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Introduction
Cancer immunotherapy has remarkably improved the treatment 
landscape for patients with advanced melanoma. Melanoma  
is the result of a malignant transformation of melanocytes, 
which develop from neural crest cells during embryogenesis (1, 
2). The melanoma cancer cells arise from different stages of dif-
ferentiation between the neural crest precursors and fully dif-
ferentiated melanocytes (2–6). Melanomas are not only highly 
heterogeneous, but they also display a large degree of plasticity  
that is highlighted by the ability of the differentiated cancer 

cells to dedifferentiate into a more neural crest–like phenotype. 
Melanoma dedifferentiation is defined by the loss of melano-
somal antigens such as the melanoma antigen recognized by T 
cells 1 (MART-1/melan-A) or gp100, with the concomitant gain 
of neural crest markers such as the nerve growth factor recep-
tor (NGFR, a.k.a. CD271) or AXL (5, 7, 8). The expression of the 
melanosomal antigens is driven by the microphthalmia associ-
ated transcription factor (MITF), the master regulator of mela-
noma differentiation (9, 10). Therefore, the downregulation of 
MITF is a major feature of dedifferentiation. This phenotypic 
plasticity has been associated with therapeutic resistance to 
BRAF inhibitors, which is a feature of drug-resistant cells that 
persist after the majority of other cells have been eliminated 
by the targeted therapy (5, 6, 8, 11, 12). This plasticity has also 
been shown to be a resistance mechanism against melanocytic  
antigen-specific T cell adoptive cell transfer therapy in both 
mice (13) and humans (14). Furthermore, the proinflammatory 
cytokine TNF was shown to induce this dedifferentiation (13, 
14). The TNF-induced dedifferentiation was reversible with the 
removal of immune stimulation (14), suggesting that epigenetic 
and transcriptomic mechanisms may be at play.

Despite the multitude of studies on melanoma plasticity, its 
role in the context of immune checkpoint blockade therapy has 
not been elucidated. In fact, indirect evidence has led to the pos-
tulation that dedifferentiation would be a state of resistance to 
immunotherapy for melanoma (15–17). Therefore, we investigated 
whether melanocytic dedifferentiation is associated with a thera-
peutic response or resistance to programmed cell death 1 (PD-1) 
blockade therapy in patients with advanced melanoma.

Melanoma dedifferentiation has been reported to be a state of cellular resistance to targeted therapies and immunotherapies 
as cancer cells revert to a more primitive cellular phenotype. Here, we show that, counterintuitively, the biopsies of patient 
tumors that responded to anti–programmed cell death 1 (anti–PD-1) therapy had decreased expression of melanocytic markers 
and increased neural crest markers, suggesting treatment-induced dedifferentiation. When modeling the effects in vitro, we 
documented that melanoma cell lines that were originally differentiated underwent a process of neural crest dedifferentiation 
when continuously exposed to IFN-γ, through global chromatin landscape changes that led to enrichment in specific 
hyperaccessible chromatin regions. The IFN-γ–induced dedifferentiation signature corresponded with improved outcomes in 
patients with melanoma, challenging the notion that neural crest dedifferentiation is entirely an adverse phenotype.
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In vitro modeling of cytokine-induced melanoma dedifferen-
tiation. Previously, it has been reported that human melanoma 
cell lines can be categorized into 4 subtypes on the basis of their 
differentiation states: melanocytic, transitory, neural crest–like, 
and undifferentiated (6). Cell lines that are baseline differentiat-
ed, characterized by high expression of MART-1 and no expres-
sion of the neural crest marker NGFR, have an ability to become 
dedifferentiated upon exposure to TNF or a BRAF inhibitor (6, 
13). To determine whether IFN-γ induces this same phenotypic 
change, we established an in vitro system to model the pheno-
typic plasticity. Four baseline differentiated human melanoma 
cell lines (M262, M308, M399, and 3998mel) were treated con-
tinuously with human recombinant IFN-γ, and the change in 
phenotype was compared with the dedifferentiation induced by 
3 days of TNF treatment, which served as a positive control for 
melanoma dedifferentiation. Flow cytometry using fluorescent 
anti–MART-1 and anti-NGFR antibodies revealed dedifferentia-
tion of these 4 cell lines over the course of 2 to 5 weeks (Figure 
2A and Supplemental Figure 1A; supplemental material available 
online with this article; https://doi.org/10.1172/JCI145859DS1). 
The duration of continuous IFN-γ exposure needed to reach the 
maximal MART-1–low, NGFR-high state varied for each cell line 
but was comparable to the approximate 1-month time point at 
which the aforementioned biopsies were taken during the course 
of the patients’ anti–PD-1 therapy. In addition, in 4 human mel-
anoma cell lines that were baseline undifferentiated (M257A2, 
M370, M381, and M410), neither cytokine induced dediffer-
entiation. Interestingly, continuous IFN-γ exposure led to what 
appears to be a redifferentiation of some of these cell lines. The 
cells increased NGFR levels with no change in MART-1 levels, a 

Results
Loss of melanocyte lineage markers is associated with a clinical 
response to immune checkpoint blockade. To study the effect of the 
melanocyte lineage differentiation state, we analyzed baseline 
and on-therapy biopsies from patients receiving immune check-
point blockade (ICB) therapy in the CheckMate 038 clinical trial 
(18, 19). This was a prospective, multicenter, international, mul-
ticohort clinical trial designed to collect tumor biopsies from 
patients with metastatic melanoma treated with the anti–PD-1 
antibody nivolumab as frontline therapy, or after progressing on 
therapy with the anti–cytotoxic T cell antigen 4 (anti–CTLA-4) 
antibody ipilimumab, or receiving the combination of both anti-
bodies (18, 19). Of the 101 patients, 68 had paired biopsies, and of 
those paired biopsies, 27 were from patients with progressive dis-
ease (PD), 14 from patients with stable disease (SD), and 27 from 
patients with a complete response or a partial response (CRPR). 
On-therapy biopsies, collected from patients approximately 1 
month after starting on ICB therapy, had notable downregulation 
of MITF and MART-1 (MLANA) and a concomitant upregulation 
of AXL only in the CRPR group. The biopsies from patients in the 
SD and PD groups did not display significant changes in MITF, 
MLANA, or AXL expression following treatment (Figure 1). This 
observation is at odds with the conventional view of dedifferenti-
ation as a resistance mechanism (17), and indicates that dediffer-
entiation may serve as a marker of favorable response to immune 
checkpoint blockade. As the presence of IFN-γ signatures in 
biopsies is best correlated with a response to the anti–PD-1 ther-
apy (19–21), we hypothesized that the dedifferentiation of these 
responding tumors may be mediated by continued exposure to T 
cells producing IFN-γ.

Figure 1. Human melanoma dedifferentiation is associated with a response to anti–PD-1 therapy. (A) MITF, (B) MLANA, and (C) AXL gene expression 
levels in pre- and post-treatment biopsies from patients with PD, SD, or CRPR.
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— as well as the same cell lines exposed to 3 days of TNF as a posi-
tive control (Figure 2A).

To assess the effect of cytokine treatment on the melanoma 
transcriptome, we projected all samples onto a previously defined 
principal component analysis (PCA) framework of 54 baseline 
human melanoma cell lines spanning the 4 defined differentia-
tion states (6). As expected, the projection of the 8 cell lines seg-
regated according to the baseline differentiation status, with the 
dedifferentiated samples from either cytokine shifting toward a 
more neural crest–like state within the defined dedifferentiation 
trajectory (Figure 2B). We also interrogated the gene expression 

reversal of the last step of the previously described melanoma 
dedifferentiation trajectory from neural crest–like to undifferen-
tiated (Figure 2A, Supplemental Figure 1A, ref. 6).

Concordant transcriptomic programs reflect the phenotypic 
plasticity driven by IFN-γ and TNF. To study the mechanism of 
this cytokine-induced cellular plasticity, we performed whole- 
transcriptome RNA-Seq and assayed for transposase-accessible 
chromatin sequencing (ATAC-Seq) on the aforementioned 8 cell 
lines — 4 that were differentiated at baseline and dedifferentiated 
with IFN-γ exposure, and 4 that were undifferentiated at baseline 
and did not differentiate further with continuous IFN-γ exposure 

Figure 2. Human melanoma dedifferentiation is induced by exposure to IFN-γ. (A) Flow cytometric data for MART-1 and NGFR in the human melanoma 
cell lines M262 (baseline differentiated) and M370 (baseline undifferentiated) in response to TNF or IFN-γ exposure. (B) Projection of cytokine-treated cell 
lines onto melanoma M series differentiation PCA (6). Diff, baseline differentiated; undiff, baseline undifferentiated. (C) Expression of melanoma differ-
entiation genes for 0 hour, IFN-γ, and TNF across cell lines. U, undifferentiated at baseline, U-NC, undifferentiated neural crest–like, NC, neural crest–like, 
NC-T, neural crest–like transitory, T, transitory, T-M, transitory melanocytic, M, melanocytic. Colors represent z scores. (D) Common melanoma mutations 
across cell line studies. Nonsense or missense JAK/STAT mutations were not observed.
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genes. Examination of the enrichment of the terms from gene set 
enrichment analysis (GSEA), or GSEA-squared (25), confirmed 
the loss of pigmentation with the gain of inflammatory signaling 
following IFN-γ and TNF exposures (Figure 3, G and H, and Sup-
plemental Table 2).

TNF and IFN-γ induce dedifferentiation via distinct global chro-
matin landscape alterations. Evaluation of the ATAC-Seq tracks at 
the promoter of MLANA revealed no basal chromatin accessibility  
in undifferentiated cell lines as well as a decrease in chromatin 
accessibility of the differentiated cell lines upon IFN-γ– or TNF- 
induced dedifferentiation, consistent with the flow cytometric 
and RNA-Seq data (Figure 4A). ATAC-Seq tracks at the promot-
er of AXL also revealed the expected pattern, with no changes in 
the baseline undifferentiated cell lines upon cytokine exposure, 
as well as increased peaks in the baseline differentiated cell lines 
when they dedifferentiated upon cytokine exposure (Figure 4A). 
Pair-wise comparisons of cytokine-stimulated with unstimulated 
cell lines revealed between 2500 and 7000 peaks that were hyper-
accessible following either IFN-γ or TNF exposure (Figure 4B). 
Interestingly, IFN-γ induced a similar number of hyperaccessible 
peaks for both the baseline differentiated and the undifferentiated  
cell lines, but TNF induced a large number of hyperaccessible 
peaks only in baseline differentiated cell lines (Figure 4B). PCA of 
all induced ATAC-Seq peaks showed that the baseline differenti-
ated and the undifferentiated cell lines existed in 2 different epig-
enomic states. TNF exposure in undifferentiated cell lines caused 
minimal epigenetic changes but drove drastic changes toward the 
undifferentiated state in the baseline differentiated ones, consis-
tent with the transcriptional response (Figure 4C). The baseline 
differentiation states and the shared phenotypic change due to 
IFN-γ and TNF exposure were best represented by PC1, whereas 
PC2 best defined the divergence in the effects of the 2 cytokines, 
revealing the IFN-γ–specific response. Despite inducing the com-
parable changes in NGFR and MART-1 status based on protein 
expression, exposure to either of the 2 cytokines resulted in dis-
tinctive chromatin alterations, which manifested as a shift along 1 
or both axes of the PCA analysis. Of note, PC2 also supported the 
redifferentiation phenomenon (Figure 4C) observed in the flow 
cytometric data (Figures 2A and Supplemental Figure 1A).

K-means clustering of accessible chromatin peaks induced by 
either cytokine revealed that the changes in chromatin accessibil-
ity fell into 3 main patterns: IFN-γ–inducible across the 2 baseline 
states, TNF-inducible, but only in the differentiated cell lines, 
and common to both IFN-γ and TNF, but only in the undifferen-
tiated cell lines where these regions were open at baseline (Figure 
4D and Supplemental Figure 3A). This suggests the presence of a 
high baseline signaling pathway that may be responsible for the 
lack of a further response to stimulation by TNF. Motif enrichment 
analysis of the ATAC peaks revealed distinct clusters of transcrip-
tion factors whose binding sites were opened upon IFN-γ or TNF 
exposure. Notably, no common motifs were enriched to compa-
rable levels in the IFN-γ– and TNF-induced peaks. The motifs of 
select IRF proteins were the most highly enriched following IFN-γ  
treatment, whereas the motifs of the ATF3, BATF, and AP-1 family 
factors were the most highly enriched following TNF treatment, 
even more so than those of NF-κB (Figure 4E and Supplemental 
Figure 3B). Both TNF and IFN-γ exposures led to largely hyper-

profiles of our samples for the enrichment of previously defined 
gene signatures for various melanoma differentiation states, from 
melanocytic to undifferentiated. We observed a clear downreg-
ulation of the melanocytic subtype signature with either cyto-
kine-driven dedifferentiation, with a concomitant enrichment of 
the neural crest or transitory subtype signatures (Figure 2C). We 
found no distinguishing patterns between the 2 groups of cell lines 
with regard to nonsense or missense mutations in well-studied 
relevant genes that may have contributed to the observed dif-
ferences (Figure 2D). In addition, neither group harbored con-
sequential mutations in genes that code for critical members of 
the IFN-γ response pathway, as previously reported in melanoma 
tumors (22, 23), suggesting that these cell lines all activate IFN-γ– 
dependent transcription factors upon stimulation (Supplemental 
Figure 1B and Supplemental Figure 2, A and B).

In order to identify commonly induced genes across all cell 
lines, we performed partial least squares regression (PLSR) on 
baseline versus cytokine-exposed cell lines. All 8 samples had 
clear cytokine responses regardless of their baseline differentia-
tion status (Figure 3, A and C), which confirms that the difference 
in phenotype was not attributable to any lack of cytokine response 
in 1 group. Ranking of the genes induced by continued IFN-γ expo-
sure across the 8 cell lines revealed upregulation of IFN regulatory 
factor 1 (IRF1), SOCS1, and STAT1 (Figure 3B and Supplemental 
Table 1). The K-means clustering of the top 300 upregulated genes 
revealed a cluster of genes that were commonly induced to simi-
lar levels in both baseline-differentiated and undifferentiated cell 
lines upon continued IFN-γ exposure (Figure 3B). It also revealed 
a distinct cluster of genes that were strongly induced in only the 
undifferentiated cell lines (Figure 3B), which suggests the induc-
tion of a transcriptional response from these cell lines despite 
their already dedifferentiated state. The clusters of genes highly 
upregulated in the dedifferentiating group were also upregulated  
to similar levels in the baseline undifferentiated group, which 
indicates that the IFN-γ downstream signaling was preserved 
regardless of the differentiation status and suggests that epigen-
etic differences not captured by the gene expression analysis may 
be responsible for the diverging plasticity. The ranking of genes 
induced by TNF across the 8 cell lines pointed to a much stron-
ger upregulation of TNF, TNFAIP3, and NFKBIA in comparison 
with their rank in the IFN-γ analysis (Figure 3D and  Supplemental 
Table 1). The K-means clustering of the top 300 upregulated genes 
revealed a cluster of genes that were much more strongly induced 
in the samples that dedifferentiated, indicating a transcriptional 
program induced by TNF that is unique to cells capable of the phe-
notypic switch. We additionally looked at the cross enrichment 
of 1 cytokine with the top 300 induced genes from the other. The 
TNF matrix with the top 300 IFN-γ–induced genes and the IFN-γ 
matrix with the top 300 TNF-induced genes showed similar levels 
of induction (Supplemental Figure 2, C and D).

To determine whether the IFN-γ– and TNF-induced dediffer-
entiation states had similar gene expression profile changes, we 
performed rank-rank hypergeometric overlap analysis (24), which 
revealed substantial overlap in IFN-γ– and TNF-induced genes 
(Figure 3E), with an even higher degree of overlap at the gene set 
level (Figure 3F). These data indicate concordant gene programs 
despite the difference in the inducible expression of individual 
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enrichment for chromatin regions near genes involved in the IFN 
response and antigen presentation (Figure 4F).

Motif enrichment analysis of hyperaccessible chromatin regions 
following IFN-γ and TNF exposure reveals regulators involved in dedif-
ferentiation. We next asked how the baseline differentiation states 

accessible chromatin in intergenic regions that were associated 
with axon guidance and cell migration (Figure 4F). However, 
their effects were distinct, in that TNF opened chromatin regions 
near genes associated with MAPK pathway, neuronal system, 
and growth factor signaling, whereas IFN-γ generated stronger 

Figure 3. IFN-γ and TNF stimulation induces the expression of common genes across cell lines to generate comparable MART-1–low/NGFR-high 
dedifferentiation states. (A) Varimax-rotated PLSR on IFN-γ–exposed samples compared with 0-hour (untreated) samples. (B) Left: Genes contribut-
ing to a common IFN-γ response across samples. Right: K-means clustering of top 300 gene loadings. Left column shows untreated and right column 
shows after IFN-γ exposure for each cell line. (C) Varimax-rotated PLSR on TNF compared with untreated samples. (D) Left: Genes contributing to a 
TNF response across samples. Right: K-means clustering of top 300 gene loadings. Left column shows untreated and right column shows after TNF 
exposure for each cell line. (E) Overlap of IFN-γ– and TNF-induced gene expression by ranked loadings. (F) Concordant GO term overlap (NESs) between 
IFN-γ– and TNF-induced gene expression. The number shown at the top of E and F is the maximum –log10(P value) of the RRHO heatmap. (G and H) 
Enrichment of gene sets involving pigmentation, mitosis, transcription, IFN signaling, and cytokines following IFN-γ or TNF exposure. *P < 0.1, **P < 
0.01, and ***P < 0.001, by signed KS test.
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of the melanoma cell lines, their baseline epigenomic profiles, and 
signaling network affected their response to IFN-γ stimulation. 
Although similar numbers of peaks were found to be inducible by 
IFN-γ in baseline differentiated and undifferentiated cell lines, we 
detected minimal overlap in the induced regions, and neither of 
the inducible peaks overlapped significantly with TNF-inducible 
peaks (Figure 5, A and B). Thus, although both TNF and IFN-γ led 
to a parallel transition to the dedifferentiated phenotype defined 
by similar gene programs, their effects on the chromatin landscape 
were stimulus specific. Notably, the undifferentiated cell lines had 
minimal chromatin remodeling in response to TNF, despite the 
observed changes in gene expression. In addition, when exposed 
to continuous IFN-γ, these lines had levels of remodeling com-
parable to that of the baseline differentiated cell lines, although 
they did not undergo further phenotypic dedifferentiation. As the 
majority of the IFN-γ–induced peaks for the 2 groups did not over-
lap (Figure 5B), the overall response to IFN-γ seemed to depend on 
the cell line’s baseline epigenomic state.

In order to dissect the peaks that may have been attributable to 
the differences in phenotypic plasticity, we used all the peaks that 
were significantly induced from baseline by either IFN-γ or TNF 
to perform K-means clustering (Figure 5C). Despite the evidence 
of cell line heterogeneity, the top transcription factors whose 
motifs were enriched in the induced peak regions were common 
across all 3 clusters for both cytokines. This suggests that, of all 
IRF1 or IRF2 binding sites throughout the genome that opened in 
response to IFN-γ, certain sites selectively opened in undifferenti-
ated cell lines (Figure 5C). Similarly, of all ATF3 or BATF binding 
sites in the genome, certain sites opened only in the cell lines that 
dedifferentiated in response to TNF (Figure 5C).

Upon IFN-γ exposure, most IRF and STAT binding sites 
became hyperaccessible in baseline differentiated and undiffer-
entiated groups except for STAT6. The binding motifs of STAT6 
and AP-2 proteins were enriched in the peaks in dedifferentiat-
ing cells only, driven by either cytokine. Upon TNF exposure, 
the inducible peaks were highly enriched in IRF and STAT bind-
ing sites only in the dedifferentiating group y (Figure 5D). TNF is 
known to trigger MAPK pathways, which lead to the transcription 
factor activity of ATF and AP-1 proteins. Motif enrichment analy-
sis revealed that the TNF stimulus led to the opening of the bind-
ing sites of AP-1 factors (Fosl1, Jun-AP, JunB, AP-1, c-Jun, JunD) 
following TNF-induced dedifferentiation, with no enrichment of 
these motifs in the inducible peaks of the undifferentiated cell 
lines following TNF exposure. On the contrary, the inducible 
peaks from all samples exposed to IFN-γ, regardless of baseline 
differentiation state, exhibited enrichment of the AP-1 family pro-
tein motifs (Figure 5D). In addition, PRDM1 was another factor 
whose motif had enrichment only in TNF-induced peaks, where-
as the motif for Oct4:Sox17 was only enriched in IFN-γ–induced 
peaks. Altogether, these data show that the baseline epigenomic 
state of the melanoma cells was the determinant of the resultant 
differential chromatin landscape modifications following IFN-γ or 
TNF cytokine exposure.

Inferred regulator activity analysis suggests common regulator 
activity changes between TNF- and IFN-γ–induced dedifferentiation. 
Given the similar binding motifs within families of transcription 
factors, such as within several IRFs, the NF-κB family proteins, 

and MAPK-activated transcription factors, we next explored the 
inferred activity of these candidate immune-signaling transcrip-
tion factors. Using ARACNe (Algorithm for the Reconstruction of 
Accurate Cellular Network), which applies mutual information 
to connect regulators and target genes, we constructed reverse- 
engineered melanoma-specific, IFN-γ response–specific transcrip-
tional networks. We next used VIPER (Virtual Inference of Protein 
Activity by Enriched Regulon) to infer the differential activity of 
over 9000 regulators in cytokine-treated versus baseline cell lines. 
In both TNF- and IFN-γ–exposed cell lines, the regulators TFAP2C 
(AP-2γ), SOX9, IRF3, and HMGA1 had high inferred activity only 
with dedifferentiation, confirming the ATAC-Seq data. On the 
other hand, MITF, β-catenin, and SOX10 had decreased inferred 
activity only in the dedifferentiating cell lines. In addition, the 
transcription factors PRDM1, NFKBIA, RXRB, and POU2F2 had 
positive changes in activity in both groups, albeit with higher activ-
ity in the dedifferentiating group (Figure 6, A and B). In addition, 
the comparison of this gene expression level–derived inferred 
activity of regulators between TNF and IFN-γ–exposed samples 
showed strong overlap of inferred activity changes in response to 
each cytokine (Supplemental Figure 4, A–D).

Changes in lipid, ribosomal, mitochondrial, and adhesion pro-
cesses distinguish the TNF- and IFN-γ–induced responses in baseline 
differentiated versus undifferentiated cell lines. To increase our 
understanding of this new effect of IFN-γ on melanoma cells, 
we performed analysis of the molecular and cellular changes 
defining proinflammatory cytokine–driven dedifferentiation. 
We used GSEA-squared analysis on gene expression signatures 
for differentiated and undifferentiated cell line groups exposed 
to IFN-γ or TNF and looked for the enrichment of programs and 
processes of interest. All cell lines upregulated immune and 
inflammatory programs, but the undifferentiated cell lines did 
not change phenotype with TNF exposure. The differences in 
TNF-induced chromatin remodeling observed between differ-
entiated and undifferentiated cell lines was correlated with the 
control of lipid, ribosomal, mitochondrial, and adhesion gene 
programs (Figure 7A). For IFN-γ, in both the differentiated and 
undifferentiated cell lines, immune response gene programs 
were commonly upregulated, while ribosomal and mitochondrial  
gene sets were downregulated. Consistent with differentiated 
and undifferentiated cell lines exhibiting a more equal mag-
nitude of IFN-γ–induced chromatin accessibility changes, we 
also noted fewer divergent gene set categories between these 2 
groups under IFN-γ exposure (Figure 7B).

Enrichment of the IFN-γ–induced dedifferentiation signature 
during anti–PD-1 therapy is associated with response. Dedifferen-
tiation of melanoma has been considered a form of resistance to 
therapy and associated with worse survival of patients (5, 6, 8, 
11, 12). However, because we observed the opposite correlation 
between a high AXL/MITF ratio in biopsies from patients who 
were responding to anti–PD-1 therapy, we sought to further inves-
tigate whether the full IFN-γ–driven dedifferentiation signature 
correlated with the therapeutic response. From the 7 signatures (4 
main signatures, 3 transitional signatures) spanning the 4 previ-
ously defined melanoma subtypes obtained from a previous study 
(6), the melanocytic subtype was excluded, and the remaining 
genes were filtered for the genes with a log2 fold change of great-
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er than 1 with IFN-γ treatment. These select upregulated genes 
henceforth comprised our IFN-γ–induced dedifferentiation sig-
nature (Supplementak Table 3), which was used to interrogate the 
CheckMate 038 biopsy cohort (19). An increase in the expression 
of the signature was found following anti–PD-1 therapy in biopsies 
of patients with an objective response (CRPR), with no significant 
changes from baseline among the nonresponding biopsies (Figure 

8A). Therefore, patients’ biopsies taken while responding to PD-1 
blockade therapy showed phenotypic dedifferentiation, whereas 
biopsies from nonresponding patients did not show a change in 
their differentiation state.

Baseline dedifferentiation in melanoma is associated with a 
response to anti–PD-1 therapy and improves outcomes. Finally, we 
analyzed whether the IFN-γ–induced dedifferentiation signature 

Figure 4. IFN-γ, compared with TNF, alters the chromatin landscape in a stimulus-specific manner. (A) Examples of hyperaccessible peaks upon cytokine 
stimulation. (B) Total number of hyper- and hypoaccessible peaks called for each listed comparison. U, undifferentiated at baseline; D, differentiated at 
baseline. (C) PCA of peaks differentially hyperaccessible from baseline after cytokine treatment. (D) K-means clustered heatmap of induced ATAC-Seq 
peaks across any stimulation condition for differentiated and undifferentiated melanomas (subcolumns are in the order 0 hour, IFN-γ, and TNF for each 
cell line). (E) Motif enrichment of IFN-γ– compared with TNF-induced genes. bZIP, basic leucine zipper domain; RHD, rel homology domain. (F) Top diver-
gent GO terms of nearby genes for IFN-γ– versus TNF-specific peaks.

https://www.jci.org
https://doi.org/10.1172/JCI145859


The Journal of Clinical Investigation   R E S E A R C H  A R T I C L E

J Clin Invest. 2021;131(12):e145859  https://doi.org/10.1172/JCI1458598

Figure 5. The basal chromatin landscapes of differentiated and undifferentiated lines result 
in distinct epigenomic responses upon cytokine stimulation. (A) Overlap of induced IFN-γ and 
TNF ATAC-Seq peaks. (B) Overlap of peaks separated by cell line baseline state. (C) Heatmap of 
differentially IFN-γ–inducible peaks for baseline differentiated and undifferentiated cell lines, 
with the top motif for each cluster listed (subcolumns are in the order 0 hour, IFN-γ, and TNF for 
each cell line), and heatmap of differentially TNF-inducible peaks for baseline differentiated and 
undifferentiated lines, with the top motif for each cluster listed. (D) Motif enrichment of IFN-γ– 
compared with TNF-inducible peaks for baseline differentiated and undifferentiated cell lines 
separately. Colors represent q values.
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states of dedifferentiation, despite displaying similar phenotypic 
dedifferentiation. IFN-γ elicited pronounced remodeling of the 
chromatin landscape in all tested melanoma cell lines, regardless 
of the baseline differentiation status. We observed a number of 
regulators that have been implicated in melanocyte differentia-
tion, and it is possible that the change in the activity of these reg-
ulators may facilitate the backward trajectory. For one, based on 
our VIPER analysis, β-catenin activity was inferred to be decreased 
in response to TNF- and IFN-γ–induced dedifferentiation, and 
Wnt/β-catenin signaling is known to play a role in human mela-
nocyte development from neural crest cells (26). Activator protein 
1 (AP-1) has been linked to dedifferentiation in the setting of  
TNF-induced dedifferentiation in mouse models (27), and we 
found that it was one of the top enriched motifs in the chroma-
tin regions opened in TNF-dedifferentiated cells and also in 
IFN-γ–dedifferentiated cells, albeit to a much lesser degree. On 
the other hand, our analyses also revealed transcription factors  
with previously unknown involvement in the phenotypic plas-
ticity of human melanomas.

Contrary to the conventional belief that melanocytic dedif-
ferentiation is a state of therapeutic resistance to targeted ther-
apies and immunotherapies (5, 6, 8, 11, 12, 17), we show that the 
consequence of this phenotypic plasticity depends on the context 
of the therapy. While it is a resistance mechanism against adop-
tive cell transfer using T cells against melanosomal antigens (13, 
14), we show that it is a surrogate marker for a positive response 
to immune checkpoint blockade therapy. Tumor infiltration by 
tumor-specific T cells triggers their T cell receptor (TCR) and 
downstream IFN-γ production upon antigen encounter, which is 
the mechanistic basis of responses to anti–PD-1 therapy. One of 
the advantages of IFN-γ signaling in cancer cells is the reactive 
expression of the PD-1 ligand 1 (PD-L1), which provides a means 
for the cancer cells to protect themselves from tumor antigen–
specific T cell killing (28). These T cells continue to be present in 
specific regions of the tumor (29), and their production of IFN-γ is 

could be a baseline prognostic or predictive marker in the Check-
Mate 038 biopsy cohort, which is representative of advanced and 
metastatic melanoma samples, and in the melanoma The Cancer 
Genome Atlas (TCGA) repository, which is mainly representative of 
primary melanomas and lymph node metastases. We noted a sig-
nificant spread in the expression of the IFN-γ–induced dedifferenti-
ation signature at baseline in the CheckMate 038 biopsy cohort, but 
separation of these 101 baseline biopsies according to the response 
to therapy showed that the biopsies from patients who went on 
to respond were more likely to have an increased IFN-γ–induced 
dedifferentiation signature (P = 0.06, by Wilcoxon test, Figure 8B). 
Moreover, the IFN-γ–induced dedifferentiation signature also cor-
related positively with overall survival in TCGA melanoma data set. 
Patients whose melanomas had high or intermediate expression of 
the IFN-γ dedifferentiation signature displayed improved overall 
survival compared with those with low expression of the signature 
(Figure 8C). Finally, we confirmed the importance of the melano-
cytic differentiation state in patient outcomes by analyzing the 84 
baseline biopsies from CheckMate 038 for the effect on patient sur-
vival of the expression levels of MITF and MLANA compared with 
AXL. We divided the data into 3 groups on the basis of the upper 
and lower quartiles of the log2 fragments per kilobase of exon per 
million fragments mapped (FPKM) expression level of each gene. 
Patients whose baseline biopsies had low expression of the mela-
nocytic markers MITF (Figure 9A) and MLANA (Figure 9B) had 
improved survival, whereas the group with high AXL expression 
had improved survival (Figure 9C).

Discussion
Here, we report what we believe to be a previously unobserved  
facet of IFN-γ, whereby continuous exposure to IFN-γ propelled 
melanoma cells toward an altered phenotype with diminished 
expression of melanosomal markers and increased expression of 
neural crest markers. Moreover, we demonstrate that melanoma 
cells exposed to IFN-γ and TNF reached 2 distinct epigenomic 

Figure 6. Differentiated and undifferentiated cell lines respond to cytokine stimulation with differences in inferred activity of both signal-dependent 
and lineage-determining transcription factors. (A and B) VIPER analysis showing inferred transcription factor activity for baseline differentiated versus 
undifferentiated cell lines following (A) TNF or (B) IFN-γ exposure. Regulators such as PRDM1, HMGA1, and SOX9 had high inferred activity only in the 
baseline differentiated group.
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acterizes the new phenotypic endpoint driven by IFN-γ and the 
transcriptional regulators that may be partaking in eliciting this 
change. In summary, melanoma dedifferentiation can be induced 
by chronic IFN-γ exposure and is associated with improved out-
comes in patients with melanoma.

Methods
Patients’ biopsy samples and RNA-Seq. The study CheckMate 038 
(NCT01621490) was a multi-arm, multi-institutional, prospective 
study to investigate the effects of nivolumab (3 mg/kg every 2 weeks)  
as a single agent, or the combination of nivolumab (1 mg/kg every 3 
weeks) plus ipilimumab (3 mg/kg every 3 weeks) given in 4 doses and 
followed by the single agent nivolumab (3 mg/kg every 2 weeks) (18, 19). 
Patients were treated until their disease progressed or for a maximum 
of 2 years, or they stopped therapy because of toxicities. Radiographic  
assessment of the patient’s response was performed approximately  
every 8 weeks until disease progression occurred. Progression was 
confirmed with a repeat CT scan at least 4 weeks later. Patients’ tumor 
response was defined according to Response Evaluation Criteria in Solid 
Tumors (RECIST), version 1.1. A response to therapy indicates the best 
overall response unless otherwise indicated. All patients underwent a 
baseline biopsy before commencing therapy (1–7 days before the first 
dose) and a repeat biopsy on cycle 1, day 29 (between days 23 and 29).

Baseline and on-therapy tumor tissue biopsies were stored with 
RNAlater (Ambion, Thermo Fisher Scientific) for subsequent RNA 
extraction using QIAGEN kits. Of 170 patients, 101 had a sufficient 
amount of RNA for RNA-Seq (Figure 1). The RNA-Seq library was pre-
pared using an Illumina TruSeq Stranded mRNA kit. Sequencing was 
done on an Illumina HiSeq sequencer using paired-end sequencing of 50 
bp for each mate pair. RNA-Seq reads were mapped using HISAT2, ver-
sion 2.0.4 (31) and aligned to the hg19 genome using default parameters. 
Reads were quantified by HTSeq, version 0.6.1 (32) with the intersec-
tion–non-empty mode and counting ambiguous reads if they fully over-
lapped. Raw counts were then normalized to FPKM expression values.

a favorable prognostic factor that can be detected by a transcrip-
tome of IFN-γ response genes (19–21). Once the negative interac-
tion between PD-1 and PD-L1 is released by checkpoint therapies, 
the antitumor T cells proliferate and produce increased IFN-γ, 
leading to an amplification of the antitumor immune response 
that mediates the clinical benefits (19, 28, 29). Therefore, our 
observation that responding melanoma biopsies undergo dedif-
ferentiation is highly concordant with our discovery in cell culture 
model systems that continuous exposure to IFN-γ in differenti-
ated melanomas leads to this phenotypic change. Moreover, in 
both the biopsies from patients treated with anti–PD-1 and TCGA 
melanoma database, we noted that the IFN-γ–induced dediffer-
entiation transcriptional signature was associated with improved 
outcomes. In both cases, it is likely that the dedifferentiation 
was an indirect reflection of IFN-γ produced by tumor antigen– 
specific T cells. However, since only melanomas that are originally  
phenotypically differentiated can undergo dedifferentiation upon 
chronic IFN-γ exposure, in these 2 series the baseline dediffer-
entiation group was likely to include both melanomas that were 
originally dedifferentiated independent of a T cell response, and 
originally differentiated melanomas that dedifferentiated upon 
T cell recognition and IFN-γ production. This dual mechanism 
leading to dedifferentiation resulted in difficulty in interpreting 
the patients’ biopsy data.

It has been shown that IFN-γ from skin-infiltrating CD8+ 
cytotoxic T cells can inhibit the expression of MITF in normal 
melanocytes (30), indicating that this phenotypic response to 
proinflammatory cytokines may be conserved from melanocytes 
to melanomas. Therefore, the ability to change the phenotype 
upon cytokine exposure may have biological advantages that are 
independent of the malignant transformation of melanocytes. 
The specific mechanism of how IFN-γ leads to the loss of MITF 
and gain of neural crest lineage markers is unknown; nonetheless, 
this study helps to elucidate the epigenetic landscape that char-

Figure 7. Gene expression differences between differentiated and undifferentiated cell lines may be attributed to lipid, ribosomal, mitochondrial, and 
adhesion processes. (A and B) Enrichment of gene set groups (C5: GO gene sets), based on ranked lists of differentially expressed genes, for TNF and IFN-γ.
*P < 0.1, **P < 0.01, and ***P < 0.001, by signed KS test.
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cytometry each week without perturbing the rest of the cells and their 
ongoing exposure to IFN-γ. For in vitro TNF experiments, the dose and 
duration of exposure were kept the same as those for the previously  
reported study for use as a positive control (13). Therefore, media con-
taining 1000 U/mL of human recombinant TNF were added to plates 
of seeded cells and kept unperturbed for 3 days until the cells were 
harvested for downstream experiments.

Flow cytometry. Cells were trypsinized, washed with PBS, and pel-
leted by centrifugation at 4°C for 5 minutes at 1500 rpm. All subse-
quent steps were performed with the cells on ice. The Zombie Violet 
Fixable Viability Kit (BioLegend) was used according to the manufac-
turer’s instructions. Next, cells were incubated in FBS for 10 minutes 
to block unspecific binding. Cells were then incubated with anti-NG-
FR (phycoerythrin [PE]) antibody (BioLegend) in PBS for 20 minutes. 
Following a wash, Cytofix/Cytoperm Fixation and Permeabilization 
Solution (BD Biosciences) was used according to the manufacturer’s 
instructions to allow for subsequent intracellular MART-1 staining. 
All subsequent wash steps were performed using 1× Perm/Wash Buf-
fer (BD Biosciences). Cells were incubated with anti–MART-1 (Alexa 
Fluor 647) antibody (Santa Cruz Biotechnology) for 20 minutes and 

Cell culture and in vitro cytokine stimulation. Human melanoma 
cell lines (M series) were established from patients’ biopsies, and the 
human melanoma cell line 3998mel was provided by Alena Gros (Vall 
d’Hebron Institute of Oncology, Cellex Center, Barcelona, Spain) (33). 
Cells were cultured in RPMI 1640 with l-glutamine (Mediatech), 10% 
FBS (Omega Scientific), and 1% penicillin-streptomycin (Omega Sci-
entific) followed by incubation in a water-saturated incubator at 37°C 
in 5% CO2. Cell lines were periodically authenticated to their early 
passages using the GenePrint 10 System (Promega). Human recom-
binant IFN-γ (MiliporeSigma) and human recombinant TNF (Pepro-
tech) were each reconstituted in molecular-grade water to 0.5 mg/mL 
and diluted in 0.1% BSA in PBS to 0.1 mg/mL before applying to the 
cell culture media. The cytokines were stored at –80°C. For in vitro 
long-term IFN-γ experiments, cell lines were expanded and seeded 
onto 10 cm tissue culture–treated plates at 70% confluence. After 24 
hours to allow the cells to adhere to the plates, new cell culture media 
containing 500 U/mL human recombinant IFN-γ protein were added. 
The cells were replenished with IFN-γ–containing media every 2 to 3 
days. Cells were seeded onto multiple tissue culture plates and treated 
concurrently, so that a plate of cells could be harvested to perform flow 

Figure 8. Enrichment of IFN-γ–induced dedifferentiation gene signa-
tures in melanomas correlates with the response to anti–PD-1 and bet-
ter overall survival. (A) Enrichment of the dedifferentiation signature 
in the paired pre- and post-treatment biopsies (n = 68) from responders 
and nonresponders in the CheckMate 038 biopsy cohort. (B) Enrichment 
of the dedifferentiation signature in the baseline biopsies from the 
CheckMate 038 biopsy cohort, including the paired and unpaired biop-
sies (n = 101), from responders and nonresponders. (C) Correlation of 
baseline enrichment of the dedifferentiation signature (Sig) with overall 
survival in TCGA melanoma data set. med, medium.
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Omni-ATAC library preparation and sequencing. Cultured cells were 
harvested by trypsinization and were checked for greater than 90% 
viability. After the cells were counted, 50,000 cells were resuspended 
in 1 mL cold ATAC-Seq resuspension buffer (RSB) (10 mM Tris-HCl, 
pH 7.4, 10 mM NaCl, and 3 mM MgCl2 in water). Cells were centri-
fuged at 500 RCF for 5 minutes at 4°C in a fixed-angle centrifuge. 
Supernatant was carefully removed using 2-step pipetting to avoid the 
cell pellet. Cell pellets were then resuspended in 50 μL ATAC-Seq RSB 
containing 0.1% NP40, 0.1% Tween-20, and 0.01% digitonin by pipet-
ting up and down 3 times. This cell lysis reaction was incubated on ice 
for 3 to 5 minutes, with the lysis time optimized for each sample. After 
lysis, 1 mL ATAC-Seq RSB containing 0.1% Tween-20 was added, and 
the tubes were inverted for mixing. Nuclei were then centrifuged for 
10 minutes at 500 RCF at 4°C in a fixed-angle centrifuge. Superna-
tant was carefully removed with 2-step pipetting, and the nuclei were 
resuspended in 50 μL transposition mix, which consisted of 25 μL 2× 
tagment DNA (TD) buffer, 2.5 μL transposase (Illumina Nextera DNA 

washed. OneComp eBeads compensation beads (Thermo Fisher Sci-
entific) were used for compensation. The samples were run on the 
FACSCelesta Flow Cytometer (BD Biosciences), and the data were 
analyzed with FlowJo software (TreeStar).

RNA-Seq. RNA extraction was performed using the AllPrep DNA/
RNA Mini Kit (QIAGEN). Library preparation was performed at 
UCLA’s Technology Center for Genomics and Bioinformatics (TCGB). 
RNA was sequenced on the HiSeq 3000 Sequencing System (Illumina) 
for a single-end, 50 bp run. Data quality was checked with Sequencing 
Analysis Viewer software (Illumina), and demultiplexing was per-
formed using bcl2fastq2 Conversion Software, version 2.17 (Illumina). 
Raw FASTQ data files were aligned to the hg19 genome using HISAT2, 
version 2.0.4, with default parameters and counted using HTSeq, ver-
sion 0.6.1. The raw counts were normalized to FPKM. DESeq2 was 
used to perform differential gene expression analysis. The raw RNA 
data were deposited in the NCBI’s Gene Expression Omnibus (GEO) 
database (GEO GSE152755).

Figure 9. Survival plots. Survival plots based on the analysis of 
(A) MITF, (B) MLANA, and (C) AXL. Analysis of the baseline biopsy 
samples (n = 84) from patients treated with nivolumab with or 
without ipilimumab in the CheckMate 038 trial. The graphs sepa-
rate the upper and lower quartiles of the log2 FPKM of each gene.
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normalization, using the R package varimax in order to simplify the 
structure of the loading matrix.

Mutation analysis. The patient-derived human melanoma cell 
lines were sequenced and characterized for their mutational status as 
previously described (7, 37, 38).

GSEA and gene ontology. GSEA (39) and GSEA-squared were done 
on preranked lists of genes using the MSigDB C5 gene sets and Kolm-
ogorov-Smirnov (KS) statistics. GSEA-squared was performed as pre-
viously described (25). Briefly, all individual words in the gene sets 
were collected and their frequencies tabulated. Words with frequen-
cies of less than 5 or greater than 500 were excluded, and all gene sets 
were then ranked by their normalized enrichment score (NES) value. 
Keywords and their categories were further assigned by manual cura-
tion of the top of the ranked list of words.

Rank-rank hypergeometric overlap. Rank-rank hypergeometric over-
lap (RRHO) was performed for gene expression data by taking the rank 
of varimax-rotated PLSR loadings and calculating the hypergeometric P 
values of the TNF day 0 (d0) versus IFN-γ d0 ranked lists using the online 
tool and the R package RRHO. RRHO for gene sets was performed after 
running GSEA on the ranked gene lists and ranking gene sets by their 
NES. A step size of 100 was used for genes and gene sets (24).

Motif enrichment analysis. Differential peak analysis was first 
conducted using DESeq2 on normalized ATAC-Seq counts. Starting 
from the full consensus peak set, samples were divided into baseline 
differentiated and baseline undifferentiated groups, and hypo- and 
hyperaccessible peaks were called separately for TNF versus d0 and 
IFN-γ versus d0, at an adjusted P value of less than 0.05 and a log2 
fold change of greater than 2, without independent filtering or Cook’s 
cutoff. Motif analysis was performed on each of these peak sets using 
HOMER against a whole-genome background and searching for 
motifs within ± 200 bp of the peak center. Raw -ln(P values) were plot-
ted for TNF-induced versus IFN-γ–induced hyperaccessible motifs. 
The overlap of significantly differential peaks was calculated and plot-
ted as Venn diagrams using the R package Vennerable.

ARACNe and VIPER analysis. ARACNe (40) network connec-
tions were created using all genes, and then the network nodes were 
restricted to transcription factors by combining all transcription fac-
tor gene sets in the gene ontology (GO) analysis. A single network was 
built using melanoma RNA-Seq samples from the M series cohort (19). 
VIPER analysis (41) was performed using the R msviper function from 
the package viper, with a minimum network size of 10.

TCGA survival analyses. Patient samples from TCGA were divided 
into groups of low (lower quartile), median (interquartile range), and 
high (upper quartile) on the basis of expression of the IFN-γ–induced 
dedifferentiation signature. Patient clinical annotations were obtained 
from TCGA skin cutaneous melanoma publication (42), and overall sur-
vival was determined using the “curated TCGA days to death or last fu.”

Statistics. Analysis of the IFN-γ–induced dedifferentiation sig-
nature in biopsies from patients in the CheckMate 038 trial was 
performed using the Wilcoxon test. The Kaplan-Meier method was 
applied for TCGA survival analysis using the R survival package, and 
plots were generated using the ggsurv R package. Statistical signifi-
cance was determined with the log-rank test.

Study approval. The CheckMate 038 (NCT01621490) clinical trial  
protocol and its amendments were approved by the relevant local 
IRBs of the institutions where patients were enrolled, and the study 
was conducted in accordance with the Declaration of Helsinki and 

Library Prep Kit), with 16.5 μL PBS, 0.5 μL 1% digitonin, 0.5 μL 10% 
Tween-20, and 5 μL water. Transposition reactions were incubated at 
37°C for 1 hour in a thermomixer with shaking at 800 rpm. Reactions 
were cleaned up with Zymo DNA Clean and Concentrator columns 
and eluted in 10 μL nuclease-free water.

Following purification, the transposed DNA fragments were ampli-
fied using 1× NEBnext PCR Master Mix (New England BioLabs) and 
1.25 μM Ad1_noMX primer and indexing primer (34) in nuclease-free 
water for a 50 μL reaction, with the following PCR conditions: 72°C for 
5 minutes; 98°C for 30 seconds, followed by thermocycling at 98°C for 
10 seconds, 63°C for 30 seconds, and 72°C for 1 minute, for 5 cycles. To 
reduce guanine-cytosine (GC) content and size bias, quantitative PCR 
(qPCR) was performed to determine the appropriate amount of ampli-
fication before saturation. To do this, a 5 μL aliquot of the PCR reaction 
was added to 10 μL of the above PCR cocktail with the final concentra-
tion of 0.6× SYBR Green (Thermo Fisher Scientific). The qPCR cycle 
was run at 98°C for 30 seconds followed by 20 cycles at 98°C for 10 
seconds, 63°C for 30 seconds, and 72°C for 1 minute to determine the 
additional number of cycles needed for the remaining 45 μL reaction. 
The libraries were purified using a QIAGEN MinElute PCR Purification 
Kit. All libraries met the target concentration of 20 μL at 4 nM, deter-
mined by Qubit Fluorometric Quantitation (Thermo Fisher Scientific). 
Sequencing was performed on the NextSeq 500 (Illumina) for a paired-
end 75 bp run, and at least 50 million paired reads were obtained for 
each sample. The raw ATAC data were deposited in the GEO database 
(GEO GSE154483).

Omni-ATAC data processing. The raw FASTQ files were processed 
using the published ENCODE ATAC-Seq Pipeline (https://github.
com/kundajelab/atac_dnase_pipelines). The reads were trimmed 
and aligned to hg38 using bowtie2. Picard was used to de-duplicate 
reads, which were then filtered for high-quality paired reads using 
SAMtools. All peak calling was performed using MACS2. The optimal 
irreproducible discovery rate (IDR) thresholded peak output was used 
for all downstream analyses, with a threshold P value of 0.05. Other 
ENCODE3 parameters were enforced with the flag --encode3. Reads 
that mapped to mitochondrial genes or blacklisted regions, as defined 
by the ENCODE pipeline, were removed. The peak files were merged 
using bedtools merge to create a consensus set of peaks across all 
samples, and the number of reads in each peak was determined using 
bedtools multicov (35). DESeq2 with default parameters was used to 
normalize read counts (36) and to determine the hyperaccessible and 
hypoaccessible peaks following cytokine exposure. Peaks were called 
as hyper- or hypoaccessible using an absolute (log2 fold change) of 
greater than 0.5 and an adjusted P value of less than 0.05.

PCA and PLSR and projections. log2-transformed FPKMs of coding 
genes were used to perform unsupervised PCA. This method uncovers 
latent components, which are the linear combinations of the features 
that most strongly vary across the data sets. PCA was performed cen-
tered and unscaled using the prcomp function in R. Projections onto 
PCA frameworks were done using a custom script by multiplication of 
the original projected sample scores by the PCA rotation matrix. PCA 
of ATAC-Seq data was performed centered and unscaled using nor-
malized counts of the union of all significantly induced peaks. PLSR 
is a supervised version of PCA that seeks to find the latent vectors that 
maximize the covariance of the input variables (e.g., gene expression) 
and the response (e.g., phenotypes). Varimax rotation of the PLSR 
loadings (PLSRv) was performed on 2 components, without Kaiser 
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