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Introduction
First identified in 1988 as a member of the IL-1 superfamily, 
interleukin-36 (IL-36) plays a role in the initiation and progres-
sion of inflammatory and fibrotic diseases (1–7). In fact, current 
evidence suggests that IL-36 may serve as a bridge between 
inflammation and fibrosis (4, 7, 8). Herein, we review the basic 
biology of IL-36 in health and diseases, with a special emphasis 
on tissue remodeling. We also highlight recent discoveries in 
the role of IL-36 in tissue fibrosis, and we provide a rationale 
for the use of IL-36–targeted therapies in inflam  fatory and  
fibrotic conditions.

Methods
Relevant literature from 1988 to 2020 was searched in EMBASE, 
MEDLINE, and the Cochrane library, and supplemented by man-
ual review of selected references from original and review articles 
meeting the search criteria established by ME, SZ, and FR.

Biology of IL-36
IL-36 belongs to the IL-1 superfamily and consists of four iso-
forms (9): IL-36α (also known as IL-1F6), IL-36β (IL-1F8), IL-36γ 
(IL-1F9), and IL-36 receptor (IL-36R) antagonist (IL-36Ra or 
IL-1F5). IL-36α, –β, and –γ are proinflammatory agonists and  
trigger IL-36R signaling, while IL-36Ra inhibits IL-36R signaling 
(3, 9, 10). Binding of each agonist to IL-36R leads to recruitment 
of the IL-1 receptor accessory protein IL-1R3 (IL-1RAcP) and 
drives signaling via myeloid differentiation primary response 88 
(MyD88), MAPK, and NF-κB (11–13). IL-36Ra binding, conversely, 
fails to recruit IL-1RAcP and does not initiate a signaling response, 
acting as a true IL-36 antagonist (14).

Distribution and cellular source. IL-36 isoforms have been found 
in multiple tissues, including synovial, cardiac, neural, and lymphatic 
tissues, and are expressed by a broad variety of cell types such as kera-
tinocytes, lymphocytes, monocytes, myeloid dendritic cells (DCs), 
monocyte-derived DCs, plasmacytoid DCs, and plasma cells (2, 
15–19). IL-36 isoforms induce distinct gene expression (Table 1) and 
functional changes (Figure 1) in different cell types, and specific IL-36 
isoforms are induced in a cell type–selective manner by different stim-
uli (Table 2). This indicates that IL-36 isoforms are widely expressed 
in human tissues and can be induced by IL-36 itself, but also by other 
cytokines, chemokines, and growth factors present in inflammation 
and fibrotic diseases. Of note, IL-36 is highly expressed in epidermal, 
bronchial, gingival, and intestinal epithelial layers and can be upregu-
lated upon contact with bacterial components, suggesting a relevant 
function at barrier interfaces (12, 20). Examples for IL-36 and its rel-
evance in tissue remodeling as well as its relevance in inflammation 
include IL-36α being expressed in pancreatic myofibroblasts (8), abun-
dant IL-36γ being produced by colonic myofibroblasts in response to 
IL-1β and TNF-α (21), and IL-36 activating intestinal epithelial cells 
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Table 1. Gene expression by different cell types in response to IL-36 isoform stimulation

Cell type Cell subtype IL-36α IL-36β IL-36γ IL-36Ra IL-38 Target genes References
Immune cells Blood-derived CD14+ macrophages N/A N/A Y N/A N/A IL-23, TNF-α, ICAM-1 (52)

Pulmonary macrophages N/A N/A Y N/A N/A COX2 (128)
M0 macrophages N/A Y N/A N/A N/A IL-6 (100)
M2 macrophages N/A Y N/A N/A N/A IL-6, IL-1β, IL-8, TNF-α (100)
Th0 cells Y Y Y N/A N/A IL-2 (129)
Th1 cells Y Y Y Y N/A IFN-γ (130–132)
Th2 cells Y Y Y Y N/A IL-4 (130)
Th9 cells N/A N/A Y N/A N/A IL-9 (11)
Th17 cells Y Y Y Y N/A IL-17 (130, 132)
CD8+ T cells N/A Y N/A N/A N/A CD25, CD69, IL-2, IFN-γ, 

mTORC1
(133)

Plasma cells Y N/A Y N/A N/A IL-6, CXCL8 (134)
Eosinophils N/A N/A Y N/A N/A CD18, ICAM-1, ECP (87)
Splenocytes Y Y Y Y N/A IL-5, IL-6, IL-13, IL-3, IL-10 (130)
Bone marrow–derived DCs Y Y Y Y N/A IL-6, IL-12p40, CXCL1, CCL1, 

IL-12p35, IL-1β, IL-23, GM-CSF, 
IL-10, CXCL10, TNF-α, p38

(82, 130)

Monocyte-derived DCs Y Y Y N/A N/A IL-6, TNF-α, IL-8, IL-12p70, 
IL-23, IL-10

(100, 135)

Langerhans cells Y N/A N/A N/A N/A IL-6, TNF-α, IL-1α, IL-1β, IL-23, 
CXCL1, CXCL2, CD40

(100, 136)

Peripheral blood mononuclear cells Y N/A N/A Y Y IL-17, IL23, IL-8, IL-17A, IL22, 
IL-6, CXCL8

(86, 134, 137)

Epithelial cells Keratinocytes Y Y Y Y Y CXCL1, CCL20, G-CSF, TGF-α,  
p38, p65, KRT1, KRT10, 

loricrin, CXCL8, CXCL20, IL-6, 
IL-17C, TNF, IL-1α, IL-1β, CXCL1, 

CXCL2, CD40

(53, 58, 100, 136)

Gingival epithelial cells N/A N/A Y N/A N/A IL-8, CXCL1, CXCL5, CXCL10, 
MMP9, NGAL, IL-23p19, EBI3

(128, 138)

Bronchial epithelial cells Y Y Y N/A N/A IL-6, CXCL8 (101)
Vaginal and endocervical epithelial 
cells

N/A N/A Y N/A N/A CCL20, HE4, SLPI, HBD-2, 
HBD-4

(137)

Endothelial cells Human umbilical vein endothelial 
cells

N/A N/A Y N/A N/A NF-κB, c-JUN, ICAM-1,  
VCAM-1, IL-8, CCL2, CCL20

(139)

Human dermal microvascular 
endothelial cells

N/A N/A Y Y Y ERK1/2, CX3CL1, CXCL1, 
CXCL2, CXCL8, CCL2, CCL20, 
GM-CSF, IL-6, ICAM-1, VEGF

(58, 140)

Mesenchymal cells Colonic fibroblastsC Y Y Y N/A N/A CXCL1, CXCL5, MMP13, COL-VI (7)
Human foreskin fibroblasts N/A N/A Y N/A N/A VEGF-A (52)
Fibroblast-like synoviocytes Y N/A N/A N/A N/A IL-6, IL-8, MMP1, MMP3, 

MMP9, p38, HSP27
(68, 141)

Human pancreatic myofibroblasts Y N/A N/A N/A N/A CXCL1, CXCL8, MMP-1, MMP-
3, p42/p44, JNK, p38, NF-κB, 

c-JUN

(8)

Mouse embryonic fibroblasts Y N/A N/A N/A N/A TNF, IL-1α, IL-1β, CXCL1, 
CXCL2, CCL20, CD40

(136)

Glial cells Astrocytes N/A N/A N/A N/A Y JNK, IL-6, CCL2 (142)
Adipocytes 3T3-L1 preadipocytes N/A N/A N/A N/A Y GATA-3, GLUT4, IL-1β, IL-6, 

MCP-1
(143)

ECP, eosinophil cationic protein; p38, p38 mitogen–activated protein kinases; p65, NF-κB transcription complex; KRT, keratin, type II cytoskeletal; NGAL, 
neutrophil gelatinase–associated lipocalin; EBI3, Epstein-Barr virus–induced 3; HE4, human epididymis protein 4; SLPI, secretory leukocyte protease 
inhibitor; HBD, human β-defensin; GLUT4, glucose transporter type 4. AN/A indicates not yet reported. BY indicates cell activation. CIL-36α, –β, and –γ 
cocktail used and IL-36 isoform was not specified.
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IL-36β can be activated by cathepsin G–like activity, and IL-36γ can be 
activated by elastase (26). Interestingly, IL-36 can promote neutrophil 
infiltration in psoriasis and chronic rhinosinusitis (17, 29), inducing a 
positive feedforward loop that promotes its own activation through 
neutrophil attraction. Cathepsin S, a cysteine protease expressed by 
antigen-presenting cells (APCs), such as DCs (30), and epithelial cells 
(31), cleaves and activates IL-36γ in skin cells, reinforcing the notion 
of IL-36 action at barrier surfaces (31). Finally, keratinocyte IL-36γ 
expression has been found to be dependent on caspase-3/7–directed  
cleavage (32), and neutrophil elastase can cleave IL-36Ra into its 
active antagonistic form in blood leukocytes and skin cells (33). Com-
bined, these results indicate that a variety of neutrophil-, APC-, and 
epithelial cell–derived enzymes can activate all four IL-36 isoforms, 
but their processing appears to be context dependent and dysregulated  
in disease states (26). This activation not only provides an amplify-
ing signal in inflammation, but also feeds a self-perpetuating loop of 
IL-36 activation leading to immune and nonimmune cell activation 
and recruitment driving additional IL-36 production and cleavage. Of 
relevance to therapies, proteases are targetable; rather than blocking 
IL-36 itself, inhibiting its cleavage is a reasonable proposition.

Signaling. IL-36R is a heterodimeric complex composed of 
the subunit IL-1R–related protein 2 (IL-1Rrp2) and a co-receptor 
subunit, IL-1RAcP (12). Binding of IL-36 agonists to IL-36R trig-
gers intracellular signaling (34). IL-36R contains an extracellular 

and fibroblasts (22). IL-36 isoforms can be differentially regulated 
in the same tissue. For instance, a study on early pregnancy reported 
a decrease in IL-36α and –β in uterine luminal and glandular epithe-
lia, but an increase in IL-36γ, which can exert specific functions (10). 
The expression of IL-36 at barrier interfaces and its variations in the 
expression of isoforms in remodeling organs are all compatible with 
an important role for IL-36 in healing processes at diverse sites. In sup-
port of the importance of IL-36 and the concept of its diverse cellular 
sources and broad factors inducing its expression, IL-36 isoforms are 
present in essentially all healthy human tissues and organs (Table 3).

Processing. IL-36 exerts low biological activity in its full-length 
precursor form, requiring proteolytic posttranslational processing to 
become fully active (23), and N-terminal truncation of IL-36α, –β, and 
–γ increases their biological activity by amplifying binding affinity for 
IL-36R (23, 24) (Figure 1). Still, unprocessed IL-36α can regulate exper-
imental murine psoriasis via a self-amplifying inflammatory loop with 
IL-1α (25), indicating that IL-36α can display activity without being 
fully processed. Unlike other IL-1 family members, IL-36 members 
do not exhibit caspase-1 cleavage sites required for the subsequent 
secretory processes, suggesting that variable mechanisms can medi-
ate secretion (26–28). Neutrophil granule–derived serine proteases, 
including cathepsin G, elastase, and proteinase 3, are major proteolytic 
activators of IL-36α, –β, –γ, and IL-36Ra (27). In psoriatic human skin, 
both cathepsin G and elastase are capable of activating IL-36α, while 

Figure 1. Cellular sources of IL-36 and function of IL-36 in distinct cell types. TGF-β, transforming growth factor β.
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complex (23, 35). IL-38, another IL-1 family member, can also bind 
to IL-36R and act as an antagonist (36).

The proinflammatory activity of IL-36 is strictly dependent on 
MyD88. IL-36R/MyD88 signaling in T cells promotes skin inflam-
mation upon Staphylococcus aureus exposure by producing IL-17A/F 
(37), and MyD88 knockdown affects intracellular signaling of both 
IL-36α and –γ and suppresses production of IL-6, CXCL1, CXCL2, and 
CXCL8 in colonic myofibroblasts (38). A gene expression sequencing 
study compared normal to MyD88-deleted keratinocytes and con-

domain that binds its agonists and an intracellular Toll/IL-1 recep-
tor (TIR) domain that is linked to the TIR domain on IL-1RAcP, 
leading to activation of signaling via formation of a MyD88/IL-1 
receptor–associated kinase 1 (IRAK1)/IRAK2 signaling platform 
(12) (Figure 2). Of note, the single-nucleotide polymorphism (SNP) 
A471T in the TIR domain dampens its interaction with IL-1RAcP 
and downregulates signal transduction (13). IL-36Ra mediates its 
antagonistic effect by binding IL-36R and inhibiting the recruit-
ment of IL-1RAcP and the dimerization of the IL-36R/IL-1RAcP 

Table 2. Expression of the IL-36 receptor, stimuli that induce IL-36 isoforms, and type of IL-36 isoforms produced

Cell type IL-36R Stimuli IL-36α IL-36β IL-36γ IL-36Ra IL-38 References
Immune cell subtypes
 CD11c+ cells Y IL-36α N/A N/A Y N/A N/A (105)
 Pulmonary macrophages Y LPS, P. aeruginosa Y N/A Y N/A N/A (128)
 Bone-derived macrophages Y LPS Y N/A N/A N/A N/A (144)
 M0 macrophages Y N/A N/A N/A N/A N/A N/A (100)
 M1 macrophages Y N/A Y Y Y Y Y (75, 100)
 M2 macrophages Y LPS N Y Y Y N (75, 100)
 Th0 Y IL-36β, anti-CD3 mAb, anti-CD28 mAb, 

IL-18
N Y N N N/A (129)

LPS Y N/A N/A N/A N/A (141)

 CD8+ T cells Y N/A Y Y Y Y Y (79)
 CD14+ monocytes N/A LPS Y Y Y Y Y (7, 75)
 DCs Y LPS Y Y Y Y N (75, 130)

IL-36α, IL-36β, IL-36γ, LPS Y N/A Y N/A N (130)
B cell subtypes
 Plasmablasts, plasma B cells, CD43– splenic 
B cells

Y LPS Y N/A N/A N/A N/A (141)

 CD19+ B cells Y LPS, CD40L, IL-4 Y N/A N/A N/A N/A (141)
Epithelial cell subtypes
 Alveolar epithelial cells Y LPS, P. aeruginosa Y Y (128)
 Bronchial epithelial cells Y TNF, IL-1β, IL-17, (ds)RNA, LPS, flagellin, 

FSL-1, Pam3CSK4
Y N/A Y N N (99)

TNF, IL-17A Y Y Y N N (99)
 Nasal epithelial cells Y Der p 1, IL-4, IL-5, IL-13, IL-17A, IL-25, 

IL-33, IL-1β, IL-6
N/A N/A Y N/A N/A (87)

 Intestinal epithelial cells Y N/A Y Y Y Y Y (22, 79)
 Keratinocytes Y IL-17A, IL-22, TNF-α, IL-36α, IL-36β, 

IL-36γ + IL-17A
Y Y Y N/A N/A (43, 75)

IL-36γ N Y Y Y N (43, 58)
IFN-γ N Y N N N (58, 75)

Poly(I:C) Y Y Y Y Y (75)
IL-1β, NETs N/A N/A Y N/A N/A (145)

 Enterocytes N/A Poly(I:C) N N N Y N (75)
 Cortical tubule cells Y Hypoxia, H2O2, LPS, TNF-α Y N/A N/A N/A N/A (75, 92)
Endothelial cells

Y IL-36β, IL-17A, TNF-α, IL-22, IL-1β, LPS N/A Y N/A N/A N/A (58, 75, 146)
 Dermal microvascular endothelial cells Y IL-17A, TNF-α N/A N/A Y N N (75)
Mesenchymal cell subtypes
 Synovial fibroblasts Y Poly(I:C) N Y Y Y Y (75)
 Colonic myofibroblasts Y IL-1β, IL-6, IL-10, IL-17A, TNF-α, LPS N/A N/A Y N/A N/A (21)
Bone cell subtypes
 Osteoclasts N/A LPS N Y Y Y Y (75)

P. aeruginosa, Pseudomonas aeruginosa; Der p 1, Dermatophagoides pteronyssinus group 1; (ds)RNA, double-stranded RNA; FSL-1, fibroblast-stimulating 
lipopeptide-1; NETs; neutrophil extracellular traps. AN/A indicates not yet reported. BN indicates the type of IL-36 isoform not produced. CY indicates the 
type of IL-36 isoform produced.
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ing can blunt the IL-36γ–driven inflammatory 
response in HaCaT cells (47).

IL-36 in inflammatory diseases
Because of its ubiquitous expression and 
established role in inflammation, IL-36 is 
being investigated as a mediator of various 
clinical conditions and a possible therapeu-
tic target. Table 4 summarizes its involve-
ment in multiple inflammatory diseases.

Psoriasis. Psoriasis represents a mixed 
autoimmune and autoinflammatory skin dis-
ease characterized by hyperproliferation of 
keratinocytes and infiltration of immune cells 
(48), and several lines of evidence implicate 
IL-36 as a central player in its pathogenesis. 
IL-36α and –γ are upregulated in psoriatic skin 
at both the mRNA and protein level (49, 50), 
and both IL-17 and IL-22 induce IL-36 pro-
duction in human keratinocyte cultures, while 
neutralization of IL-22 downregulates all 
three IL-36 agonists in normal and psoriasis- 
like mouse skin. Moreover, all IL-36 agonists 
were found to synergize with IL-17 and TNF-α 
in primary human keratinocytes as well as 
murine models of psoriasis, increasing their 
own expression and stimulating production 
of proinflammatory cytokines TNF-α, IL-6, 
and IL-8 (43). Additionally, IL-36 induces 
and regulates the expression and function 
of Th17 cytokines through activation of Th17 

cells (43). IL-36γ stimulates IL-23, another driver of psoriasis, in mac-
rophages of psoriatic patients (51, 52). The importance of the IL-36R 
is also highlighted in experimental models; IL-36R–knockout mice 
are protected from imiquimod-induced skin pathology observed in 
WT mice, whereas knockouts of IL-36Ra in turn worsen the disease 
(53). K5.Stat3C mice expressing constitutively activated STAT3 within 
keratinocytes develop a phenotype resembling psoriasis (54) that can 
be dramatically attenuated by deleting IL-36R, which is associated 
with a reduction in IL-23/Th17 expression in skin lesions (55). Finally, 
intradermal injection of recombinant IL-36α exacerbates psoriasis by 
inducing chemokines in human keratinocytes, leading to the recruit-
ment of T cells and APCs (17), which are in turn sources of IL-36,  
providing another feed-forward loop driving chronic inflammation.

Of the three IL-36 agonists, IL-36γ has garnered recognition as the 
most robust biomarker for psoriatic skin lesions (56). A gene expres-
sion analysis comparing psoriasis to other inflammatory diseases 
identified IL-36γ as a specific psoriasis marker, a finding confirmed 
by immunohistochemical staining (57). In the clinic, enhanced IL-36γ 
serum levels in psoriasis patients closely correlate with worsened clin-
ical disease activity and a decrease in response to anti–TNF-α adminis-
tration (57). One study suggested that the ratio between serum IL-36γ 
and IL-38 levels in patients suffering from chronic plaque psoriasis 
also correlates with disease severity, underscoring the possible thera-
peutic potential of targeting IL-36/IL-38 in psoriasis (58).

Although numerous agents are available for psoriasis therapy 
(59), the prominence of IL-36γ in disease pathogenesis has made this 

firmed that IL-36 responses are entirely dependent on MyD88 (39). 
The N-terminal death domain of MyD88 is important for recruitment 
of IRAK1-IRAK2 or IRAK2-IRAK4 complexes (40, 41), forming a mul-
tiprotein complex that recruits TNF receptor–associated factor 6 and 
activating the MAPK signaling pathway (12). This, in turn, leads to the 
activation and nuclear translocation of NF-κB and activator protein 1 
(AP-1), which regulate transcription of numerous inflammatory genes 
(12, 42) (Table 1 and Figure 2). For instance, IL-36 induces production 
of TNF-α, IL-6, and IL-8 in keratinocytes that involves a feedback loop 
between the IL-36 and Th17 cytokines in psoriatic tissues (43). IL-36α 
and –γ have been demonstrated to induce IκBζ expression in human 
keratinocytes (HaCaT cell line) and primary keratinocytes, medi-
ated by NF-κB and STAT3. IκBζ was able to induce upregulation of  
psoriasis-associated genes mediated by IL-36α and promote IL-36α–
driven psoriasis-like disease in vivo (44). The same group recently  
reported that IL-36–mediated IκBζ expression was suppressed by 
abemaciclib (CDK4/6 inhibitor) or CPI-169 (EZH2 inhibitor) in 
two mouse models of TLR7 agonist imiquimod-mediated or IL-36– 
mediated psoriasis-like skin inflammation (45).

In addition to promoting inflammation via IL-36–dependent acti-
vation of MAPK and NF-κB, the relationship between IL-36 and the 
Wnt signaling pathway has been explored. Through stimulation of 
autophagy and induction of WNT5A as well as the activation of the 
COX-2/AKT/mTOR pathway via noncanonical Wnt signaling, IL-36γ 
confers on monocytes the ability to suppress growth of intracellular 
Mycobacterium tuberculosis (46). Additionally, inhibitors of Wnt signal-

Figure 2. Inflammatory pathways of IL-36 and IL-36R. (A) IL-36 agonists stimulate inflammatory  
and epithelial cells, activating the NF-κB pathway, leading to the production and secretion of 
inflammatory cytokines creating a feedback loop. (B) IL-36 antagonists inhibit the binding of the 
IL-36 co-receptor, truncating the signaling pathway. IL-1RAcP, IL-1 receptor accessory protein IL-1R3; 
MyD88, myeloid differentiation primary response 88; AP-1, activator protein 1; IRAKs, interleukin-1 
receptor–associated kinases.
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isoform a primary therapeutic target. Ambrisentan, an analog of the 
endothelin receptor A antagonist, was shown to attenuate IL-36γ–
induced proinflammatory cytokine production in HaCaT cells and 
NIH-3T3 murine fibroblasts (60), and attenuated a psoriatic pheno-
type in a 3D skin model of human keratinocytes and fibroblasts (60). 
Spesolimab, a monoclonal antibody against IL-36R, was recently 
shown to ameliorate generalized pustular psoriasis via inhibition of 
IL-36 signaling (NCT02978690) (61). The clinical efficacy, duration 
of effect, and adverse events associated with spesolimab are still 
under assessment, and a phase II clinical trial is currently ongoing to 
test its efficacy, safety, and tolerability compared to placebo in patients 
with moderate to severe pustular psoriasis (NCT03782792). The long-
term safety and efficacy of spesolimab in patients with pustular psori-
asis that have completed a previous trial (NCT03135548) are currently 
being assessed in a phase III trial (NCT03886246).

Arthritis. The most prevalent types of arthritis are psoriatic arthri-
tis (PsA), rheumatoid arthritis (RA), and osteoarthritis (OA) (62). Sub-
stantial evidence supports the role of IL-36 in PsA (63). At the genetic 
level, examination of multiple SNPs in the IL-1 gene family cluster 
points to IL-36β as a susceptibility locus for PsA (64), and IL-36γ and 
IL-36Ra gene expression is upregulated in PsA skin (65). At a mecha-
nistic level, Th17 cells are deemed essential in PsA pathogenesis, and 
Th17 cytokines such as IL-17 and IL-22 contribute to the development 
of psoriatic plaques and joint erosion (66, 67).

Elevated levels of IL-36α are found in synovial tissue from PsA 
and RA patients compared with OA patients, and IL-36R and IL-36Ra 
are consistently expressed in arthritis (68). Additionally, elevated 
levels of IL-36β were detected in synovial fibroblasts cultured with 
IL-1β or TNF-α (69). IL-36α leads to increased IL-6 and IL-8 expres-
sion in synovial fibroblasts by activating the p38/NF-κB pathway, sug-
gesting a role of IL-36 in synovial remodeling (68). As in PsA, Th17 
cells have a role in the progression of RA (70), but in the synovium  
of human and experimental RA, Th17 cytokines do not correlate with 
IL-36 expression. This could be explained by a function of IL-36 in 
RA that is independent of canonical Th17 pathways (67). Interest-

ingly, although increased expression of IL-36α and IL-36R is seen in 
mice with inflammatory arthritis, IL-36 blockade fails to ameliorate 
TNF-induced arthritis (71). TGF-β signaling has been implicated in 
the development and progress of OA (72), and the TGFBR2/IL-36 
signaling axis was specifically targeted in Tgfbr2–/– mice, resulting in 
upregulation of IL-36α and downregulation of IL-36Ra in the articular 
cartilage. Intra-articular injection of IL-36Ra attenuated OA progres-
sion in Tgfbr2–/– as well as WT mice, suggesting a potential therapeutic 
effect of IL-36Ra in OA (73). IL-36 agonists have similar expression 
in the synovium in PsA and RA, but with significantly lower expres-
sion of IL-36Ra and IL-38 in PsA compared with that in RA, suggesting  
distinct regulatory pathways for IL-36 in PsA (73).

Disease-modifying antirheumatic drugs (DMARDs) are routinely  
used in treatment of RA and PsA (74), and an inadequate response 
to DMARDs may be linked to an impaired balance between IL-36 
agonists and antagonists in PsA synovial tissue (73). To date, there 
has been no clinical trial evaluating the efficacy of IL-36 blockade in 
arthritis treatment.

Inflammatory bowel diseases. Inflammatory bowel diseases (IBDs) 
consist of two major phenotypes — Crohn’s disease (CD) and ulcer-
ative colitis (UC). Upregulation of IL-36α and IL-36γ was observed in 
inflamed colonic biopsies of patients with active colonic CD compared 
with unaffected biopsies from the same patients (75). Others reported 
increased expression of IL-36α and IL-36γ, but not IL-36β, in the intes-
tinal mucosa in UC patients (76, 77), while a different group found all 
IL-36 cytokines to be significantly elevated in the colonic mucosa of 
active UC compared with inactive UC and noninflammatory controls 
(78). IBD mucosal biopsies reveal a strong expression of IL-36α mainly 
in CD14+ inflammatory macrophages, while the intestinal epithelium 
expresses predominantly IL-36γ, and IL-36 signaling activates intes-
tinal fibroblasts and epithelial cells (22). In colon samples from IBD 
patients with fibrostenosis, strong expression of IL-36α was found to 
be correlated with the degree of inflammation (7). Recently, the role of 
the IL-36 antagonist IL-38 was investigated in IBD (79). IL-38–express-
ing cells were elevated in the serosal, muscular, and submucosal layers 

Table 3. IL-36 isoform tissue expression and corresponding cellular sources

Tissue IL-36 isoform Cellular source References
Skin IL-36α, IL-36β, IL-36γ, IL-36Ra Keratinocytes, fibroblasts, endothelial cells, macrophages, DCs, Langerhans cells, T cells (43, 52, 147)
Renal IL-36α, IL-36β, IL-36γ, IL-36Ra Epithelial cells, fibroblasts (7, 91, 92, 148)
Brain IL-36α, IL-36β, IL-36γ, IL-36Ra Glia, microglia, astrocytes (149)
Pancreas IL-36α Myofibroblasts (9)
Respiratory tract IL-36α, IL-36β, IL-36γ, IL-36Ra Epithelial cells, fibroblasts, macrophages (3, 6, 99, 107, 150, 151)
Intestinal tract IL-36α, IL-36β, IL-36γ, IL-36Ra Fibroblasts, myofibroblasts, epithelial cells, goblet cells, macrophages, glial cells (8, 10, 22, 76, 152)
Nasal mucosa IL-36α, IL-36β, IL-36γ, IL-36Ra T cells (86)
Bone marrow IL-36α, IL-36β, IL-36γ B cells, plasma cells, monocytes, DCs (7, 27)
Tonsils IL-36Ra, IL-36α, IL-36β Macrophages (86, 100, 153)
Lymph nodes IL-36α, IL-36β T cells (153)
Spleen IL-36α, IL-36Ra B cells (153)
Synovium IL-36α, IL-36β, IL-36γ, IL-36Ra Monocytes, fibroblasts (68, 69)
Heart IL-36β, IL-36Ra N/A (153)
Testis IL-36β N/A (153)
Uterus IL-36α, IL-36β, IL-36γ, IL-36Ra Epithelial cells (153, 154)
Placenta IL-36α, IL-36β, IL-36γ, IL-36Ra Epithelial cells (153, 154)
AN/A indicates not yet reported.
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of patients with active UC compared with active CD and noninflamed 
control subjects, and increased IL-38 gene expression was observed in 
noninflamed mucosa of UC compared with inflamed UC and controls. 
Taken together, these results show that IL-38 and IL-36 are increased 
in the inflamed intestinal mucosa in IBD, with the predominant iso-
forms being IL-36α and IL-36γ.

An important role of IL-36 in IBD is further supported by several 
studies performed in models of experimental colitis. In acute dextran 
sodium sulfate–induced (DSS-induced) colitis, loss of IL-36R signal-
ing leads to an increase in disease activity and reduced survival, sug-
gesting a protective role of IL-36R in this model (22). Accordingly, a 
different group showed that IL-36R–/– mice fail to recover from acute 
DSS-induced colitis and develop a profound reduction in IL-22 (80), 
which is known to stimulate epithelial proliferation, restitution, and 
mucosal protection (81). Supporting this, IL-36γ–stimulated colonic 
explants result in increased expression of IL-22 and IL-23 (82) and 
connect intestinal immune activation to epithelial repair (83, 84). 
Conversely, a different study found that acute DSS-induced colitis 
was ameliorated in IL-36R–/– mice and that IL-36R signaling promoted  
Th1 responses while inhibiting Th17 responses (76). Treatment with 
the IL-36 antagonist IL-38 attenuates acute DSS-induced colitis in 
mice and suppresses IL-1β and TNF-α (78). Taken together, these 
studies in acute DSS colitis models revealed divergent results with 

pro- as well as antiinflammatory responses of IL-36 signaling. In the 
chronic models of colitis induced by DSS and 2,4,6-trinitrobenzene 
sulfonic acid (TNBS), however, IL-36α mRNA is also elevated, and 
mucosal inflammation is reduced in IL-36R–/– mice or by neutralizing 
anti–IL-36R antibodies (7).

These data triggered a clinical trial on the mechanism of action, 
clinical effect, safety, and tolerability of spesolimab in patients 
with UC, which has been completed in an open-label phase II study 
(NCT03100864), with results being awaited. Another ongoing phase 
II trial aims to evaluate the safety and efficacy of spesolimab induc-
tion therapy in patients with moderate to severe active UC who failed 
previous biologics therapy (NCT03482635). The long-term safety of 
spesolimab is under evaluation in a phase II study in patients who have 
moderate to severely active UC and have completed a previous treat-
ment trial (NCT03648541). Mechanism of action and clinical effect 
of spesolimab in patients with fistulizing CD have been studied in a 
phase II trial (NCT03752970), with a readout expected in 2021. Eval-
uation of the long-term safety and efficacy of spesolimab in patients 
with perianal fistulizing CD who had completed previous treatments 
is currently underway (NCT04362254).

Allergic rhinitis. Allergic rhinitis (AR) is a common inflammatory 
disorder of the nasal mucosa that is associated with impairments in 
quality of life, sleep, and work productivity and affects approximately  

Table 4. Role of IL-36 isoforms in inflammatory diseases

IL-36α IL-36β IL-36γ IL-36Ra IL-38 References
Psoriasis Induces expression of 

IL-1α
Activation of IL-23/IL-17A 

signaling axis

Leads to activation of 
IL-23/IL-17A signaling axis

Induces expression 
of complement C3, 

β-defensin-2, S100A9, 
TNF-α

Leads to activation of 
IL-23/IL-17A signaling axis

Amplifies TNF-α and IL-17 
pathways

Exerts protective roles in 
cutaneous inflammation

IL36RN mutation disables 
its interaction with IL36R

IL-36Ra deficiency drives 
skin lesions and induces 

IL-23, IL-17, and IL-22 
expression

Suppresses IL-17A 
production and restricts 

inflammation

Reduces infiltration of 
T cells and neutrophils 
and reduces production 

of psoriasis-related 
chemokines involved 

in T cell and neutrophil 
recruitment and activation

(25, 31, 49, 53, 57, 58, 
155–161)

Arthritis Induces expression of IL-6 
and IL-8

Exerts proinflammatory 
effects

Expressed Reduces MMP13 in human 
OA chondrocytes

Expressed (68, 69, 72, 75, 162, 163)

IBD Induces Th1 cell 
differentiation

Induces Th1 cell 
differentiation and 

induces TNF-α expression 
in CD keratinocytes

Drives IL-23/IL-22/AMP–
dependent colonic tissue 

repair

N/A Suppresses IL-1β and 
TNF-α expression

(76, 78, 82, 164)

Allergic rhinitis Promotes Th17 cell 
differentiation

N/A Promotes the adhesion, 
migration, and activation 

of eosinophils

N/A N/A (86, 87)

Lung Leads to the recruitment 
of Th17 cells and 

fibroblast activation

Induces expression of 
TNF-α, CXCL1, CXCL2

Upregulates the 
expression of IL-6 and 
CXCL8 in human lung 

fibroblasts and bronchial 
epithelial cells

Leads to the recruitment 
of Th17 cells and 

fibroblast activation

Controls neutrophilic 
airway inflammation

N/A N/A (99, 101, 105, 108)

Kidney Correlates with acute 
kidney injury and leads to 

tubular damage

N/A N/A N/A N/A (6, 91)

AN/A indicates not yet reported.
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Renal fibrosis. Renal fibrosis is characterized by the excessive 
accumulation of ECM, causing tubulointerstitial lesions (TILs) and 
glomerulosclerosis. In humans, IL-36α is the most upregulated iso-
form in renal fibrosis, and its receptor complex IL-36R/IL-1RAcP has 
been demonstrated to be highly expressed in renal epithelial cells (6, 
90, 91). Overexpression of IL-36α is highly correlated with the extent 
of renal fibrosis and the degree of mononuclear leukocyte infiltration 
in human urine and renal tissue, respectively (6).

In mice, the IL-36R/IL-1RAcP complex and all isoforms of IL-36 
are expressed in renal tubular and glomerular epithelial tissue (6, 91, 
92), with IL-36α again being the isoform with the highest expression 
(6, 91, 92). Murine models of unilateral ureteral obstruction (UUO) 
exhibited IL-36α overexpression, which correlated with increased 
α-SMA+ myofibroblasts on kidney histopathology (90). IL-36α has 
functional relevance in kidney fibrosis, as shown in IL-36R–/– (6) and 
IL-36α–/– (90) mice, in which renal cell death, TILs, IL-6, collagen type 
IV (COL-IV), and the collagen remodeling–associated enzyme PRSS35 
were reduced compared with WT mice (90). IL-36R–/– mice showed 
significantly reduced IL-23 and IL-17 mRNA expression, indicating 
that IL-36 signaling facilitates the induction of IL-23 and IL-17 (6). 
Further investigation demonstrated that IL-23–/– UUO murine mod-
els exhibited less macrophage infiltration and COL-IV deposition, 
and IL-36R knockout prevented TILs, attenuating renal inflammation 
and fibrosis (6). These findings suggest that IL-36 signaling facilitates 
macrophage infiltration and COL-IV deposition via the IL-23/IL-17 
axis in renal fibrosis (6). The induction of IL-36α and its signaling 
has also been explored in renal fibrosis. Lipopolysaccharide (LPS), 
a Toll-like receptor 4 (TLR4) ligand, induced IL-36α production in a 
tubule epithelial cell (TEC) line (90), and TEC cultures demonstrated 
increased NF-κB activity and Erk phosphorylation (92), which sug-
gests the activation of NF-κB and MAPK pathways might be critical 

40% of the population (85). As in other inflammatory and autoim-
mune diseases, Th17 cells have been implicated in AR. A recent study 
on regulation of Th17 cytokines by IL-36 found elevated mRNA and 
protein expression of all IL-36 agonists and IL-36R in AR patient 
serum; however, in AR mice only IL-36α promoted differentiation 
and function of Th17 cells, and anti–IL-36α treatment significantly 
alleviated the Th17 response (86). The authors also reported that stim-
ulating eosinophils isolated from atopic donors with IL-36γ induced 
eosinophilic activation, a main characteristic of AR, as signified by 
promoting the adhesion, migration, and activation of eosinophils. 
These effects were inhibited by U0126 (a selective inhibitor of MEK1 
and MEK2) and SB203580 (a selective inhibitor of p38 MAPK), sug-
gesting the engagement of p38 MAPK and MEKs in the regulation of 
eosinophils (87). Currently, there are no active clinical trials focusing 
on IL-36 cytokines as therapeutic target for AR treatment.

IL-36 in fibrotic disorders
Fibrosis is defined by the excessive deposition of extracellular 
matrix (ECM) proteins resulting in the formation of scar tissue 
and loss of organ function. The major cell types associated with 
fibrosis are mesenchymal cells, such as fibroblasts and myofibro-
blasts. Upon stimulation by products of activated immune and 
nonimmune cells as well as pathogen-associated molecular pat-
terns (PAMPs), these cells secrete a variety of ECM proteins such 
as collagen, fibronectin, and multiple others (88). Although acute 
injury usually only induces a transient fibrotic response, repeated 
injury, primarily of an inflammatory nature, can lead to a chronic 
fibrogenic response that can eventually progress independently 
of inflammation (89). While the role of IL-36 in acute and chronic  
inflammation is well established, less is known about its role in 
fibrotic disorders (Table 5).

Table 5. Role of IL-36 isoforms in fibrotic disorders

IL-36α IL-36β IL-36γ IL-36Ra IL-38 References
Pulmonary fibrosis Induces expression of 

inflammatory cytokines 
and chemokines and 
extracellular matrix 

proteins

Induces expression of 
inflammatory cytokines 

and chemokines and 
extracellular matrix 

proteins

Induces expression of 
inflammatory cytokines 

and chemokines and 
extracellular matrix 

proteins

N/A Highly expressed in 
fibroblastic foci in IPF 

patients

(109, 165)

Renal fibrosis Enhances NLRP3 
inflammasome activation 
and facilitates IL-23/IL-17 

signaling

IL-36α+ tubules correlated 
with proteinuria, fibrosis 

score, and the presence of 
tubulointerstitial lesions

N/A N/A N/A Attenuates renal 
tubulointerstitial lesions

(6, 127)

Myocardial fibrosis N/A N/A N/A N/A Reduces fibrotic area in 
the heart

(166)

Intestinal fibrosis Increases intestinal 
α-SMA+ cells in vivo

Increases intestinal 
α-SMA+ cells in vivo

Increases intestinal 
α-SMA+ cells in vivo

N/A N/A (7)

Increases COL-VI 
expression in colonic 

fibroblasts

Increases COL-VI 
expression in colonic 

fibroblasts

Increases COL-VI 
expression in colonic 

fibroblasts
AN/A indicates not yet reported.
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stenotic CD patients were found to have significantly higher levels of 
IL-36α, but not IL-36β or –γ, which correlated with a high number of 
activated α-SMA+ myofibroblasts (7). Intestinal IL-36 production 
has been demonstrated in human intestinal fibroblasts, myofibro-
blasts, epithelial cells, and tissue-resident macrophages (CD14+C-
D64+CD163+) (7, 22, 76, 77), with macrophages believed to be its major 
source in strictures (7). Primary human colonic subepithelial myofi-
broblasts have been demonstrated to spontaneously produce IL-36γ, 
displaying significant increases in IL-36γ when cells were cultured 
with IL-1β (21). RNA sequencing of IL-36R–stimulated human intesti-
nal fibroblasts followed by gene ontology enrichment studies showed 
that IL-36R–stimulated fibroblasts upregulated biological processes 
related to fibrosis, such as inflammatory response, regulation of pro-
liferation, and IL-6 production (7).

Functionally, anti–IL-36R antibody treatment attenuated fibrosis 
in chronic TNBS-induced murine colitis, and IL-36R–/– mice portrayed 
significantly less fibrosis compared with WT mice in both chronic 
TNBS- and DSS-induced colitis models (7), providing strong evidence 
that IL-36R signaling plays an important role in intestinal fibrosis. 
Interestingly, similar to observations of the blockade of TNF (124, 125), 
IL-36R signaling exhibited opposing effects on the regulation of acute 
compared with chronic colonic inflammation (7, 126). These opposing 
effects may be attributed to the mechanistic changes in inflammation 
in early compared with late disease (126). The effects of IL-36R sig-
naling attenuate acute inflammation but may drive fibrosis in chronic 
inflammation. Inflammation in chronic colitis may be propelled by the 
changes in responding fibroblasts, which become activated and pro-
duce profibrotic/inflammatory cytokines and chemokines (126). Of 
note, IL-36 ligands selectively upregulated COL-VI in murine colonic 
fibroblasts, and COL-VI is increased in the mucosa and submucosa of 
CD and UC patients (7). COL-I and COL-III are the major collagens 
reported to be elevated in intestinal strictures (120), and IL-36 may 
lead to a distinct regulation of collagen expression (7, 126).

Hence, while all IL-36 isoforms are upregulated in intestinal fibro-
sis, IL-36α, like in kidney fibrosis, appears to be the crucial factor acti-
vating IL-36R. Neutralizing antibodies targeting IL-36R are currently 
undergoing phase II clinical trials for the treatment of UC and CD 
(NCT03752970, NCT03123120, and NCT03482635), and a trial spe-
cifically targeting stricturing CD is in the planning stages.

Conclusions and future directions
Like other IL-1 family members, IL-36 agonists act primarily as 
molecules that promote the transcription of multiple inflamma-
tory genes, justifying the investigation of their role in inflamma-
tion and inflammation-driven fibrosis. Under homeostatic condi-
tions IL-36 is expressed in multiple cells, tissues, and organs and 
contributes to immune regulation but, if overproduced, it plays a 
pathogenic role in various chronic inflammatory and fibrotic dis-
orders, as mentioned above. The action of IL-36 thus appears to be 
context dependent. It can be induced by classical proinflammatory  
cytokines as well as bacterial components, which — combined 
with the expression at mucosal surfaces and data from experimen-
tal models — appears to have the capability to restore epithelial 
integrity in acute inflammation with a net antiinflammatory role, 
possibly mediated by factors such as IL-22.

Strikingly, however, in chronic inflammation and tissue damage, 
IL-36 signaling through IL-36R can exert proinflammatory and in par-

for IL-36α induction in the kidney (93–95). IL-36α is a potent activa-
tor of the NLRP3 inflammasome, followed by subsequent activation 
of pro–IL-18/IL-1β signaling, as shown in vitro in mouse renal TECs, 
macrophages, and bone marrow–derived DCs as well as in vivo in a 
UUO model (6, 96).

In summary, IL-36R signaling could serve as a potential thera-
peutic target and biomarkers for early onset of chronic kidney disease 
(90–92). IL-36α is the predominant isoform in kidney fibrosis and can 
be upregulated by LPS and mediates IL-17, IL-23, and NLRP3 signal-
ing. Currently, there are no IL-36–modulating agents in clinical trials 
for the treatment of renal fibrosis.

Pulmonary fibrosis. Idiopathic pulmonary fibrosis (IPF) is a clinico-
pathologic entity characterized by dysregulation of alveolar epithelial 
cells and immune cell infiltrates resulting in pulmonary dysfunction 
(97, 98). The cellular expression of IL-36 has been explored in lung 
disorders. Bronchial epithelial cells (99), lung fibroblasts (99), eosin-
ophils (87), and macrophages (100) express the IL-36R/IL-1RAcP 
complex and, in turn, have been demonstrated to respond to IL-36 
cytokines (99, 101). Although all agonists of IL-36 have been shown 
to activate lung fibroblasts (101), human lung fibroblasts exposed to 
IL-36γ specifically increase expression of the inflammatory cytokines/
chemokines CCL2, CXCL10, G-CSF, GM-CSF, and IL-6, and the neu-
trophil chemokines IL-8/CXCL3 and CCL20 (5, 99) via the activation 
of MAPKs and transcription factors NF-κB and CREB. This has impli-
cations for the pathogenesis of fibrosis, since neutrophils are a known 
profibrotic cell type in various fibrotic disorders (102, 103) including 
IPF (104), and numerous studies have demonstrated that IL-36α, –β, 
and –γ are indeed associated with pulmonary neutrophil accumulation 
(105–108) and collagen deposition (109). Additionally, neutrophil- 
derived elastase, a major enzymatic activator of IL-36 (110, 111), plays 
critical roles in the pathogenesis of IPF (112, 113), likely by further acti-
vation of latent IL-36, leading to a forward-feeding loop of neutrophil 
recruitment and elastase secretion.

Macrophages (114), fibroblasts (115), and eosinophils (116) are 
potent producers of the profibrotic cytokine TGF-β, which initiates 
the differentiation of fibroblasts into myofibroblasts, induces epithe-
lial-mesenchymal transition (EMT), and activates resident fibroblasts 
(117, 118), leading to the overexpression of ECM proteins (116) (Fig-
ure 1). IL-36β and –γ have been demonstrated to activate eosinophils 
(87), fibroblasts, and macrophages (100). This implicates IL-36 as a 
link between cellular inflammation and progression to fibrosis and 
provides a potential feedback loop of IL-36–stimulated cells produc-
ing fibronectin and TGF-β, resulting in neutrophil chemotaxis and 
increasing their secretion of TGF-β (Figure 1).

Altogether, the data suggest that IL-36, possibly with a predom-
inance of IL-36β and –γ, facilitates pulmonary fibrosis by regulating 
immune cell recruitment and activation, resulting in further activa-
tion and differentiation of fibroblasts into myofibroblasts and excess 
ECM deposition. Neutrophil elastase in IPF may enhance IL-36 activ-
ity through its cleavage. There are currently no ongoing clinical trials 
examining IL-36 as a target in IPF.

Intestinal fibrosis. Intestinal fibrosis is a common complication 
of IBD that leads to narrowing of the lumen and eventually bowel 
obstruction (119). Although more evident in small bowel CD, fibrosis 
also occurs in colonic CD as well as in UC (120–123).

The expression of all IL-36 isoforms and the IL-36R/IL-1RAcP 
complex is increased in IBD (7, 22, 76, 77). Recently, tissues from fibro-
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inflammation has been used to understand its role in fibrogenesis, 
the reverse of this — understanding chronic inflammation from 
knowledge of IL-36 function in fibrosis — is lacking. These stud-
ies could include further understanding of the function of IL-36 in 
nonimmune cells, such as fibroblasts and smooth muscle cells, in 
inflammation rather than fibrosis, a still largely understudied area. 
In addition, elucidating the function of the ECM molecules induced 
by IL-36, in particular COL-VI, should be a research priority, as the 
ECM environment may be an active participant in tissue inflamma-
tion. Ultimately, most studies of IL-36 biology are still restricted to 
pure expression studies in human tissues complemented by animal 
models, but studies in primary human cells or even better, primary 
human cell-cell interaction models in vitro may shed further insight 
into its mechanism. Finally, IL-36 may be employed as a biomarker 
of disease severity, a predictor of more severe disease courses, or a 
response to anti–IL-36–directed therapies, and future prospective 
studies are needed to dissect this notion.

Based on this fairly solid evidence, considering IL-36 as a ther-
apeutic target in inflammatory and fibrotic conditions appears well 
justified. Targeting could be accomplished in multiple ways, such as 
using neutralizing antibodies against all IL-36 isoforms combined or 
individual isoforms, inhibiting posttranslational IL-36 processing, 
administering IL-36Ra or IL-38, and targeting IL-1RAcP (111, 127). 
Clinical trials have started in a few diseases with a presumed criti-
cal role of IL-36 such as pustular psoriasis and IBD, with the results 
still pending. Many more disorders discussed in this review provide 
a biological rationale for future clinical trials. Although knowledge of 
IL-36 is incomplete and still growing, its dual role in inflammation and 
fibrosis makes it unique among a myriad of other cytokines (26) and 
bolsters the notion that this particular IL-1 family member is indeed a 
crucial link between inflammation and fibrosis.
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ticular profibrotic actions. It can be speculated that this switch in func-
tion is related to several factors. The immunophenotype in inflamma-
tory disorders changes in late or chronic disease compared with early 
or self-limiting inflammation, and hence the milieu encountered in 
the tissues experiencing the action of IL-36 is quite different. More 
importantly, while IL-36 is elevated in acute and chronic inflamma-
tion, the cellular substrate it encounters is distinct. In chronic disease, 
an abundance of mesenchymal cells is present, expressing IL-36R 
and responding to IL-36 with a profibrotic program, with the subse-
quent release of ECM components into the surrounding tissue micro-
environment. Furthermore, immune and nonimmune cell types that 
release profibrotic factors upon exposure to IL-36, such as TGF-β1, 
indirectly drive fibrogenesis. Unexpected contributors to the pool of 
mesenchymal cells can be encountered, such as epithelial cells that in 
response to IL-36 acquire a mesenchymal cell phenotype — the pro-
cess termed EMT. Finally, the IL-36 isoforms present in acute versus 
chronic inflammation or fibrotic disorders may vary, as indicated, for 
example, by a strong expression of IL-36α in kidney and intestinal 
fibrosis. Given the high expression of IL-36 in chronic inflammation, 
several positive feedback loops of IL-36 promoting its own expression 
and activation followed by subsequent orchestration of profibrotic 
signaling cascades may make IL-36 a critical link responsible for the 
switch from inflammation to fibrosis.

What are future needs of investigation in this area? Within a  
given model system, such as IBD or other, a thorough mapping of 
the expression of IL-36 isoforms over time is warranted. It is reason-
able to speculate that certain isoforms are predominantly present 
in different stages of disease. This has implications for future iso-
type-selective inhibition of IL-36. Most of the studies recapitulated 
in this review implicate IL-36α and –γ as the main contributors to 
disease pathogenesis. Herein, IL-36β has only been implicated as a 
pathogenic cytokine in arthritis (69) and future research should be 
devoted to elucidating its specific function. Noncanonical signaling 
pathways of IL-36 isoforms should be explored, as this would open 
additional targetable mechanism of antiinflammatory or antifibrotic  
therapies. Although the knowledge of the role of IL-36 in chronic 
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