knockdown did not significantly affect the engraft-
ment of CB CD34+ HSCs or HPCs (Supplemental Figure 7A 
and Figure 4, A and B), suggesting that ADGRG1 is dispensable 
for human CB HSC self-renewal. The GFP+hCD45+ cell chime-
rism in the BM was comparable in the ADGRG1-overexpressing 
(ADGRG1-OE) and vector control groups 4 months after trans-
plantation (Figure 4, C and D), as was the hCD33+ myeloid and 
hCD19+ lymphoid chimerism (Supplemental Figure 7, B and C), 
suggesting that overexpression of ADGRG1 had no significant 
effect on the expansion or engraftment of CB HSCs.

GSEA indicated that in CD34+CD133+ADGRG1+ cells, a set 
of common human HSC genes (18) were highly enriched (Figure 
4E), including MSI2 and MLLT3 (Supplemental Figure 7D), the 
overexpression of which promotes self-renewal of human HSCs 
(15, 16). MYC signaling–targeted genes, which are associated with 
HSC differentiation (19), were markedly downregulated in CD34+ 

CD133+ADGRG1+ cells (Figure 4F). Markers for freshly isolated 
HSCs including CD38, CD45RA, CD90, and CD49f (20) were not 
identified in our scRNA-Seq analysis. FACS analysis showed that 
ADGRG1+CD34+ cells were almost 90% CD38–, 50% CD45RA–, 
10% CD90+, and 2% CD49f+ (Supplemental Figure 7, E and F). 
To evaluate the enrichment of HSC activity by ADGRG1, we per-
formed an in vivo transplantation experiment with ADGRG1+, 
CD38–, CD45RA–, or CD90+ cells sorted from ex vivo–cultured CB 
CD34+ cells. The engraftment capacity of ADGRG1+ cells was sig-
nificantly higher than that observed in any of the other cell groups 
(Figure 4G). Thus, ADGRG1 enriched for a population of func-
tional HSCs that highly expressed stemness-related genes under 
ex vivo culture stress conditions.

In steady state, the identity of freshly isolated human HSCs 
has been relatively well established (1, 20). However, upon ex 
vivo culturing, phenotypic HSCs labeled by these markers may 
not necessarily have the capacity to regenerate the blood system 
in vivo (10). Our results revealed that the engraftment capacity of 
cultured CB CD34+ cells negatively correlated with cellular mito-
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