

CAGCTGTGCGTGGAGCAAATGCTCACCTCAGCACCTTCAGCTTCACAAAAG CAGCCGTGCGGGGAGCAAACACCCCACCTTAGCACCTTTAGTTTCACGAAGG TGGATGTGGGTCAGCAGCCCCTGAGGAGTCAATGGTGTTAAGGTTTATACT TCGACGTGGGCCAGCAGCCCCTCAGGATCAATGGTGTTAAGGTATACACT GAAAATGTAGACAAAAGACAAATATTCTGGACCTTCAGATTAGTTTTGTAGG GAAAATGTAGACAAAAGGCAAATATTTTGGACCTTCAGATTAGTTTTGTAGG AAATGTAGACAAAAGGCAAATATTTTGGACCTTCAGATTAGTTTTGTAGG AAATGTGAGATTGATTTGGAGATCAAAAGATATTTTTGTAGAGCTGGTGTG AAATGTGAGATTGATTTGGAGATCAAAAGATATTTTTGTAGAGCTGGTGTG AAATGTGAGATTGATTGGAGATCAAAACGATATTTTTGTAGAGCTGGTGTG AAAAGTATTCAGATCCATGGGACCAATGCGGGTGATACTGGAGCCCCTGATT AAAAGTATCCAGATTCATGGTACCATGCGGGTGATCCTGGAACCGTTGATT GGAGACATGCCTTTAGTTGGAGCTTTGTCCATCTTCTTCCTTAGGAAACCA GGAGATATGCCCTTAGTTGGAGCTTTGTCTATCTTCCTTAGGAAACCA

Score	Expect	Gaps	Identities
563 bits(624)	3e-165	0/417(0%)	375/417(90%)

α-SMA GFP circEsyt2

F

D

Ε

В

Α

Com-FL1-A::FL1-A

В

kDa

С

₽

Е

D1

F2

E1

F1

С

H1

H2

p53 p53β

GAPDH

G

kDa 53 47 37 р53β 2.0 Relative expression normalized to GAPDH 1.5 1.0 0.5 ☆

+

-

-

_

+

_

-

+

0.0

scr

si-circ

si-p53β

+

+

F1

C1

C2

Marker

nt

200

100

PCBP1

19^C

Imput

Supplemental figure legends

Figure S1. CircRNA profiling of murine aortae. A) Oil red O staining of atherosclerotic plaques on aortae from atherosclerotic (HFD + $ApoE^{-/-}$) and control groups (CD + $ApoE^{-/-}$ or CD + C57BL/6J). Negative control: CD + C57BL/6J. CD: chow diet. HFD: high fat diet. $ApoE^{-/-}$: ApoE knockout mice. **B**) Schema of workflow detailing candidate circRNA selection from sequencing data. RPM, Reads Per Million-mapped reads. **C-F**) Distribution of read abundance (C), genomic origin (D), length (E), and circRNAs in chromosomes (F). CDS, coding sequence; UTR, untranslated region. M, mitochondria. **G**) Landscape of circRNA expression. CircRNAs significantly upregulated and downregulated (Fold-change>2.0, P<0.05 and FDR value<0.05) are depicted as red and green dots, respectively. **H**) Venn diagram showing the number of circRNAs detected by different algorithms. **I**) Alignment of mouse and human circEsyt2 nucleotide sequences showing high homology (90%).

Figure S2. Characterization of circEsyt2 in mouse atherosclerotic aortae. Upper panel: bright field of frozen transverse sections from C57BL/6J (control) and cholesterol-loaded $ApoE^{-/-}$ (AS) mouse aortae. Bar, 100 µm. Lower panel: immunofluorescence staining for α-SMA, CD31, PDGFRα, or CD68, and fluorescence *in situ* hybridization (FISH) for circEsyt2 (red). Lu, lumen. Scale bar, 20 µm.

Figure S3. Characterization of circEsyt2 in coronary arteries of CAD patients. Upper panel: bright field of paraffin-embedded transverse sections of coronary arteries from CAD patients with mild stenosis ($\leq 20\%$, mild CAD) and severe stenosis ($\geq 70\%$, severe CAD). Bar, 200 µm. Lower panel: immunofluorescence staining for α -SMA, CD31, PDGFR α or CD68, and FISH for circEsyt2 (red). Scale bar, 50 µm.

Figure S4. Modulation of circEsyt2 expression in vivo and its effects on apoptosis. A) Efficacy of enhanced green fluorescent protein (EGFP)-tagged AAV2/8 silencing circEsyt2 determined by qRT-PCR in C57BL/6J aortic arteries 28 days post viral delivery. ***P<0.001 vs. sh-con. n=4. B) Immunofluorescence staining of circEsyt2-silenced (sh-circ) and non-silenced (sh-con) carotid arteries for a-SMA (blue) and GFP (green), and FISH for circEsyt2 (red). Scale bar, 50 µm. C) Cell apoptosis detected by TUNEL assay of carotid arteries, treated as in (A). Lu, lumen. Scale bar 20 μm. *P<0.05 vs. sh-con. n=3. D) Efficacy of ZsGreen-tagged AAV2/8 overexpressing circEsyt2 determined by qRT-PCR in C57BL/6J aortic arteries, 28 days post viral delivery. *P < 0.05 vs. control. n=4. E) Immunofluorescence staining of circEsyt2-overexpressed (circEsyt2 OE) and non-overexpressed (control) carotid arteries for α-SMA (blue) and GFP (green), and FISH for circEsyt2 (red). Scale bar, 50 µm. F) Cell apoptosis detected by TUNEL assay of carotid arteries, treated as in (D). Lu, lumen. Scale bar 20 µm. *P<0.05 vs. control. n=3. Data are presented as mean±SEM. Two-sided unpaired *t*-test for (A), (C), (D), and (F).

Figure S5. Effect of circEsyt2 silencing in mouse VSMCs. A-B) Efficacy of circEsyt2 (si-circ), *Esyt2* (si-mRNA) siRNA, or both (si-both), detected by gRT-PCR and western blotting in VSMCs. GAPDH, protein control. *P<0.05, **P<0.01 vs. scr. n=3. C) CCK-8 assay of VSMCs, treated as in (A) and (B) for the indicated hours. *P < 0.05, **P < 0.01 vs. scr. n=4. **D**) EdU incorporation assay of VSMCs, treated as in (A)-(C) for 48 h. Left panel: representative immunofluorescence of EdU (red) and DAPI (blue); Scale bar, 100 µm. Right panel: percentages of EdU-incorporated VSMCs. *P < 0.05 vs. scr. n=3. E-F) Migratory ability assessed by wound healing (E) and Transwell assay (F) of circEsyt2-silenced VSMCs. Scale bar, 100 µm. *P<0.05, ***P*<0.01 n=3. G) Annexin-V-conjugated flow cvtometry of VS. scr. circEsyt2-silenced VSMCs. *P<0.05 vs. scr. n=3. H) Western blotting to check for the expression of α-SMA, Calponin, and Myh11 in circEsyt2-silenced VSMCs. **P<0.01 vs. scr. n=3. Data are presented as mean±SEM. Two-sided unpaired *t*-test for (E)-(H). Two-way repeated measures ANOVA with LSD's post-hoc test for (C). One-way ANOVA test with Dunnett's T3 post-hoc test for (A), (B), and (D).

Figure S6. CircEsyt2 physically binds to PCBP1. A-B) Predicted interaction between mouse (A) and human (B) circEsyt2 and PCBP1 sequences determined using catRAPID. The binding sites are in red and highlighted with dashed boxes. C) Efficacy of circEsyt2 overexpression quantified by qRT-PCR in HEK293T cells. *P<0.05 vs. pcDNA3.1. n=3. D) Identification of the circEsyt2-binding protein PCBP1 by mass spectrometry of the proteins pulled down by the circEsyt2 probe. The representative peptides of PCBP1 are displayed as the MS/MS spectra: ESTGAQVQVAGDMLPNSTER (**D1**) and IITLTGPTNAIFK (**D2**). m/z indicates the ratio of mass to charge. E) RT-PCR of circEsyt2 pulled-down by PCBP1 antibody in HASMCs confirms the direct binding of circEsyt2 to PCBP1. Data are presented as mean±SEM. Two-sided unpaired t test for (**C**).

Figure S7. CircEsyt2 functions through regulation of p53β splicing. A-C) qRT-PCR of other major p53 isoforms, $\Delta I33p53$ (A), $\Delta 40p53$ (B) and $p53\gamma$ (C) in circEsyt2-silenced HASMCs. n=3. D) Western blotting (D1) and qRT-PCR (D2) to detect the expression of p53β in circEsyt2-overexpressed (OE) HASMCs. **P*<0.05 vs. pcDNA3.1. n=3. E) Strand-specific reverse transcription-quantitative PCR (RT-qPCR) of *p53* (E1) and *p53β* (E2) in circEsyt2-silenced (si-circ) HASMCs. ***P*<0.01 vs. pcDNA3.1. n=3. F) Strand-specific RT-qPCR of *p53* (F1) and *p53β* (F2) in circEsyt2-overexpressed (OE) HASMCs. **P*<0.05 vs. pcDNA3.1. n=3. G-H) Efficacy of siRNA-mediated knockdown of circEsyt2 (si-circ), p53β (si-p53β), or both (si-circ+si-p53β) as measured by qRT-PCR (G) and western blotting (H) in HASMCs. **P*<0.05, ***P*<0.01 vs. scr. n=3. Data are presented as mean±SEM. Two-sided unpaired *t*-test for (A)-(F1). Two-sided unpaired *t*-test with Welch's correction for (F2). One-way ANOVA test with Dunnett's T3 post-hoc test for (G)-(H).

Figure S8. CircEsyt2 inhibits p53β splicing via inhibition of PCBP1. A) RT-PCR

for pre-mRNA *p53* pulled down by PCBP1 antibody in HASMCs confirms the direct binding of pre-mRNA *p53* to PCBP1 protein. **B**) FISH for U2AF65 (blue), pre-mRNA *p53* (red), and PCBP1 (green) in HASMCs. Scale bar, 25 µm. **C**) Efficacy of silencing of PCBP1 in HASMCs, as quantified by western blotting (**C1**) and qRT-PCR (**C2**). **P*<0.05 vs. scr. n=3. **D**) qRT-PCR to check for the expression of total spliced p53 (TSp53) and precursor RNA p53 (pre-mRNA *p53*) in PCBP1-silenced HASMCs. n=3. **E-F**) Efficacy of siRNA-mediated knockdown of circEsyt2 (si-circ), PCBP1 (si-PCBP1), or both (si-circ+si-PCBP1), as quantified by qRT-PCR or western blotting. **P*<0.05, ***P*<0.01 vs. scr. n=3. Data are presented as mean±SEM. Two-sided unpaired *t*-test for (**C**) and (**G**). One-way ANOVA test with Dunnett's T3 post-hoc test for (**E**)-(**F**).

Table S1. Analysis	of candidate	circRNAs by	v other	algorithms.

(CIRCexpl	lorer)
-----------	--------

Location	Host gene	control	AS	Fold-Change	p value	FDR
		(RPM [*])	(RPM [*])			
chr3:51308050-51326035	Elf2	7115.99	11793.93	1.66	1.10E-04	1.06E-02
chr5:3747021-3772787	Ankib1	410.23	642.395	1.57	2.18E-01	5.62E-01
chr12:116317830-116324210	Esyt2	0	2932.25	-	1.04E-12	8.00E-10
chr17:81647809-81649638	Slc8a1	134.92	612.46	4.54	1.15E-01	3.86E-01
chr18:6111685-6115850	Arhgap12	814.98	623.88	0.77	7.59E-01	9.17E-01
*: Reads Per Million mapped re	eads;					
(CIRI2)						
Location	Host gene	control	AS	Fold-Change	p value	FDR
		(RPM [*])	(RPM [*])			
chr3:51308050-51326035	Elf2	6295.69	9826.26	1.56	3.07E-05	2.46E-03
chr5:3747021-3772787	Ankib1	258.02	755.925	2.93	1.08E-02	1.59E-01
chr12:116317830-116324210	Esyt2	3489.58	4068.47	1.17	4.14E-02	2.91E-01
chr17:81647809-81649638	Slc8a1	0	405.24	-	1.81E-02	1.98E-01
chr18:6111685-6115850	Arhgap12	697.23	911.47	1.31	2.73E-01	6.03E-01
(CIRIquant)						
Location	Host gene	control	AS	Fold-Change	p value	FDR
		(RPM [*])	(RPM [*])			
chr3:51308050-51326035	Elf2	4312.36	8522.03	1.98	7.57E-08	1.06E-05
chr5:3747021-3772787	Ankib1	131.92	677.03	5.13	2.30E-03	5.58E-02
chr12:116317830-116324210	Esyt2	1257.58	2116.70	1.68	5.35E-02	3.28E-01
chr17:81647809-81649638	Slc8a1	70.32	370.57	5.27	6.30E-02	3.35E-01
chr18:6111685-6115850	Arhgap12	545.11	800.815	1.47	2.18E-01	5.69E-01

1 1 0			1	*		
Location	Host gene	control	AS	Fold-Change	p value	FDR
		(RPM [*])	(RPM [*])			
chr3:51308050-51326035	Elf2	1.10	3.30	3.0	1.29E-14	3.88E-12
chr5:3747021-3772787	Ankib1	0.90	2.55	2.83	1.80E-10	2.71E-08
chr12:116317830-116324210	Esyt2	1.18	3.24	2.74	1.42E-12	3.22E-10
chr17:81647809-81649638	Slc8a1	1.40	3.23	2.30	1.18E-08	1.21E-06
chr18:6111685-6115850	Arhgap12	1.24	2.76	2.23	2.87E-07	2.25E-05
*Reads Per Million mapped rea	ads					

Table S2. Top 5 upregulated circRNAs enriched in atherosclerotic plaques.

Ranking	Protein	Z-score	Discriminative Interaction		Domain	Motif
			Power (%)	Strength		
				(%)		
1	PCBP family	-0.02	72	98	+	+
2	TRM1L	0.84	96	88	+	-
3	TDRD3	0.75	95	90	+	-
4	DDX1	0.71	95	89	+	-
5	RAVR1	0.63	93	88	+	-
6	MTER2	0.57	91	96	+	-
7	OAS2	0.52	90	83	+	-
8	RED2	0.5	90	83	+	-
9	PAPOA	0.48	89	80	+	-
10	QKI	0.44	87	93	+	-

Table S3. Top 10 predicted circEsyt2-binding proteins.

Table S4. Oligonucleotides used in this study.

siRNAs used for gene silencing(5'-3'))
mouse and human: circEsyt2 (si-circ)	CCTTAGGAAACCAGTTCAT
mouse: Esyt2 (si-mRNA)	CAAGCATTGCCTCAGACAT
mouse: circEsyt2 and Esyt2 (si-both)	TCAATGGTGTTAAGGTTTA
human: Esyt2 (si-mRNA)	GGACAGGACTGACGAATCT
human: circEsyt2 and Esyt2 (si-both)	CTTCTTCCTTAGGAAACCA
human: PCBP1	GGAGGAAGATATCAACAGC
human: p53β	TCCTGATAAACTCGTCGTA
shRNA used for circEsyt2 knockdow	yn in vivo
	Top strand:
	AATTCGTCCTTAGGAAACCAGTTCATTTTCC
	ttcaagaga
	GGAAAATGAACTGGTTTCCTAAGGAtttttg
sn-chcEsyt2 (sh-chc)	Bottom strand:
	GATCCAAAAAATCCTTAGGAAACCAGTTCA
	TTTTCCTctcttgaaGGAAAATGAACTGGTTTCC
	TAAGGACg
biotinylated RNA probes used for R	NA pulldown (5'-3')
control probe	CAAGGCATTATGGTAGCTAG
circEsyt2 probe	TCTGGAAAATGAACTGGTTT
RNA-FISH probes (5'-3')	
pre-mRNA p53 probe (Cy3 labelled)	5'CCCACUUAAUGUGUGAUCUCUGACUCCUGUCCC
	AAAGUUG-3'
circEsyt2 probe (5'-biotin labelled)	5'-TTTCAGTGTCTGGAAAATGAACTGG-3';
	5'-AGTGTCTGGAAAATGAACTGGTTTC-3';
	5'-AAATGAACTGGTTTCCTAAGGAAGA-3'

Table S5. Primers used in this study.

Primers for PCR and real-time PCR						
Genes	Forward primer (5'-3')	Reverse primer (5'-3')				
circEsyt2-divergent	TTTTGTAGAGCTGGTGTG	GTGCTTTACAGTCTTATTTA				
(circEsyt2, for mouse and	AAAAGTATT	GCCATTC				
human)						
circEsyt2-convergent	CCCCTGAGAGTCAATGGT	TCCAGTATCACCCGCATTGT				
(Esyt2, for mouse)	GT					
circAnkib1-divergent	GGATCTTCGTAGGTTAAA	CCATGTTTTGTTATTTTCTGA				
(for mouse)	AGATATGCT	TAGGCA				
circAnkib1-convergent	CCTATCAGCACAACACAC	AATCATCTTCCACAGGCCGT				
(for mouse)	CG					
circFxr2-divergent	GCAATCCTTACAGCCTCT	CCCTCACCACACCAGACTTA				
(for mouse)	TGG	Т				
circFxr2-convergent	TCCACAGCTTCAGAGACA	CCAAGAGGCTGTAAGGATT				
(for mouse)	GAG	GC				
circArhgap12-divergent	CCAGAGTTCTTGGACATA	ATAACACTTGGAAGGCTGTA				
(for mouse)	GAGAAAA	AACAT				
circArhgap12-convergent	TCAGGCCAGACTCTCAAC	GCCTTCTCCAGCTGAGTCAC				
(for mouse)	СТ					
circSlc8a1-divergent	GAGGGGAAGACTTTGAG	TTTCCTCCTGTTTCTGCCTC				
(for mouse)	GACA	Т				
circSlc8a1-convergent	TGTGATCTTCAAACCAGG	GGTGACCCAAGACAAGCAA				
(for mouse)	GGA	TT				
circDlc1-divergent	CCTTCTTCAGCCTCCTTC	TTGTCCACTTTCTCTTGCGC				
(for mouse)	СТ					
circDlc1-convergent	CCAGCAGAAGGAAGTGG	GCAGTTGTGTCTCAGGTGT				
(for mouse)	AGA	G				
circRreb1-divergent	GTATCTGTGGGAAGTCGC	CTCCTTTATGCTGTTTTCTTC				
(for mouse)	TGAG	GT				
circRreb1-convergent	GAAAAGCCCCTGTCTCCT	CGGGGAAGTCACTGTACAC				
(for mouse)	СТ	Т				
circInsr-divergent	AACGAGGAATGTGGGGA	TTCGGGTCTGGTCTTGAACA				
(for mouse)	TGT					
circInsr-convergent	TTCCGAGACCTCAGTTTC	TTCTTCTCGATGCGGACAGA				
(for mouse)	CC					
circAdcy5-divergent	TGCTGAGTTTCTACCTGT	CGTAAACAGTGATTCTCCGC				
(for mouse)	CGT	Α				
circAdcy5-convergent	CCAACTCCATCGGACACA	TCCACTTCATCCTCTGGGTT				
(for mouse)	ATC	С				
circElf2-divergent	ACAGGAAGTTGAGACGG	GCAACGGAACTAAGGCTCA				
(for mouse)	AGA	С				
circElf2-convergent	GTGAGCCTTAGTTCCGTT	CTCTAACCTCGCACTGGGA				
(for mouse)	GC	Α				

snoR41	TGGTCTACAGCT		GTCTTAT	TCACACATAATCCTCCTCCT		
(for mouse)		GGT		GT		
Cend1		AGAAGTGCGAAG	AGGAG	TTCTCGGCAGTCAAGGGAA		
(for mouse)		GTC		Т		
p21		TCCCGACTCTTGA	ACATTG	TGCAGAAGGGGAAGTATGG		
(for mouse)		СТ		G		
Noxa		TCGCAAAAGAGC	AGGAT	CACTTTGTCTCCAATCCTCC		
(for mouse)		GAG		G		
PUMA		GTACGAGCGGCG	GAGAC	GCACCTAGTTGGGCTCCATT		
(for mouse)		AAG		TCTG		
Esyt2		GGGCAAAGACAC	CTACC	TCTTGTCCAGGGTGTTCATA		
(for human)		TTAA		CA		
p53 (full len	gth)	CAGCCAAGTCTG	ГGACTT	GTGTGGAATCAACCCACAG		
(for human)		GCA		СТ		
p53β		GAGCACTAAGCG	AGCAC	TTGAAAGCTGGTCTGGTCCT		
(for human)		TGCC		GA		
∆133p53		ACTCTGTCTCCTT	CCTCTT	GTGTGGAATCAACCCACAG		
(for human)		CCTACAG		СТ		
∆40p53		TGAGTGGATCCAT	TGGAA	GTCTGAAAGACAAGAGCAG		
(for human)		GG		AAAG		
p53γ		AACCACTGGATG	GAGAAT	TCAACTTACGACGAGTTTAT		
(for human)		ATTTCAC		CAGGAA		
TSp53		TCACCATCATCAC	CACTGG	CACGCACCTCAAAGCTGTT		
(for human)		AAGAC		С		
pre-mRNA p	53	CACCTTTCCTTGC	CTCTTT	CCACTTGATAAGAGGTCCC		
(for human)		CC		AAGAC		
PCBP1		CCTACTCGATTCA	AGGAC	GAGTTCATGGGTGGTTTGA		
(for human)		AACAC		GTAG		
GAPDH		AACGACCCCTTC	ATTGAC	TGGAAGATGGTGATGGGCT		
(for mouse a	nd human)	СТ		Т		
Primers for	shRNA plasmid co	onstruction				
Genes	Forward primer	(5'-3')	Reve	rse primer (5'-3')		
circEsyt2	CTCACCTCAGC	CACCTTCA	AGT	ATCACCCGCATTGTC		
GAPDH	TCAAGGCTGAG	GAACGGGAAG	TCG	CCCCACTTGATTTTGGA		
Primers for	strand-specific rev	verse transcription-qu	iantitative	PCR		
(for RT)						
p53		TTTTTGAA	AGCTGGT	CTGGT		
p53β	AGCTCTCGGAACA			TCGAA		
GAPDH	GCTAAGCAGTTGGTGGTGCAG					
(for qPCR)						
Genes	Forward primer	(5'-3')	Reverse	primer (5'-3')		
p53/p53ß	GTCCAGATG	AAGCTCCCAGA	GGC	GACAGAAGATGACAGGGG		
GAPDH	GGAGCGAGATCCCTCCAAAAT GGC			CTGTTGTCATACTTCTCATGG		

Patient Number	Sex	Age	Maximum stenosis	Group	Smoking history	Hypertension	Diabetes mellitus
1	Male	68	22%	Mild CAD*	Yes	None	None
2	Male	63	13%	Mild CAD	Yes	None	None
3	Female	65	10%	Mild CAD	None	None	None
4	Female	75	77%	Severe CAD	None	None	None
5	Male	66	82%	Severe CAD	Yes	None	None
6	Male	70	85%	Severe CAD	Yes	None	None

Table S6. Clinical characteristics of coronary artery donors.

*CAD: coronary artery disease