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Introduction
The COVID-19 pandemic caused by severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) has spread globally since it first 
appeared in Wuhan, China. As of September 8, 2021, there were over 
221 million reported cases of COVID-19, and the death toll is over 4.5 
million worldwide according to the WHO Coronavirus (COVID-19) 
Dashboard (https://covid19.who.int/; accessed September 8, 2021). 
Although most of those infected with SARS-CoV-2 are either asymp-
tomatic or have mild symptoms, a significant number of cases prog-
ress into acute respiratory distress syndrome with diffuse alveolar 
damage (1–3). The immune system is critical in the progression of the 
disease. The innate immune response is activated in the early phase 
of the response to infections with SARS-CoV-2, Middle East respira-
tory syndrome virus, and influenza virus. This response is character-
ized by the secretion of proinflammatory cytokines, especially type I 
interferon, and the recruitment of innate immune cells such as neu-

trophils and natural killer (NK) cells (4–6). After this initial response 
from the innate immune system, virus-specific cytolytic T cells and 
antibodies are generated, and viral antigens are recognized by these 
adaptive immune system components (7, 8). Without coordinated 
responses from the immune system, effective control of the infec-
tion is not achieved, and immunopathogenesis, such as cytokine 
storms, can occur, contributing to multi-organ failure and eventually 
fatality in severe cases of COVID-19 (8). Although distinct immune 
signatures have been identified that correlate with the severity of 
COVID-19, little is known about the immune features relevant to the 
viral clearance, especially in mild to moderate cases of COVID-19 
(9). A better understanding of the interactions between the virus and 
the host immune system will guide the identification of therapeutic 
targets and the design of effective viral control strategies.

Several studies have profiled the composition of immune cells 
in peripheral blood from patients at different stages and with dif-
ferent severities of COVID-19 (8, 10–16). It has been consistently 
found that lower proportions of lymphocytes and higher neutro-
phil-to-lymphocyte ratios are correlated with disease severity (10, 
15, 17). In addition, systematic immune perturbations have been 
observed in patients with severe COVID-19 (10–13, 15, 18). Anal-
yses of bronchoalveolar lavage samples from COVID-19 patients 
revealed that NK cells are enriched at the sites of infection, suggest-
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all had been confirmed positive for SARS-
CoV-2 by RT-PCR. The demographics and 
clinical characteristics, killer cell immu-
noglobulin-like receptors, and HLA geno-
types of the subjects separated into groups 
with fast and slow viral clearance are list-
ed in Table 1 and Supplemental Table 1 
(supplemental material available online 
with this article; https://doi.org/10.1172/
JCI146408DS1). Interestingly, there were 
significantly more females than males in 
the fast clearance group, which is consis-
tent with the previous observation that 
men with COVID-19 are more at risk for 
worse outcomes (28).

To identify immune features associ-
ated with viral clearance, we designed an 
in-depth phenotypic analysis using mass 
cytometry (CyTOF) with a staining pan-

el composed of antibodies against lineage markers that define 
distinct immune cells and receptors known to mediate cell-cell 
interactions between immune cells and virus-infected cells, par-
ticularly focusing on receptors known to be expressed on NK cells 
(Supplemental Table 2). The rate of viral clearance was defined by 
the slope of the linear regression curve of the viral loads from seri-
al nasal swabs from each patient (Supplemental Figure 1A). It is 
important to emphasize that the persistence of low levels of viral 
RNA might not be associated with the presence of infectious virus 
but instead may indicate that the immune response is unable to 
promote viral RNA clearance (29, 30). In total, we measured 2.9 
million live CD45+ cells with an average of 88,692 cells per sample.

To investigate the relationship between the NK cell compart-
ment and SARS-CoV-2 clearance, we first analyzed the NK recep-
tor repertoire using a Boolean gating strategy described previous-
ly (25, 27). All NK cells were classified as positive or negative for 
the expression of each of 22 NK cell receptors. This allowed us 
to define 222 (or 4,194,304) NK subsets based on the unique sin-
gle-cell combinations for individual patients (Figure 1A). In line 
with previous reports, there was a high degree of both inter- and 
intra-individual diversity in the NK receptor repertoire (25, 27). 
We detected 39,435 unique NK immunophenotypic combinations 
from all patients in the cohort, and no single immunophenotype 
accounted for more than 5% of the total NK cells in any individual. 
To quantify the heterogeneity of NK cells, we utilized a previously 
described measurement, the inverse Simpson index, as the indi-
cator of the NK repertoire diversity (27). We observed a negative 
coefficient between the inverse Simpson index and the clearance 
rate (Figure 1B; rank P = 0.042), which indicates that more diversi-
ty in NK repertoire is correlated with a slower SARS-CoV-2 clear-
ance rate.  After adjusting for age and sex, there was a significantly 
higher viral clearance rate in the low-NK-diversity patients com-
pared with high-NK-diversity patients (Figure 1C; P = 0.033).

To further investigate whether specific NK subsets correlate with 
more rapid SARS-CoV-2 clearance, we applied t-distributed stochas-
tic neighbor embedding (tSNE) analysis to compare the immuno-
phenotypic differences between patients with faster and slower 
viral clearance rates. There is a clear separation of NK cell subsets 

ing that these cells interact with virus-infected host cells (19–21). NK 
cells are innate immune cells that play critical roles in antiviral and 
antitumor responses. Unlike cytolytic T cells, which utilize recom-
bined antigen-specific receptors to detect infected or transformed 
cells, NK cells employ an array of germline-encoded activating 
and inhibitory surface receptors to recognize virus-infected cells 
and tumor cells (22). The balance between signaling from activat-
ing and inhibitory receptors determines the responses of NK cells 
(22). Interestingly, the existence of paired activating and inhibitory 
receptors, such as DNAM1 and TIGIT, which share the same ligands 
but transduce opposite signals upon binding, suggests that the del-
icate tuning of NK activities might be achieved by combinations of 
receptors (23, 24). Owing to recent advances in single-cell technol-
ogies, including mass cytometry, the unprecedented heterogeneity 
of the NK receptor repertoire has been revealed (25). The diversity 
of the NK receptor repertoire is correlated with susceptibility to viral 
infection and is affected by previous viral infections (26, 27).

In this study, we used a single-cell, mass cytometry–based 
proteomics platform to profile the immunophenotypes of NK 
cells from convalescent COVID-19 patients in depth, with a focus 
on the relationship between NK-related immune features and 
viral load. Our results showed that there is a negative correlation 
between the diversity of the NK receptor repertoire and the viral 
clearance rate. In addition, patients with a higher abundance of 
NK subsets expressing DNAM1 and its paired coinhibitory recep-
tor TIGIT had faster viral clearance than did patients with low 
levels of these receptors. We also demonstrated the cytolytically 
skewed character of the NK subset that expresses higher levels of 
DNAM1 and TIGIT. Finally, our data indicate that CD155 and nec-
tin-4, ligands that preferentially bind to DNAM1 paired receptors, 
are upregulated after SARS-CoV-2 infection and could modulate 
NK cell interactions with virally infected cells.

Results
Plasma and peripheral blood mononuclear cells (PBMCs) were 
collected from healthy donors (n = 12) and convalescent patients 
(n = 21) who had recovered from SARS-CoV-2 infection without 
admission to an intensive care unit or mechanical ventilation; 

Table 1. Cohort clinical characteristics

All Fast Slow P value
n/median (range) n/median (range) n/median (range) (fast vs. slow)

Number of patients n = 21 n = 11 n = 10
Sex

Female n = 10 n = 8 n = 2 0.030A,B

Male n = 11 n = 3 n = 8
Age, years 43 (18–74) 38 (23–62) 52 (18–74) 0.432C

Days with virus 27 (13–59) 20 (13–37) 37 (23–59) 0.001B,C

Days from symptom onset to admission 9 (1–21) 6 (1–13) 14 (1–21) 0.052C

Days hospitalized 52 (33–106) 42 (34–78) 67 (33–106) 0.024B,C

Fever
0 n = 12 n = 7 n = 5 0.362A

1 n = 7 n = 3 n = 5
AFisher’s exact test. BIndicates significance. CIndependent samples t test.

https://www.jci.org
https://doi.org/10.1172/JCI146408
https://www.jci.org/articles/view/146408#sd
https://doi.org/10.1172/JCI146408DS1
https://doi.org/10.1172/JCI146408DS1
https://www.jci.org/articles/view/146408#sd
https://www.jci.org/articles/view/146408#sd


The Journal of Clinical Investigation   R E S E A R C H  A R T I C L E

3J Clin Invest. 2021;131(21):e146408  https://doi.org/10.1172/JCI146408

Figure 1. SARS-CoV-2 clearance rate is associated with features of NK cells. (A) Upper: Frequencies of top 100 marker combinations from Boolean gating over 
the 21 patient samples. Each column represents a specific marker combination. Orange, dark blue, and light gray indicate positive (1: marker intensity higher 
than the threshold [CD56dim]) and negative (0: marker intensity lower than the threshold [CD56dim]) for the indicated markers and CD56dim, respectively. Lower: 
Frequencies of the indicated marker combinations for each patient. (B) Upper: Viral clearance rate plotted versus the inverse Simpson index of receptor reper-
toire diversity. Circles, individual patients. Blue, male. Red, female. Blue line, linear regression; gray shading, 95% confidence interval (rank P = 0.042). Lower: 
Table of slopes and inverse Simpson indices for each patient. (C) Box-and-whisker plot of slopes for each patient in high (n = 11) and low (n = 10) NK diversity 
groups. Maximums, 75th, 50th, 25th percentiles, and minimums are 0.757, 0.633, 0.573, 0.229, and 0.184 for the high group and 2.40, 1.50, 0.96, 0.451, and 
–0.012 for the low group. P = 0.033 by linear regression of the binary NK diversity coefficient. (D) Abundances of NK cells with indicated characteristics visualized 
in tSNE maps color coded by cell density (yellow, high; purple, low). The number indicates the cluster ID of each FlowSOM metacluster. (E) Expression levels of 
indicated markers visualized in tSNE maps. (F) Frequencies of indicated clusters in individual patients versus the viral clearance (P = 0.0469, 0.0214, and 0.0012, 
for clusters 5, 6, and 12, respectively). (G) Heatmap of median arcsinh-transformed intensities of indicated markers in each metacluster. (H) Biaxial contour plots 
of TIGIT and DNAM1 from patients in fast (n = 11) and slow (n = 10) clearance groups. The numbers indicate the percentage of cells in each quadrant. (I) Box-and-
whisker plot of frequencies of DNAM1hiTIGIThi cells in patients from slow and fast groups. Maximums, 75th, 50th, 25th percentiles, and minimums are 52.3, 
48.28, 39.80, 30.13, and 19.70 for the slow group and 73.90, 62.80, 51.70, 38.80, and 30.40 for the fast group. P = 0.0114 by 1-tailed, unpaired Student’s t test.
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Given the association of distinct NK subsets with viral clear-
ance rate, we evaluated the functional characteristics of different 
NK subsets in response to the target cell stimulation. We hypothe-
sized that NK cells in the faster viral clearance group not only have 
a unique cell-surface receptor repertoire but also have distinct 
functional capabilities. We reasoned that time-resolved progres-
sion analysis would detect transitions resulting from activation 
due to the dynamic changes of NK receptors when target cells are 
encountered. We utilized the EBV-transformed cell line 721.221 
as the model system (33). The 721.221 cells were cocultured with 
IL-2–primed or unprimed primary NK cells from healthy donors, 
samples were collected every hour over 9 hours, and surface 
immunophenotypes and intracellular cytokine and cytotoxic 
responses were quantified in the samples using mass cytometry 
(Figure 2A and Supplemental Table 3). First, Pearson’s correla-
tions were calculated between individual markers from the sin-
gle-cell mass cytometry data sets to determine the coexpression 
patterns of NK cell immunophenotypes and effector functions 
(Supplemental Figure 4A). As expected, the expression of NKG2A 
was strongly correlated with expression of its coreceptor CD94 but 
negatively correlated with the expression of the maturation mark-
er CD57. In line with previous reports, strong positive correlations 
were detected between MIP1a and MIP1b, and among IFN-γ, 
TNF-α, and CD107a (34). In contrast, activating receptors, such 
as CD16 and NKG2D, which are known to become downregulated 
after activation, showed a negative association with the functional 
effectors, including IFN-γ, TNF-α, and CD107a (35, 36).

To further dissect the kinetics of NK cell responses to target 
cell stimulation, the time-course single-cell data sets were ana-
lyzed using TICONET, a time-ordered coexpression network 
analysis (37), to trace the dynamic trajectories of individual NK 
subsets from the beginning to the end of coculturing (Figure 2A). 
Briefly, cells in each NK subpopulation from the 0-hour time 
point were defined as the original state of the NK subsets. A cell 
coexpression network was built by connecting cells with highly 
similar expression profiles. The breadth-first search algorithm 
was then applied to assign the time-ordered layer for all cells in 
the coexpression network. By tracing the trajectories from each 
original state to its fully activated state, the entire path composed 
of multiple transitional states was obtained for each NK subset; 
these paths cannot be revealed by analysis of cross-sectional data 
sets. To demonstrate the validity of TICONET in time-course 
mass cytometry data analysis, we analyzed a published data set 
that includes serial time point single-cell mass cytometry pro-
files from mouse embryonic stem cells differentiating into the 
3 germ layers: endoderm, mesoderm, and ectoderm (38). The 
expression levels of individual markers from the dynamic tra-
jectories ordered by TICONET showed strong correlations with 
their expression at the actual time points (r = 0.8, 0.69, 0.94, and 
0.73 for combined 3 cell types, ectoderm, endoderm, and meso-
derm, respectively; Supplemental Figure 4B).

We then applied TICONET to examine the coexpression 
networks of the kinetics of NK cell responses to target cell 
stimulation. Although factors such as CD107a, IFN-γ, and 
TNF-α were often coexpressed in fully activated NK cells, 
how coexpression was reached differed. For example, some 
NK subsets (clusters C4, C5, and C11) showed early and high 

between the 2 groups of patients in the tSNE map (Figure 1D and 
Supplemental Figure 1B). Specifically, NK subsets expressing higher 
levels of activating receptors NKp46, NKp30, and DNAM1 and the 
paired coinhibitory receptor of DNAM1, TIGIT, were enriched in 
patients with faster viral clearance (Figure 1, D and E, and Supple-
mental Figure 2). We next performed cluster analysis on all NK cells 
using FlowSOM (31) and identified the clusters with abundance cor-
related with the viral clearance rate. Three clusters, 5, 6, and 12, were 
significantly positively correlated with viral clearance rate (Figure 1F 
and Supplemental Figure 3A). All 3 of these clusters are composed of 
cells that have high levels of expression of DNAM1 and TIGIT, and 
2 (clusters 6 and 12) are characterized by high levels of NKp46 and 
NKp30 (Figure 1G). Interestingly, cluster 12 is also characterized by 
high levels of NKG2A (Figure 1G). This cluster might contain educat-
ed NK cells that have enhanced effector functions (32). Furthermore, 
these specific NK subsets were recapitulated using conventional 
manual gating on only DNAM1 and TIGIT (slow vs. fast: 39.80% vs. 
51.70%, P = 0.0114; Figure 1, H and I) or NKp30 and NKp46 (slow vs. 
fast: 31.70% vs. 41.80%, P = 0.0461; Supplemental Figure 3, B and 
C), indicating the robustness of the analysis.

To rule out the possibility that the observed differential 
expression is due to technical batch effects, we barcoded samples 
before pooling and staining simultaneously. Immunophenotypic 
features specific to the fast (DNAM1hiTIGIThi) and slow (DNAM1lo 

TIGITlo) groups were observed in the same batches of staining, 
demonstrating that the group-specific immune features were not 
due to batch effects (Supplemental Figure 3D). Also, the observed 
immunophenotypic features were validated with fluorescent flow 
cytometry (Supplemental Figure 3E). Thus, the results of this 
comprehensive high-dimensional immune profiling of the NK cell 
compartment revealed unique NK immune features that correlate 
with the SARS-CoV-2 clearance rate.

Figure 2. NK cell subsets have distinct kinetics and effector functions in 
response to target cell stimulation. (A) Schematic diagram of the experi-
ment. Primary NK cells were cocultured with 721.221 cells, and collected at 
different time points for immunophenotyping and intracellular function-
al effector staining followed by mass cytometry (CyTOF) analysis. The 
resultant data set was utilized to build the TICONET. The levels (L1 to Ln) 
in the TICONET represent the time order of coexpressed gene sets. Each 
TICONET starts from a cluster of 0-hour time point cells, labeled L1. Cells 
in the next level are the most similar to the cells in the previous level. (B) 
Heatmap of arcsinh-transformed marker intensities of protein expression 
from the 0-hour time point NK cells in clusters C1 to C11. (C) Line graphs 
of arcsinh-transformed intensities of the indicated markers from NK cells 
in each TICONET. The cytolytically skewed clusters are designated by the 
green box. (D) Schematic illustration of the strategy of machine learning. 
Purple dots represent the expression profiles of TNF-α–skewed NK cells, 
and green dots represent the cytolytically skewed NK cells. Purple and 
solid green lines indicate TNF-α– and CD107a-positive thresholds, respec-
tively. (E) AUROC curves of XGBoost models during 10-fold cross validation. 
The solid curve represents the average curve of 10 ROC curves. (F) Markers 
in order of feature importance in the final XGBoost model trained on the 
entirety of selected data. F scores are indicated. (G) Box-and-whisker plot 
of quantification of the killing efficiency of SARS-CoV-2–infected cells by 
DNAM1hiTIGIThi cells (n = 11) and as not-double-positive cells (n = 12) in 2 
independent experiments. Maximums, 75th, 50th, 25th percentiles, and 
minimums are 20.20, 6.10, 5.00, –3.20, and –4.10 for DNAM1hiTIGIThi NK 
cells and 5.10, 1.80, –0.60, –5.50, and –8.80 for the not-double-positive NK 
cells. P = 0.017 by 1-tailed, unpaired Student’s t test.
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expression of cytolytic degranulation marker CD107a and then 
expressed TNF-α, whereas CD57+ NK subsets first secreted 
TNF-α and subsequently CD107a (Figure 2, B and C). Interest-
ingly, all cytolytically skewed clusters expressed higher levels 
of DNAM1 and NKp30 than other clusters, which is similar to 
the immunophenotypes of the clusters positively correlated 
with viral clearance rate. In addition, without IL-2 priming, 
DNAM1hi and NKp30hi clusters were identified and showed 
early and high cytolytic activities upon target cell stimulation 
(Supplemental Figure 4, C and D).

Consistent with the TICONET analysis, when we applied a 
machine learning algorithm to predict different NK functional pheno-
types using surface receptors only (Figure 2D), we were able to iden-

tify the NK subsets that predominantly expressed CD107a with good 
accuracy (average area under the receiver operating characteristic 
curve of 75%) during cross validation (Figure 2E). Notably, DNAM1 
and its paired coreceptor, CD96, are enriched in the CD107a-skewed 
subset (Figure 2B), and ranked as 2 of the top 5 most informative 
markers for the prediction (Figure 2F and Supplemental Figure 
4E). In line with these findings, when DNAM1hiTIGIThi NK cells 
and not-double-positive NK cells were isolated and cocultured with 
SARS-CoV-2–infected Calu-1 cells, which are of lung epithelial cell 
origin, we observed stronger killing efficiencies for the NK cells that 
expressed DNAM1 and TIGIT than for NK cells that did not express 
these proteins (P = 0.017; Figure 2G). These results implied that even 
upon stimulation with the same target cells, NK subsets with different 

Figure 3. SARS-CoV-2 induces the expression of 
factors in infected cells that allow evasion of NK-me-
diated cytotoxicity. (A) Dot plots of differential 
expression of indicated ligands induced upon infec-
tion of A549 cells (gray) and Calu-1 cells (black) with 
SARS-CoV-2. Differential expression was calculated 
by subtracting the arcsinh-transformed intensities 
of ligands in cells that do not express N protein from 
N protein–positive cells. Results were validated in 
4 independent experiments (n = 4). Data represent 
mean ± SEM. (B) Representative image of H&E-
stained lung tissue from a COVID-19 patient demon-
strating organizing diffuse alveolar damage. (C) 
Representative immunofluorescence images of a lung 
tissue section from a SARS-CoV-2–infected patient 
stained for CD155 (red), N protein (green), and DAPI 
(white). The rectangle in the upper image indicates 
the region magnified in the lower image. (D) Sche-
matic of the experiment used to evaluate cytotoxicity 
of primary NK cells against SARS-CoV-2 pseudovirus–
infected cells. A mixture of infected (RFP+) and unin-
fected (RFP–) Calu-1 cells were labeled with CFSE and 
injected subcutaneously into mice on day 0. Primary 
NK cells were expanded and injected intravenously 
on the same day. Control mice were injected with PBS 
rather than NK cells. Calu-1 cells were analyzed by 
flow cytometry on day 3. (E) Representative biaxial 
plot of dissociated Calu-1 cells from mice treated as 
described in panel D stained with annexin V and DAPI. 
(F) Quantification of dead Calu-1 cells from 7 mice 
from 2 independent experiments described in panel 
D. Maximums, 75th, 50th, 25th percentiles, and min-
imums for uninfected cells in mice treated with PBS 
were 31.89, 23.99, 1.83, 0.90, and 0.63, respectively; 
for uninfected cells in mice treated with NK cells were 
85.64, 83.02, 75.88, 46.94, and 28.54, respectively; 
for infected cells in mice treated with PBS were 19.82, 
19.37, 0.93, 0.83, and 0.76, respectively; for infected 
cells in mice treated with NK cells were 64.12, 55,45, 
48.35, 34.65, and 29.54, respectively. P = 0.0278 by 
Tukey’s multiple comparison test.
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receptor repertoires have differential effector functions. In addition, 
NK subsets with similar immunophenotypes to those enriched in the 
fast viral clearance group tended to respond to target cell stimulation 
with cytolytic activities first and then with TNF-α secretion. Interest-
ingly, previous studies reported that patients with severe COVID-19 
had higher frequencies of CD57+NKG2C+ adaptive NK cells than 
patients with mild symptoms (21, 39). Our finding that CD57+ NK 
subsets initially respond to target cells with TNF-α secretion, whereas 
DNAM1hiTIGIThi NK cells respond with cytolytic activities, suggests a 
potential mechanistic link that should be further explored.

Finally, we infected 2 different cell lines of lung epithelial cell 
origin, A549 and Calu-1 cells, with SARS-CoV-2 or with a pseudo-
virus that displays the SARS-CoV-2 glycoprotein on its surface and 
investigated the phenotypic changes induced by the virus using mass 
cytometry with a panel of antibodies against ligands known to bind 
to receptors on immune cells (Supplemental Table 4). Interestingly, 
CD155 was among the ligands that were highly upregulated in both 
cell lines after SARS-CoV-2 or pseudovirus infection (Figure 3A and 
Supplemental Figure 5A). The upregulation of CD155 in SARS-CoV-2–
infected lung epithelial cells was further confirmed by the colocaliza-
tion of CD155 with virus N protein by immunostaining of lung sections 

from a COVID-19 patient (Figure 3, B and C). Interestingly, nectin-4, 
another ligand known to bind TIGIT (40), was also upregulated in 
SARS-CoV-2–infected cells (Figure 3A and Supplemental Figure 5B).

Given that CD155 and nectin-4 are known to interact with 
DNAM1 paired receptors, including TIGIT and CD96, on NK 
cells, we hypothesized that SARS-CoV-2 evades NK cell–mediated 
cytolytic activities (23, 24). To test this hypothesis, we established 
a Calu-1 cell line that stably expresses pseudovirus and RFP and 
coinjected it with uninfected Calu-1 cells into immunocompro-
mised mice (Figure 3D). After mice were injected with expanded 
primary NK cells, preferential killing of uninfected Calu-1 cells 
was observed (uninfected vs. infected: 75.88% vs. 48.35%, P = 
0.0248; Figure 3, E and F), suggesting that the virally infected cells 
can escape from the immunosurveillance mediated by NK cells. 
Interestingly, the ligands HLA-ABC and PDL-1 are also induced by 
SARS-CoV-2 infection (Figure 3A) and could potentially contrib-
ute to the immune escape mediated by SARS-CoV-2 (41).

To further confirm that SARS-CoV-2 immune escape occurs 
through the DNAM1 paired receptor pathways, we cocultured 
SARS-CoV-2–infected target cells with primary NK cells in the 
absence or presence of recombinant TIGIT-Fc protein. We found 

Figure 4. SARS-CoV-2 escapes immune surveillance through the DNAM1 paired receptor pathway. (A) Killing efficiency of SARS-CoV-2–infected Calu-1 cells 
by primary NK cells with or without TIGIT-Fc from 2 independent experiments (n = 6). Maximums, 75th, 50th, 25th percentiles and minimums for TIGIT-Fc 
alone were 11.40, 10.43, 7.50, 6.10, 4.90; for NK cells alone were 10.70, 10.48, 8.10, 4.50, 2.40; and for NK cells with TIGIT-Fc were 18.10, 17.28, 14.20, 10.88, 9.60, 
respectively. P = 0.0130 between TIGIT-Fc alone and NK cells with TIGIT-Fc and P = 0.0076 between NK cells alone and NK cells with TIGIT-Fc; Tukey’s multiple 
comparison test. (B) Box-and-whisker plots of relative CD155 protein (left) and peptide (right) levels in control sera, sera from patients with mild COVID-19, 
and sera from patients with severe COVID-19. Maximums, 75th, 50th, 25th percentiles and minimums for control, mild COVID-19, and severe COVID-19 in the 
protein data set were 0.31, –0.07, –0.23, –0.33, and –0.75; 0.18, 0.02, –0.13, –0.25, and –0.59; and 0.45, 0.33, 0.21, –0.09, and –0.21, respectively (n = 72). Values 
in the peptide data set were 0.61, 0.27, –0.10, –0.27, and –0.58; 0.87, 0.11, –0.11, –0.20, and –0.44; and 1.09, 0.47, 0.30, 0.08, and –0.21, respectively (n = 61). P = 
1.03 × 10–5 for protein data set and P = 0.00364 for peptide data set; linear regression. (C) Histogram overlays of percentage of the maximum events for DNAM1 
and NKp30 in NK cells from 2 healthy donors versus fluorescence intensity. (D) The efficiencies of killing of pseudovirus-infected A549 cells (target, T) by NK 
cells from 2 healthy donors (effector, E) at 3 effector/target (E-T) ratios. The means ± SEM for NK cells from healthy donor no. 4 (DNAM1hi and NKp30hi) and 
healthy donor no. 5 (DNAM1lo and NKp30lo), respectively, were 64.0% ± 1.79% and 34.90% ± 0.40% in 10:1 conditions, 34.78% ± 2.99% and 5.92% ± 1.73% in 
2.5:1 conditions, and 14.93% ± 0.93% and 4.91% ± 7.16% in 0.25:1 conditions. P = 0.0225 by linear regression.
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once with serum-free RPMI medium, cells were stained with cispla-
tin (Sigma-Aldrich) at a final concentration of 25 μM for 1 minute at 
room temperature to label dead cells and then quenched by adding an 
equal volume of RPMI with 10% FBS for 3 minutes for viability stain-
ing. Cells were fixed in 1.6% paraformaldehyde (Electron Microscopy 
Sciences) in PBS at room temperature for 10 minutes, and 100% ice-
cold methanol was used to permeabilize cells on ice for 10 minutes. 
For intracellular marker staining, cells were washed twice with CSM 
and stained with an intracellular antibody cocktail prepared in CSM in 
a final volume 100 μL for 30 minutes to 1 hour at room temperature. 
The antibodies used are listed in Supplemental Tables 2–4. Cells were 
then washed twice with CSM and stained with Cell-ID Intercalator-Ir 
(191Ir and 193Ir; Fluidigm) at a final concentration of 125 nM in 500 μL 
4% fresh paraformaldehyde (diluted in PBS) overnight at 4°C to stain 
DNA. Finally, cells were resuspended in MilliQ water containing EQ 
Four Element Calibration Beads (Fluidigm) for normalization, and 
data were acquired on a CyTOF2 mass cytometer (Fluidigm). For the 
live-cell barcoding, PBMCs from 1 patient and 1 healthy donor were 
incubated with individual platinum-labeled CD45 antibody conju-
gates separately. Cells were then washed and pooled together for sub-
sequent incubation with cell-surface antibody cocktail, as described 
previously (46). For the coculture experiments with 721.221 cells and 
for epithelial cell ligand profiling experiments, cells were stained with 
cisplatin, fixed, barcoded using palladium and permeabilized with 
saponin as previously described (44, 45, 50), and stained with indicat-
ed antibody panels.

Data acquisition, analysis, and diversity calculation for mass cytom-
etry. Data in raw FCS files were normalized using the Fluidigm Helios 
software or the Premessa R package and gated in Cytobank (Supple-
mental Figure 5C). The marker intensities were arcsinh transformed 
with a cofactor of 5, analyzed, and visualized using viSNE and Flow-
SOM (Cytobank). Diversity scores for each patient were calculated 
based on the Boolean expression of 22 NK surface markers (CD38, 
NTB, CD16, 2B4, CD161, NKG2D, DNAM1, TIGIT, NKp46, NKp30, 
NKG2A, CD7, LILRB1, CD86, CD57, NKG2C, CD96, HLA-DR, 
KIR2DL1, KIR3DL1, KIR2DL3, and CD56) using the inverse Simpson 
index (27). The mouse A20 cell line was stained as the negative con-
trol, and the 99th percentile intensity of each marker was defined as 
the threshold for Boolean gating.

Machine learning. The eXtreme Gradient Boosting (XGBoost), a 
robust algorithm in classifying tasks (47), was applied to classify sub-
sets of NK cells using 30 surface markers. Because of the difference in 
intensity value ranges between TNF-α and CD107a, we first normal-
ized their intensities by subtraction of their positive threshold values 
for each cell (99th percentile intensity at time point 0 was defined as 
the positive threshold). Then, we divided the NK cells based on the 
normalized intensity ratios of TNF-α to CD107a into TNF-αhi (intensi-
ty ratio ≥ 6) and CD107ahi (intensity ratio ≤ 1/6) groups. The XGBoost 
library was implemented in the Scikit-Learn for Machine Learning 
analysis (48). To avoid overfitting, we applied 10-fold cross valida-
tion in which 80% of the data were used for training models and the 
remaining 20% of data were withheld for evaluation of the prediction 
performance. In the training process, accuracy and area under the 
receiver operating characteristic (AUROC) curve were required to 
improve at least once every 2 rounds. In addition to trainable param-
eters, hyperparameters of XGBoost were tuned and optimized. The 
model that achieved the highest AUROC score had parameters ETA = 

that the killing efficiency of virus N protein–positive cells was 
enhanced by the recombinant TIGIT-Fc protein (with TIGIT-Fc 
vs. without TIGIT-Fc: 14.2% vs. 8.1%, P = 0.005; Figure 4A). By 
analyzing published proteomic data on serum samples from 
COVID-19 patients, we found that the level of CD155 is highly 
associated with the disease severity (P = 1.03 × 10–5 and 0.00364 
for protein and peptide, respectively; Figure 4B). Moreover, 
healthy donor cells with DNAM1hi and NKp30hi immunopheno-
types (Figure 4C) had stronger killing efficiency against pseudo-
virus-infected A549 target cells in vitro than did donor cells with 
lower levels of these proteins (Figure 4D). These results corrobo-
rate the essential role of the DNAM1 paired receptor pathways in 
the immune surveillance against SARS-CoV-2.

Discussion
There are several limitations to our study. First, our cohort size was 
small, and predominantly peripheral blood was evaluated. Second, 
although we estimated the rate of viral clearance by fitting the curve 
of the viral loads from serial nasal swabs from each patient after 
admission, samples between exposure of patients to the virus and 
admission were not collected; therefore, these estimates may be 
flawed. Third, the NK profiles of uninfected family members in the 
same household would be of interest but were not available. Final-
ly, profiling NK cells in the peripheral blood during active infection 
might be biased due to the recruitment of NK cells to the primary sites 
of infection; therefore, we focused on samples collected from conva-
lescent patients. Additional studies that include analyses of preexpo-
sure samples will be required for validation of the correlations.

In sum, our mass cytometry–based analysis of 21 patients who 
had been infected with SARS-CoV-2 demonstrated a link between 
NK cell receptor repertoires and SARS-CoV-2 clearance rate. In 
addition, we also demonstrated that the extent of immune eva-
sion after SARS-CoV-2 infection could play a role in determining 
the viral clearance or disease severity. Our data indicate that NK 
subsets expressing the receptor DNAM1 are critical to rapid recov-
ery from SARS-CoV-2 infection. Our data suggest that therapeutic 
agents that block DNAM1 paired receptors should facilitate the 
clearance of SARS-CoV-2.

Methods
Viral load quantification by real-time PCR. Specimens, including oro-
pharyngeal swab and sputum, for each patient were collected and ana-
lyzed for SARS-CoV-2 RNA using quantitative real-time reverse-tran-
scription polymerase chain reaction (qRT-PCR) in accordance with 
the Taiwan Centers for Disease Control (TCDC) guidance (42, 43). 
The cycle threshold (Ct) values of qRT-PCR were used to quantify the 
viral loads for each patient.

Sample preparation for mass cytometry. Samples were processed 
as previously described, with some modifications (44, 45). Briefly, 
human PBMCs were isolated by density gradient centrifugation using 
Ficoll-Paque PLUS (GE Healthcare Bio-Sciences AB) and stored fro-
zen. The PBMCs were thawed for experiments and rested in RPMI 
with 10% fetal bovine serum (FBS) for 15 minutes. Then, cells were 
incubated with a cell-surface antibody cocktail prepared in cell stain-
ing media (CSM: PBS with 0.5% protease-free bovine serum albumin 
and 0.02% NaN3) in a final volume of 100 μL for 30 minutes to 1 hour 
at room temperature. After washing the cells once with CSM and 
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saline for 1 hour, sections were incubated with primary antibodies 
(anti–N protein antibody, clone 36, a gift from An-Suei Yang, Genom-
ics Research Center, Academia Sinica; anti-CD155 antibody, clone 
D8A5G, Cell Signaling Technology; anti–nectin-4 antibody, clone 
EPR15613-68) overnight at 4°C in a humidified chamber. Sections 
were then washed twice with wash buffer and incubated for 1 hour at 
25°C with secondary antibodies and counterstained with DAPI. Imag-
es were obtained on a Leica Eclipse E400 microscope equipped with 
a SPOT RT color digital camera model 2.1.1 (Diagnostic Instruments).

Ex vivo NK cell activation, expansion, and isolation. To expand and 
promote NK cytolytic activity, PBMCs were cocultured with K562-
41BBL-mbIL-15 cells (a gift from Chang Yu-Hsiang, National Taiwan 
University) in a G-Rex 24-well culture plate (Wilson Wolf) in X-VIVO 
15 medium with 5% human serum and 10 IU/mL IL-2 (R&D Systems). 
The medium was refreshed on days 3 and 5 with medium containing 
IL-2. After expansion for 7 days, NK cells were enriched with an NK 
cell isolation kit (Miltenyi Biotec) to at least 90% purity. The immuno-
phenotypes of unexpanded or expanded NK cells were profiled using 
mass cytometry (Supplemental Figure 5F).

Murine xenograft model. An aliquot of 5 × 106 Calu-1 RFP– and 
Calu-1 RFP+ (1:1) was injected subcutaneously into the right flank of 
NOD.Cg-Prkdcscid Il2rgtm1Wjl Tg(IL15)1Sz/SzJ mice (NSG-TG-HuIL15, 
Jackson Laboratory, 32–40 weeks old, male), followed by intravenous 
injection of PBS (n = 7) or 1 × 106 primary NK cells (n = 7) per mouse. 
After 3 days, mice were sacrificed and the tumor tissues were collected. 
The tumor tissues were minced in RPMI containing 10% FBS, collage-
nase IV (1 mg/mL), and DNase I (0.1 mg/mL) to dissociate the tumor 
cells. The cells were then stained with Annexin V (BD Biosciences) 
and DAPI in Annexin V assay buffer (BD Biosciences) for 15 minutes. 
The percentage of dead cells was determined by flow cytometry, and 
the background death rate (determined using dissociated cells from 
PBS-treated control animals) was subtracted. Mice were maintained 
as small breeding colonies in a specific pathogen–free environment 
of the animal facilities of the Institute of Biomedical Sciences, Aca-
demia Sinica. Protocols for the mouse experiments were approved by 
the Institutional Animal Care and Use Committee, Academia Sinica.

SARS-CoV-2 isolation and infection. Target cells were infected with 
patient-derived SARS-CoV-2 at MOI 0.1 (2,000 PFU/well). Virus was 
isolated by the TCDC and amplified in Vero E6 cells in MEM supple-
mented with 2% FBS at 37°C and 5% CO2. The ACE2-expressing A549 
and Calu-1 cells were plated at a density of 5 × 105 cells per well in a 
6-well plate and infected with SARS-CoV-2 for 24 hours. All proce-
dures were conducted following the laboratory biosafety guidelines 
of the TCDC and were conducted in a biosafety level 3 facility in the 
Institute of Biomedical Sciences, Academia Sinica.

SARS-CoV-2 spike pseudovirus production and infection. pCMV-
SARS-CoV-2G was constructed by replacing the open reading frame 
of VSV-G envelope protein in pCMV-VSV-G vector (Addgene, 8454) 
with the human codon-optimized spike gene of SARS-CoV-2. SARS-
CoV-2–based pseudoviruses were produced by transient transfection 
of HEK293T cells using X-tremeGENE HP DNA Transfection Reagent 
(Roche) with 30 μg of vector plasmid (pLAS2w.RFP-C.Ppuro, Nation-
al RNAi Core Facility Platform at the Institute of Molecular Biology/
Genomics Research Center, Academia Sinica), 30 μg of the lentiviral 
helper plasmid pCMV-dR8.2 dvpr (Addgene, 8455), and 15 μg pCMV-
SARS-CoV-2G. Transfection was carried out in 15-cm dishes accord-
ing to the manufacturer’s instructions. SARS-CoV-2 spike pseudoviri-

0.1, MAX_DEPTH = 8, SUBSAMPLE = 0.8, MIN_CHILD_WEIGHT = 
0.05, and L1_ALPHA = 1; other parameters were set to default values. 
These hyperparameters were then used to train the final model on the 
entirety of the data sets with 2,262 cells. Additionally, we implement-
ed the built-in function of XGBoost library to obtain an importance 
score for each feature from the final model.

Cells and culture conditions. HEK293T cells were obtained from 
American Type Culture Collection. The 721.221 cells were a gift from 
Garry Nolan’s lab at Stanford University. ACE2-expressing A549 and 
Calu-1 cells (49) were cultured in DMEM/F12 with 10% FBS and 1% 
penicillin-streptomycin. A549-ACE2-luciferase cells were generat-
ed by infecting A549-ACE2 cells with pLAS5w.FLuc.PeGFP lentivi-
rus (RNAi core, Academia Sinica). HEK293T and 721.221 cells were 
cultured in DMEM with 10% FBS and 1% penicillin-streptomycin or 
RPMI 1640 with 10% FBS and 1% penicillin-streptomycin, respective-
ly. Cells were incubated at 37°C in 5% CO2.

Coculture of 721.221 cells and NK cells. Primary NK cells were pro-
cessed as previously described, with some modifications (50, 51). Pri-
mary NK cells were purified from PBMCs using an NK cell isolation kit 
(Miltenyi Biotec), which results in at least 90% purity, and were incubat-
ed overnight with or without 10 IU/mL IL-2 (R&D Systems). For cocul-
turing, 721.221 cells were incubated with primary NK cells at a 1:1 ratio in 
U-bottomed 96-well plates containing RPMI 1640 with 10% FBS and 1× 
Brefeldin plus Monensin (BD Biosciences) and anti-CD107a antibody. 
The cells were maintained at 37°C in 5% CO2 atmosphere. Samples were 
collected at hourly intervals over a 9-hour time course and were analyzed 
by mass cytometry. The expression level of DNAM1 and TIGIT was mea-
sured for IL-2–primed or unprimed NK cells using flow cytometry (Sup-
plemental Figure 5D). The DNAM1hi and DNAM1lo NK cells expressed 
similar levels of IL-2 receptors (Supplemental Figure 5E).

TICONET construction on the 721.221 cells and NK cell coculture and 
the FLOW-MAP data set. The pipeline to build the TICONET based on 
the 37 marker intensities from NK cells (37) and 32 marker intensities 
from the mouse embryonic stem cells (38) consisted of 3 steps. First, 
all cells in the 0-hour time point were clustered into 11 clusters using 
FlowSOM (52), and the mouse embryonic stem cells collected on day 
0 were used as the initial nodes in the network. Second, the network 
was built by calculating Pearson’s correlation coefficients of all cell-
cell pairs with the cutoff set at 0.99. Third, the medians of the marker 
intensities in each time-ordered level in the TICONET were calculat-
ed and visualized using R language.

KIR genotyping. Genomic DNA from each patient was extracted 
from peripheral blood leukocytes using the DNeasy Blood & Tissue 
Kit (Qiagen) according to the manufacturer’s instructions, and sam-
ples were stored at −20°C until analysis. KIR ligand genotyping was 
performed using the KIR HLA ligand kit (CareDx) as per the manufac-
turer’s instructions.

Immunofluorescence and immunohistochemistry. Lung tissue sam-
ples from patients with COVID-19 were embedded into paraffin fol-
lowing standard protocols and sectioned at a thickness of 4 μm using 
a microtome. For immunohistochemistry and immunofluorescence 
staining, procedures described previously (44) were followed, with 
some modifications. The sections were deparaffinized, rehydrated, 
and immersed in epitope retrieval buffer (10 mM sodium citrate, pH 
6) in a pressure cooker. The sections were then rinsed twice with water 
and once with wash buffer (Tris-buffered saline plus 0.1% Tween, 
pH 7.2). After blocking with normal human serum in Tris-buffered 
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Peripheral blood samples from healthy donors were obtained from 
the Stanford Blood Center or donors in Taiwan who provided written 
informed consent. Mouse experimental procedures were reviewed 
and approved by the Animal Care and Use Committee of Academia 
Sinica, Taipei, Taiwan.
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ons encoding RFP were efficiently released into the supernatant. The 
A549 cells and the Calu-1 cells, both expressing ACE2, were infected 
with SARS-CoV-2–based pseudovirus for 24 hours.

In vitro killing assay. Calu-1 cells that overexpress ACE2 were seed-
ed at 10,000 cells per well in 96-well plates after 24 hours of SARS-
CoV-2 infection or mock treatment and then incubated with or with-
out 10 μg/mL human TIGIT protein, human IgG1 Fc tag (GeneTex) at 
37°C for 30 minutes and then cocultured with primary NK cells that 
were isolated from PBMCs of healthy donors using an NK cell isola-
tion kit (Miltenyi Biotec) or by sorting using a FACSAria (BD Biosci-
ences) for the DNAM1+TIGIT+ population. After coculture at 37°C 
for 2 hours, the cells were fixed with 4% paraformaldehyde at room 
temperature for 30 minutes, permeabilized using cold 100% meth-
anol at –80°C overnight, and washed in FACS buffer (PBS, 0.5%–1% 
bovine serum albumin, 0.1% NaN3). Samples were then stained with 
BV510 anti–human CD45 antibody (BioLegend, clone HI30) at 4°C for 
30 minutes, and then incubated with anti–N protein antibody (a gift 
from An-Suei Yang’s Lab), PE anti–cleaved PARP (BioLegend, clone 
QA17A17), and Alexa Fluor 594 goat anti–human IgG secondary anti-
body (Jackson ImmunoResearch). The killing efficiency was deter-
mined by flow cytometry and calculated based on the percentage of 
cleaved PARP in N protein–positive cells relative to signal from wells 
containing only the target cells.

A549 cells that express ACE2, SARS-CoV-2 spike pseudovirus, 
and luciferase were seeded at 5,000 cells per well in 96-well plates. For 
the killing assay, enriched primary NK cells were incubated with these 
target cells at ratios of 10:1, 2.5:1, and 1.25:1 at 37°C for 4 hours. The 
killing efficiency was determined by quantification of the decrease in 
cell-associated luciferase activity, as previously described (53).

Quantification of IL-2 receptor in PBMCs. Human PBMCs were 
stained with PE anti–human CD56 (BioLegend, clone MEM-188), 
PE-Cy7 anti–human CD3 (BD Biosciences, clone UCHT1), APC 
anti–human CD226 (DNAM-1; BioLegend, clone 11A8), PE/Cy7 anti–
human CD122 IL-2Rβ (BioLegend, clone TU27), PerCP/Cy5.5 anti–
human CD25 (BioLegend, clone BC96), and BUV563 rat anti–human 
CD132 (BD Biosciences, clone TUGh4) antibodies at 4°C for 30 min-
utes, and then cells were washed in FACS buffer. Data were acquired 
on an LSRII cytometer (BD Biosciences) and were analyzed based on 
fluorescence minus one or biological comparison controls using Flow-
Jo software (BD Biosciences) (Supplemental Figure 5E).

Statistics. GraphPad Prism was used to prepare box-and-whisker 
plots and for unpaired comparisons and linear regression. Fitting of 
generalized linear models and visualization were performed using 
stats, ggplot2, and pheatmap from the R package. A P value of less than 
0.05 was considered statistically significant.

Study approval. Peripheral blood samples were collected from 21 
donors who had COVID-19 as confirmed by RT-PCR and who provid-
ed written informed consent (IRB protocol: AS-IRB-BM-20006 v.2.). 
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