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Introduction
The coronavirus disease 2019 (COVID-19) pandemic has 
brought a worldwide focus not only on the severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2), but also on how 
immunity to the virus both promotes viral clearance and contrib-
utes to morbidity and mortality in infected individuals. There is a 
wide range of disease severity in SARS-CoV-2–infected individ-
uals, ranging from asymptomatic infection to severe COVID-19 
requiring mechanical ventilation, and in some cases, to death. 
Some factors have been identified that are associated with 
increased disease severity and poor outcome during COVID-19, 

including age, race, obesity, hypertension, and type 2 diabetes 
(1–11). However, we still do not understand the biologic factors 
that contribute to disease severity and outcome. It is becom-
ing clear that not only does the severity of disease vary among 
SARS-CoV-2–infected individuals, but the immune response 
can also vary widely, leading to differing immune landscapes 
between patients. Therefore, it is important to understand how 
the immune landscape contributes to COVID-19 severity and 
outcome. Another important gap in our knowledge is how the 
immune landscape in COVID-19 resembles or is distinct from 
that seen in critically ill patients hospitalized for other reasons, 
since the immune landscape may change in the context of critical 
illness regardless of its etiology. In particular, it is important to 
determine if the early immune landscape can be used to inform 
which COVID-19 patients will have a severe disease course and 
would benefit from early interventions.

Although we can learn about immunity to SARS-CoV-2 by 
assessing a snapshot of the immune response at one point in 
time, the immune response to infection is dynamic and is best 
studied over time. Early immune responses to viruses are dom-
inated by the innate immune system, including neutrophils, 
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classified based on maximum disease severity using a 7-point 
ordinal scale (OS) representing the following outcomes: 1, not 
hospitalized with resumption of normal activities; 2, not hospi-
talized, but unable to resume normal activities; 3, hospitalized, 
not requiring supplemental oxygen; 4, hospitalized, requiring 
supplemental oxygen; 5, hospitalized, requiring nasal high-flow 
oxygen therapy, noninvasive mechanical ventilation, or both; 6, 
hospitalized, invasive mechanical ventilation; and 7, death (12). 
Of the hospitalized patients, 24 were classified as having severe 
disease on the basis of requiring management in a critical care 
unit (CCU); all required mechanical ventilation (maximal OS ≥ 
6), except one who was on high-flow oxygen (maximal OS = 5). 
The remaining 28 hospitalized patients were not in the CCU and 
were classified as having moderate COVID-19, with all requir-
ing supplemental oxygen at some point in their hospital course 
(maximal OS = 3–5). The 7 ambulatory patients had mild disease 
(OS = 2) and did not require hospitalization. For a control group, 
we also collected blood from 17 hospitalized patients who tested 
negative for SARS-CoV-2; 4 of these patients were admitted to 
the CCU and the remainder to the floor. These patients were age- 
and sex-matched to the hospitalized COVID-19 groups and were 
admitted for a variety of conditions including respiratory (n = 4), 
cardiac (n = 4), gastrointestinal (n = 3), neurologic (n = 3), and 
miscellaneous conditions (n = 3).

The demographic and clinical characteristics of all the patient 
groups are summarized in Table 1. There was no significant dif-
ference in age or sex composition between severe, moderate, and 
mild COVID-19 groups. Regarding racial distribution, there was 
an overrepresentation in the severe COVID-19 group of African 
American (16.7%) and Hispanic (37.5%) individuals based on the 
Washington state population, which is 78.5% White, 4.4% African 
American, and 13% Hispanic (13). Duration of symptoms at time 
of presentation was longer in the severe disease group (median 
9 days, range 3–22) compared with both the moderate (median 4 
days, range 0–27) and mild (median 5 days, range 2–14) groups (P 
= 0.01). Duration of hospitalization was also significantly longer in 
the severe disease group (median 19 days, range 4–65) compared 
with the moderate disease group (median 6 days, range 2–28) (P 
< 0.01), although discharge was delayed for some patients due to 
restrictions placed on transfers to skilled nursing facility pending 
viral clearance from nasopharyngeal swabs.

Chronic medical conditions such as diabetes, hypertension, 
and cancer were common in the hospitalized COVID-19 cohorts. 
Diabetes was present in 45.8% of the severe group, 28.6% of the 
moderate group, and 28.6% of the mild group. Hypertension was 
present in 50% of the severe group and 67.9% of the moderate 

monocytes, plasmacytoid dendritic cells (pDCs), and natural 
killer (NK) cells, whereas adaptive immune responses of T and 
B cells critical for viral clearance develop over days to weeks. 
Understanding how these populations change over time and 
relate to disease trajectory can give insight into the signature of a 
productive anti–SARS-CoV-2 immune response associated with 
clinical improvement, and whether immune dysregulation con-
tributes to severe COVID-19. Additionally, early in the pandemic 
hospitalized patients were treated with a variety of experimental 
therapeutics, including the antiviral agent remdesivir, cytokine 
modulating therapies, and plasma from convalescent patients, 
all with varying efficacy in clinical studies and trials. Howev-
er, how and if these treatments affect the immune landscape 
before and after therapeutic exposure has not been described. 
To address these outstanding and important questions regarding 
the immune response during COVID-19, we used mass cytom-
etry integrated with detailed clinical data to examine how the 
immune landscape changes over time in severe and moderate 
disease through natural progression and recovery, and also in the 
context of immune intervention.

Results
Patient demographics and clinical characteristics. We collected 
peripheral blood from 59 patients with COVID-19 (52 hospi-
talized patients and 7 ambulatory outpatients) at the Virginia 
Mason Medical Center, Seattle, Washington, USA, during the 
months of April and May 2020. Notably, we performed deep 
longitudinal sampling over the course of disease with an aver-
age of 4 time points per subject (range: 1–18; Figure 1), allow-
ing for detailed immune trajectories of recovery. Patients were 

Figure 1. Clinical course and mechanistic data for subjects with COVID-19. 
Each subject is represented in one row. Subjects are first grouped by sever-
ity: severe (red), moderate (blue), and mild (cyan) disease. Subjects are 
next ranked by highest-ever ordinal score (most severe at top) and finally 
by minimum ordinal score (representing the largest change over time). 
The x axis shows days from first clinical assessment, typically the date of 
hospital admission. Colored points represent the ordinal score captured 
daily. No subjects had a score of 1 (recovered) at any point. Dates with 
CyTOF data available are denoted by circles; dates without CyTOF data are 
denoted by triangles.
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Elevated white blood cell counts in 
COVID-19 correlate with increased neu-
trophils and decreased plasmacytoid den-
dritic cells and basophils. We assessed the 
immune landscape by combining clinical 
data with mass cytometry (CyTOF) per-
formed on whole blood samples recov-
ered from the clinical laboratory. The 
CyTOF panel was designed to assess 
the composition of the innate and lym-
phocyte compartments and determine 
the maturation, lineage, and activation 
status of these cell populations (Supple-
mental Table 1 and Supplemental Figures 
2–4). To better understand the impact 
of disease, we performed a correlation 
analysis on the first sample collected for 
each patient in the COVID-19 cohort (n 
= 59; Figure 2 and Supplemental Figure 
5). The heatmap in Figure 2A shows all 
significant correlations between clinical 
data (disease severity ordinal score, age, 
BMI, and CBC) and CyTOF immune cell 
percentages of the total CD45+ (pan-leu-
kocyte marker) cell compartment, where-
as the correlation network in Figure 
2B focuses only on correlations among 
major leukocyte populations identified by 
CyTOF. We found correlations consistent 
with the current literature. For example, 
WBC counts and neutrophil counts were 
significantly correlated (Figure 2A), not 
surprisingly given that neutrophils com-
prise a large proportion of WBC, and both 
are elevated in severe COVID-19 (14, 15). 
Neutrophils in both the CBC and CyTOF 
data sets also inversely correlated with 

proportions of lymphocytes and T cells (Figure 2, A and B) sup-
porting previous reports that the neutrophil-to-lymphocyte ratio 
is increased in severe COVID-19 (15–18). In addition, both pDCs 
and basophils negatively correlated with neutrophils, positively 
correlated with T cells, and positively correlated with each other 
(Figure 3, A–E). Together, these findings for pDCs and basophils 
are consistent with recent studies reporting depletion of these cell 
types in acute COVID-19 (19, 20). Although our CyTOF panel had 
limited ability to distinguish T cell lineage, T follicular helper (Tfh) 
cells were assessed. Notably, unlike other T cell populations, the 
percentage of Tfh cells in the memory CD4+ compartment showed 
a positive correlation with neutrophils, although this did not reach 
statistical significance (Figure 3F). Taken together, these obser-
vations indicate that coordinate and counter-acting changes in 
neutrophils, lymphocytes, pDCs, and basophils contribute to the 
immune signature of COVID-19.

The immune landscape differentiates individuals based on disease 
severity. In order to understand whether the immune signature in 
COVID-19 differed by disease severity, we determined the correla-
tion between cell frequency and ordinal score at the time of sam-

group but absent in the mild group. Cancer was present in 4.2% 
of the severe COVID-19 group, 21.4% of the moderate group, and 
absent in the mild group. Obesity was also more prevalent in the 
hospitalized COVID-19 cohort with a median BMI greater than 
29 in both severe and moderate disease groups compared with a 
median BMI of approximately 25 in the mild COVID-19 (P = 0.08) 
and the hospitalized SARS-CoV-2–negative groups.

Because this cohort was from the early stage of the pandem-
ic in the USA, hospitalized patients received a variety of experi-
mental treatments, including hydroxychloroquine, remdesivir, 
tocilizumab, and convalescent plasma (Supplemental Figure 1; 
supplemental material available online with this article; https://
doi.org/10.1172/JCI143648DS1). Notably, many patients received 
more than one type of experimental treatment. In the severe 
COVID-19 group, 7 patients (29.2%) received hydroxychloroquine, 
17 (70.8%) received remdesivir, 8 (33.3%) received tocilizumab, 
and 15 (62.5%) received convalescent plasma. Among the moder-
ately ill, 2 (7.1%) received hydroxychloroquine, 11 (39.3%) received 
remdesivir, and 4 (14.3%) received convalescent plasma. The mild 
disease group did not receive any of these COVID-19 therapies.

Table 1. Cohort demographics and clinical characteristics

Severe  
COVID-19  
(n = 24)

Moderate  
COVID-19  
(n = 28)

Mild  
COVID-19  
(n = 7)

Hospitalized  
COVID-19 negative  

(n = 17)
Median (range) Median (range) Median (range) Median (range)

Age, years 61 (31–89) 67 (34–96) 54 (27–76) 67 (30–97)

Number of days hospitalized 19 (4–65) 6 (2–28) NA 5 (1–34)

Days from symptom onset to admission 9 (3–22) 4 (0–27) 5 (2–14) NA

Disease score at admission 6 (3–6) 4 (2–4)
2 (2) 4 (3–4)

BMI 30.1 (18.1–54.5) 29.0 (17.0–54.1) 25.5 (22.5–37.2) 25.7 (21.1–69)

Number (%) Number (%) Number (%) Number (%)
Outcome

Discharged 18 (75) 28 (100) NA 16 (94.1)
Deceased 6 (25) 0 (0) NA 1 (5.9)
Female 12 (50) 14 (50) 3 (42.9) 10 (58.8)

Race/ethnicity
Asian 1 (4.2) 3 (10.7) 3 (42.9) 1 (5.9)
African American 4 (16.7) 5 (17.9) 1 (14.3) 0 (0)
Native Hawaiian/Pacific Islander 0 (0) 1 (3.6) 0 (0) 0 (0)
Native American 2 (8.3) 0 (0) 0 (0) 1 (5.9)
White 6 (25) 17 (60.7) 2 (28.6) 14 (73.7)
Unknown/Other 11 (45.8) 2 (7.1) 1 (14.3) 1 (5.9)
Hispanic/Latino 9 (37.5) 2 (7.1) 1 (14.3) 0 (0)

Preexisting comorbidities
Cancer 1 (4.2) 6 (21.4) 0 (0) 2 (8.7)
Diabetes 11 (45.8) 8 (28.6) 2 (28.6) 3 (17.6)
Hypertension 12 (50) 19 (67.9) 0 (0) 6 (35.3)

Exposure to experimental medicine
Hydroxychloroquine 7 (29.2) 2 (7.1) 0 (0) NA
Remdesivir 17 (70.8) 11 (39.3) 0 (0) NA
Tocilizumab 8 (33.3) 0 (0) 0 (0) NA
Convalescent plasma 15 (62.5) 4 (14.3) 0 (0) NA
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and monocyte counts and low absolute lymphocyte counts (Figure 
5A). However, these CBC results frequently fell within the normal 
range and notably, the hospitalized COVID-19–negative population 
showed very similar changes to those seen with severe COVID-19, 
suggesting that these findings are not unique to COVID-19 but are 
instead reflective of critical illness.

In contrast, the cross-sectional analysis of the CyTOF data 
set identified 2 different patterns of immune alterations in the 
COVID-19 cohort: those that were also present in the hospitalized 
COVID-19–negative cohort and those that were unique to severe 
COVID-19. Immune cell populations that were similar between 

pling. Increasing neutrophil frequency was positively correlated with 
increasing disease severity (Pearson correlation ~0.46, FDR-adjust-
ed P < 0.01), whereas T cells, NK cells, pDCs, and basophils were 
lower in severe disease (all FDR-adjusted P values < 0.005, Figure 4). 
To determine if the immune landscape early in disease distinguishes 
severe from mild disease, we next performed a cross-sectional anal-
ysis of our population categorized based on an individual’s highest 
disease score during the course of their illness using data from the 
first sample collected for each patient (Figure 5, Supplemental Fig-
ure 5). The CBC data showed the greatest difference with disease 
severity in WBC counts with an increase in the absolute neutrophils 

Figure 2. Overview of correlations among cell frequencies and COVID-19 patient characteristics. (A) Heatmap visualization of pairwise Pearson correla-
tions with P < 0.05 among ordinal score, age, BMI, CyTOF population frequencies, and CBC parameters. Key indicates r value scale for positive (red) and 
negative (blue) correlations. (B) Network map visualization of correlations between CyTOF major immune cell subsets in our mild, moderate, and severe 
COVID-19 cohort. Shown are positive (red lines) and negative (blue lines) Pearson correlations with absolute (r) > 0.35 and P < 0.05. Line thickness corre-
sponds to the strength of association (thicker is stronger). Correlations within major cell populations (same-color nodes) are not shown.
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erally differentiated individuals based on their disease sever-
ity, with more moderate disease courses and good outcome 
associated with clusters A and B, while those with the most 
severe disease and death were associated with cluster C. These 
findings indicate that there is not one single immune signature 
in COVID-19, but that the immune response differs in individ-
uals based on the ultimate disease severity.

Immune trajectories discriminate moderate and severe 
COVID-19. To better understand the kinetics and coordinated 
changes in immune signatures, we tracked immune cell types 
in the blood over time based on date of admittance to the hospi-
tal. We focused on exploring differences in longitudinal analy-
sis of moderate and severe patients based on distinct clustering 
between these groups as shown in Figure 6. The time course 
was limited to 15 days after admittance for sufficient and com-
parable sampling in both the moderate and severe cohorts 
(Supplemental Figure 6).

Key to understanding features that distinguish moderate 
from severe COVID-19 is an appreciation of the evolution of 
the immune response over time, as shown in a uniform man-
ifold approximation and projection (UMAP) visualization of 
immune changes with disease severity within cell types of an 
individual patient (Figure 7). Using gated data from Figures 
2–7, we focused on specific cell types and markers of innate 
and adaptive immunity. Figure 8 shows Loess-smoothed tra-
jectories whereas Supplemental Figures 7–9 show individual 
and averaged plots. We found that patients with moderate 
COVID-19 had a dynamic immune response that resolved 
over time, typical of a productive antiviral response, where-
as patients with severe COVID-19 had an aberrant immune 
response, diverging early from that seen in moderate COVID-19 

subjects and continuing to diverge beyond the first 15 days of hos-
pitalization. Specifically in the moderate COVID-19 cohort, there 
was an early reduction in circulating neutrophils with a concomi-
tant increase in circulating monocytes, total DCs, and basophils, 
with maximal change at 4–5 days after hospitalization (Figure 8A 
and Supplemental Figures 7–9). In addition, NK cells increased 
followed these early myeloid cell changes, peaking at 5–6 days 
after hospitalization (Figure 8A and Supplemental Figures 8 and 
9). In contrast with the severe COVID-19 cohort, these innate cell 
populations were less dynamic with little variation during the first 
15 days of hospitalization (Figure 8A and Supplemental Figures 
8 and 9). However, it should be noted that this was not the case 
for all innate cells examined. For example, HLA-DRlo monocytes, 
which we and others found to be increased in severe COVID-19 
(Figure 5B and ref. 21) and which are known to be increased in 
severe inflammatory syndromes such as sepsis (22–24), were more 
dynamic in the severe COVID-19 cohort than in the moderate 
COVID-19 cohort. HLA-DRlo monocytes in subjects with severe 
COVID-19 increased with time, peaking at 5–6 days of hospital-

severe COVID-19 and hospitalized COVID-19–negative patients 
correlated with COVID-19 disease score at all time points, as 
shown in Figure 4. Specifically, there was an increase in neutro-
phils and HLA-DRlo monocytes with a decrease in T cells, NK 
cells, basophils, and pDCs in severe disease (Figure 5B). Immune 
alterations unique to severe COVID-19 in this cross-sectional 
analysis included increases in CD38+ CD8+ T cells (FDR-adjust-
ed P = 0.02), Tfh cells (FDR-adjusted P = 0.03) and plasmablasts 
(FDR-adjusted P = 0.00007; Figure 5C and Supplemental Figure 
5). There were also increases in CD4+ central memory T cells and 
HLA DR+ CD8+ T cells, although these were not statistically signif-
icant after adjusting for multiple testing (Figure 5C).

Unsupervised hierarchical clustering of the CyTOF data for 
each subject’s initial sample identified 3 major clusters of patients 
(Figure 6): a T cell predominant cluster with a relative decrease in 
neutrophils (cluster A), a cluster with mixed features including a 
predominance of monocyte, DC, and NK cells (cluster B), and a 
third cluster whose patients had high levels of neutrophils and a 
relative paucity of other cell types (cluster C). These clusters gen-

Figure 3. Correlations among immune cell populations in patients with 
COVID-19 demonstrate a relationship between disease severity and an 
increase in neutrophils and a depletion of pDCs and basophils. (A–F) 
Plots display FDR-adjusted Pearson correlations and linear regression 
lines with 95% confidence interval shading. Data points are colored 
according to the ordinal score observed for each patient at admission.
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ization and then resolving to levels similar to those seen in patients 
with moderate COVID-19 by day 15 after hospitalization (Figure 
8A and Supplemental Figures 8 and 9). Thus overall, patients with 
moderate COVID-19 showed a signature of a productive innate 
immune response in their blood, peaking early after hospitaliza-
tion, whereas patients with severe disease showed a blunted and 
delayed innate response.

Adaptive responses also differed between moderate and 
severe COVID-19 over time (Figure 8B and Supplemental Fig-
ures 8 and 9). In patients with moderate COVID-19, total T cells 
expanded and contracted, consistent with an expected antiviral 
T cell response, with a later enrichment of memory CD4+ T cells 
(Figure 8B). Memory B cells increased more robustly over time in 
the moderate COVID-19 cohort throughout hospitalization, sug-

gestive of sustained interaction with memory CD4+ T cells and 
antibody production. In contrast, patients with severe COVID-19 
consistently had lower levels of both T cells and memory B cells 
over the course of hospitalization, suggesting a diminished or 
delayed adaptive immune response to the virus. The Tfh response 
in the severe COVID-19 cohort was greater than that of the mod-
erate COVID-19 cohort at all time points, perhaps indicating unre-
solved T cell help or Tfh cells sustained by high IL-6 in critically ill 
patients. In addition, in the severe COVID-19 cohort, Treg cells 
as a percentage of total CD4+ T cells were increased over time as 
compared with the moderate COVID-19 cohort (Figure 8B), like-
ly in response to ongoing inflammation due to viral persistence. 
Consistent with this idea, the percentage of CD8+ T cells express-
ing HLA-DR, a marker of activation, also increased over time 
in the severe COVID-19 cohort (Figure 8B), as did CD8+ T cells 
expressing CD38 and PD-1 (Supplemental Figure 7B), whereas 
total memory CD8+ T cell increases were similar between moder-
ate and severe patients (Figure 8B). Overall, our longitudinal anal-
ysis revealed that the immune trajectory differs between moderate 
and severe patients during the first 2 weeks after initial hospital-
ization. Patients with moderate disease showed signatures of a 
productive antiviral response that resolved within the 2 weeks of 
the study time, whereas patients with severe disease showed signs 
of an aberrant response after hospital admittance that persisted 
for at least the first 2 weeks in hospital.

Immune signatures of clinical improvement in patients with 
COVID-19. To identify key immune cell populations that are asso-
ciated with either clinical improvement or decline, we focused 
our analysis on samples taken from individuals before and after a 
change in ordinal score, reflective of disease severity. We assessed 
changes in the absolute abundance of immune cell populations 
by CBC or in the frequency of immune cell subsets in our CyTOF 
analyses across these key clinical times. We identified subjects 
that had samples drawn across a score improvement of 2 or more, 
or a score decline of 1 or more (Figure 9A). This analysis identi-
fied several populations whose abundance or frequency was sig-
nificantly altered upon changes in ordinal score (Figure 9B). Con-
sistent with the lymphopenia observed in severe COVID-19, we 
found that absolute lymphocytes decreased with clinical decline 
whereas an increase in the absolute number of lymphocytes was 
associated with clinical improvement. The increase in lympho-
cytes was mediated by a general increase in the frequency of naive 
and memory CD4+ and CD8+ T cells as well as NK cells, but not 
B cells. The frequency of pDCs also increased in subjects around 
the time of clinical improvement, whereas the frequency of neu-
trophils decreased in improving patients. Longitudinal analysis 
of individual subjects further demonstrated that changes in the 
frequency of neutrophils, T cells, NK cells, and pDCs could be 
observed during recovery from severe COVID-19 (Figure 9C). 
This analysis demonstrates that the immune landscape is dynamic 
in COVID-19, and that resolution of key features of severe disease 
is coincident with improvement in clinical status.

Early immune signatures of tocilizumab, but not convalescent 
plasma, treatment in patients with severe COVID-19. To determine 
if there were immune signatures of tocilizumab or convalescent 
plasma treatment, we identified 7 patients treated with tocilizum-
ab and 7 patients treated with convalescent plasma in our cohort 

Figure 4. Cross-sectional immune correlates of COVID-19 disease sever-
ity. In 274 samples from 59 patients with COVID-19, the abundances of 
(A) neutrophils, (B) T cells, (C) NK cells, (D) pDCs, and (E) basophils are 
highly correlated with disease severity (all P values FDR adjusted). Red 
plot points mark values for samples further analyzed in improving versus 
declining patients (Figure 9).

https://www.jci.org
https://doi.org/10.1172/JCI143648
https://www.jci.org/articles/view/143648#sd
https://www.jci.org/articles/view/143648#sd
https://www.jci.org/articles/view/143648#sd
https://www.jci.org/articles/view/143648#sd


The Journal of Clinical Investigation   C L I N I C A L  M E D I C I N E

7J Clin Invest. 2021;131(3):e143648  https://doi.org/10.1172/JCI143648

who had CyTOF samples both before and after treatment (Sup-
plemental Tables 2 and 3). Notably, these patients all had severe 
disease and there were stringent criteria for the use of tocilizum-
ab, including rapidly escalating oxygen needs combined with an 
IL-6 level greater than 20 times the upper limit of normal (ULN); 
and C-reactive protein (CRP) greater than 125 mg/L (ULN = 
7.9). Marked elevations in ferritin, LDH, and D-dimer were also 
weighted in the decision-making process. All patients were also 
treated with remdesivir, with the exception of one patient in the 
convalescent plasma group. Additionally, 6 of 7 patients in the 
tocilizumab group analyzed were treated with convalescent plas-

ma prior to tocilizumab treatment (1–6 days before tocilizumab). 
None of the 7 patients in the convalescent plasma group were 
treated with tocilizumab during the time points analyzed. Also 
important, patient care was similar between the 2 groups as the 
use of tocilizumab in our hospital does not result in alterations to 
patient care.

We first assessed serum CRP levels in these 2 groups as a 
measure of the effectiveness of tocilizumab treatment, which 
should reduce this marker of systemic inflammation. Indeed, 
treatment with tocilizumab swiftly reduced serum CRP in all 
patients (Figure 6A). Serum ferritin was also reduced mainly 

Figure 5. Immune cell frequencies vary by COVID-19 disease severity. (A) Clinically measured CBC absolute count values from day of admission. Dashed 
black lines mark the clinical laboratories normal ranges. Subjects grouped based on disease severity, mild (cyan), moderate (blue), and severe (red), and 
SARS-CoV-2–negative hospitalized controls (gray). (B and C) The relative proportions of immune cell sub-types vary by disease severity. CyTOF cell fre-
quencies based on disease severity expressed as either percentage of all leukocytes (B) or percentage of parent population (C). Gray bands mark the mean 
(dashed black line) ± 1 SD in 20 healthy control subjects. * P < 0.05, *** P < 0.001.
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us to assess the fold change in response to treatment for each 
patient. In the tocilizumab group there were several populations 
of immune cells that differed significantly before and after treat-
ment (Figure 10B). In contrast, there were no significant changes 
after convalescent plasma treatment in the immune cell popula-
tions analyzed by CyTOF (Figure 10C and Supplemental Figure 
10, B and C). The significant changes in response to tocilizumab 
treatment included a reduction in the percentage of neutrophils 
and an increase in the percentage of total T cells, eosinophils, 
basophils, and DCs among CD45+ cells (Figure 10, B, D, and E). 
There were also increases in several CD4+ and CD8+ T cell sub-
populations, and no changes in any B cell populations after tocili-
zumab (Figure 10B). Moreover, our findings for T cells, B cells, 
neutrophils, and basophils were consistent with our signature of 
clinical improvement (Figure 9). However, there was not com-
plete overlap between the tocilizumab signature and the clinical 
improvement signature, as NK cells and pDCs were not signifi-
cantly changed by tocilizumab (Figure 10B, data not shown) but 
were increased in improving patients (Figure 10B). In the tocili-
zumab group, we also identified increased populations associated 
with T cell activation, including HLA-DR+ and CD38+ CD4+ and 
CD8+ T cells (Figure 10, B, D, and E). In summary, we observed a 
clear acute signature of tocilizumab treatment that shares some 
but not all features of the immunologic changes seen with clinical 
improvement, whereas there is no acute change in the immune 
landscape with convalescent plasma treatment, in patients with 
severe COVID-19.

Discussion
A growing body of literature indicates that the immune landscape 
is profoundly altered by COVID-19 and differs between individ-
uals dependent on disease severity (18, 20, 25, 26). Whether the 
immune landscape is a reflection of disease severity, a source of 
severe disease, or a combination of the 2 is still not fully under-
stood. Here, we utilized recovered samples from the clinical 
laboratory to rapidly assess peripheral blood cell populations by 
CyTOF and these data were analyzed in conjunction with clini-
cal laboratories and disease severity scores. Importantly, we were 
able to collect samples longitudinally among the hospitalized indi-
viduals, allowing us to examine the evolution of immune respons-
es through natural progression and recovery, and in the context 
of immune intervention. Novel aspects of our study included: (a) 
deep longitudinal sampling allowing for detailed immune trajec-
tories of recovery, (b) a control cohort of moderate and severely 
ill hospitalized COVID-19 negative patients, and (c) analysis of 
immune signatures associated with tocilizumab and convalescent 
plasma treatments.

Notably, we found that at the time of initial sampling the 
immune landscape in COVID-19 forms 3 dominant clusters that 
relate to disease severity. When we examined individual cell 
populations based on disease severity, we found, as others have, 
that the neutrophil-to-lymphocyte ratio is increased in individ-
uals with severe COVID-19 (15–18). Furthermore, this inverse 
relationship with neutrophils applies to basophils, DC, NK cells, 
and monocytes, and only modestly with B cells, and is most pro-
nounced among T lymphocytes with the exception of Tfh cells, 
which are positively correlated to neutrophil numbers, a finding 

in those patients with very high concentrations pretreatment 
(Supplemental Figure 10A). In contrast, convalescent plas-
ma treatment had no consistent effect on CRP levels (Figure 
10A). Therefore, tocilizumab treatment showed an acute clin-
ical signature of reduced inflammation in patients with severe 
COVID-19, whereas convalescent plasma did not consistently 
affect these measures.

We then compared acute changes in immune populations in 
the blood before and after tocilizumab or convalescent plasma 
treatment by assessing the closest CyTOF sample before day of 
treatment (range: day –4 to day 0) with the first CyTOF sample 
available after treatment (range: day 2 to day 9 after treatment). 
The specific time points used for each individual are shown in 
Supplemental Table 3. Dividing the posttreatment time point cell 
frequency by the pretreatment time point for each patient allowed 

Figure 6. Admission day sample CyTOF cell frequencies. The admission 
day sample CyTOF cell frequencies fall into 3 distinct clusters. The heatmap 
shows row-normalized z scores thresholded at ± 2 (see color key). Disease 
severity scores are shown on the right side of the heatmap for the day of 
admission, day of sampling, maximum score, and score at discharge (disease 
score key shown at top of heatmap). Clusters are marked (A–C) at right, and 
indicated by green, orange, and red highlighting on the dendrogram at left.
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Our longitudinal assessment further allowed us to identify 
patterns that distinguished severe and moderate disease. Individ-
uals with a moderate disease course showed a pattern consistent 
with productive innate and adaptive immune response character-
ized by early and transient increases in monocytes and NK cells 
with later sustained increases in memory T and B cells. Those with 
severe disease have features suggestive of a dysregulated immune 
response characterized by delayed and prolonged increases in Tfh 
cells, HLA-DRlo monocytes, and activated CD8+ T cells. Although 
the time from first symptom and first sample was delayed in 
severe patients as compared with moderate patients, this was 
not reflected in a simple shift of the immune trajectory. Instead, 
changes in multiple cell types of moderate subjects were transitory 
while evidence of persistent activation in different immune cells 
were progressive and unresolved in severe patients. This suggests 
that the degree of inflammation or persistence of virus markedly 
changed the immune landscape over time in severe as compared 
with moderate disease. Importantly, the persistent features of 
severe disease are reversed with improvements in clinical score 
and can be modulated in part with immune interventions, such as 
IL-6 pathway blockade.

Our findings for the tocilizumab study were intriguing, espe-
cially in the light of the recent disappointing results from the first 
randomized double blind phase 3 trial (27). Our data suggest 
that changes in the immune landscape after tocilizumab treat-
ment, with the exception of NK cell and pDC recovery, are con-
sistent with the immune signature of clinical improvement that 
we identified. Of note, only 4 of 7 of these tocilizumab-treated 
patients improved clinically in the acute time frame of our anal-
ysis (within 9 days of treatment) with the remaining 3 patients 
only showing clinical improvement at later times. This suggests 
that although tocilizumab treatment induces an acute signature 
of clinical improvement in both serum CRP and specific immune 
cell populations, this signature is disconnected from immediate 
clinical change, indicating that the immune changes with tocili-
zumab may be inadequate to support full recovery. Caveats for our 
tocilizumab analysis include the small cohort size, and that all but 
one of these patients were treated with convalescent plasma pri-
or to tocilizumab treatment. Therefore, it is possible that conva-
lescent plasma acts synergistically with tocilizumab to cause the 
immune signature we identified. Interestingly and in contrast to 
tocilizumab, we saw no clear immune signature of convalescent 
plasma within 7 days, suggesting either our cohort was too small 
to see changes, the immune populations change after the times 
we analyzed, or convalescent plasma does not act at the level of 
blood leukocyte populations. It is clear that further investigation is 
needed to determine whether tocilizumab has a therapeutic role in 
COVID-19, and in what patient population it would be useful, and 
this may be determined in part by the character and trajectory of 
the immune landscape of the patient.

The demographics of our patients with COVID-19 were consis-
tent with published case reports. African Americans and Hispanics 
were overrepresented in the severe COVID-19 group relative to the 
population of Washington state, which is consistent with reports 
from other states in the USA (10, 11). We also found that type 2 dia-
betes was more common in those with severe disease compared 
with those with moderate or mild disease. Notably, all groups have 

also consistent with the current literature (18). Interestingly, 
many changes seen in severe COVID-19 compared with mild and 
moderate disease were also seen in our hospitalized COVID-19–
negative control cohort. Including this unique control group 
allowed us to identify differences between critically ill patients 
in general and those infected with SARS-CoV-2. Features shared 
between the patients hospitalized with severe COVID-19 and 
the COVID-19–negative cohort included increased neutrophils, 
and decreased T cells, NK cells, pDCs and basophils, and like-
ly reflect active inflammation during critical illness. In contrast, 
increased Tfh cells, plasmablasts, and evidence of T cell acti-
vation were unique to the patients with severe COVID-19 and 
may reflect the antiviral response in these individuals or unique 
aspects of the pathology of SARS-CoV-2 infection.

Figure 7. The COVID-19 immune landscape changes over recovery time. 
UMAP projections of batch-corrected CyTOF probe intensities for 4 
samples from a single patient with COVID-19 recovering from a disease 
severity ordinal score of 6 to a score of 3 over a period of 6 weeks (see 
Methods for details).
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may impact the immune responses seen here. In addition, the 
differences between the mild, moderate, and severe COVID-19 
groups may reflect the time from disease onset, which significant-
ly varied between these groups, and/or differences in viral burden, 
which we could not assess. The subjects in our hospitalized con-
trol group were not matched to the SARS-CoV-2–positive groups 
by race, although they are well matched by age.

In summary, we have identified unique features of the immune 
landscape in moderate versus severe COVID-19 along with fea-
tures that are common to moderate and severe non–COVID-19 ill-
ness. Importantly, our findings indicate that selection of immune 
interventions should be based in part on disease presentation 
and early disease trajectory due to the profound differences in 
the immune response in those with mild to moderate disease and 
those with the most severe disease. Finally, our characterization 
of the variety of immune signatures in COVID-19 provides insight 
into the types of immune interventions that may be beneficial in 
the treatment of severe disease.

higher diabetes prevalence than the US or Washington rates (28); 
the highest prevalence in Washington state is among 65–74 year 
olds at 21.5%, which is more than doubled in the cohort with severe 
disease described here. Diabetes and obesity have consistently 
been identified as risk factors for COVID-19 severity (4–9); reduced 
T cell function and chronic inflammation have been postulated as 
potential mechanisms driving this increased risk (29). In addition, 
some glucose-lowering agents used in diabetes are known to impact 
the immune system (reviewed in ref. 30). Full analysis of the differ-
ential impact of diabetes and its treatment on our immune signa-
tures is beyond the scope of this work but merits further analysis.

There are limitations to this study. Due to the urgency of the 
pandemic, we chose to use recovered clinical samples for our study 
and thus the collection schedule and sample availability was dic-
tated by the treatment needs of the patient. This meant that we did 
not have the same time points for every patient, and that we could 
not match between groups the medications that individuals were 
already taking due to preexisting comorbidities, some of which 

Figure 8. Immune profiles of moderate and severe patients diverge over time, reflecting different disease trajectories. Longitudinal plots of gated pop-
ulations for (A) innate and (B) adaptive cell types. Days (relative) from first hospitalization are shown. Loess trajectory smoothing was performed on the 
median values (colored disks) for each group at each time point. Vertical bars indicate ± 1 SD around the median at each time point. Plot points without 
vertical error bars are from single data points, or interpolated values used for smoothing.
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collected starting as soon as possible after hospital admission, then 
if feasible, daily for the first week, and then at 3–4 day intervals (Fig-
ure 1). A single sample was obtained at time of first outpatient visit for 
the ambulatory COVID-19 subjects. A maximum of 2 samples was 
obtained from the hospitalized COVID-19–negative control subjects. 
All assays were run and analyzed in a blinded manner.

CyTOF staining, acquisition, and subset identification. Peripheral 
blood was collected from each donor into sterile vacutainer tubes con-
taining the anticoagulant EDTA. Blood cells were washed twice with 
PBS and stained for viability exclusion with a 100 μM cisplatin solution 
(Enzo Life Sciences) for 1 minute at room temperature. Cisplatin was 
quenched with 5 volumes MaxPar Cell Staining Buffer (CSB; Fluidigm), 

Methods
Study design. Using our newly developed 33-parameter CyTOF panel, 
we characterized the immune response longitudinally in 59 adults 
with acute COVID-19, including 24 hospitalized patients with severe 
disease, 28 hospitalized patients with moderate disease, and 7 ambu-
latory patients with mild disease not requiring hospitalization. All 
COVID-19 subjects were positive for SARS-CoV-2 and our control 
cohort of 17 hospitalized patients tested negative for SARS-CoV-2. 
Healthy control subjects were age- and sex-matched to the hospital-
ized COVID-19 subjects. Importantly, the samples used were collect-
ed prior to the start of the COVID-19 pandemic in December 2019. 
For the hospitalized COVID-19 cohort, longitudinal samples were 

Figure 9. Immune signatures of clinical 
decline and improvement. (A) Schematic 
outlining approach for identifying immune 
signatures of clinical decline and improve-
ment focusing on changes in monitored 
parameters in longitudinal samples taken 
before and after changes in clinical score. (B) 
Log2-fold change in the indicated cell popu-
lations as measured by CyTOF or CBC anal-
ysis in longitudinal samples taken before 
and after improving (green) or declining (red) 
clinical scores. Asterisks indicate a signifi-
cant difference in the fold changes (2-tailed, 
unpaired Wilcoxon rank sum FDR-adjusted 
P < 0.05) between improving (n = 7) and 
declining (n = 10) patient groups for the 
indicated cell populations. (C) Longitudinal 
analyses of the frequency of neutrophils, T 
cells, NK cells, and pDCs vs. clinical score in 3 
individual patients. Black line shows disease 
score (left y axis) and red line shows immune 
cell frequency (right y axis).
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a wash with CSB. The resulting leukocytes were fixed overnight at 
4°C with MaxPar Fix and Perm Solution (Fluidigm) containing 125 
nM Cell-ID Intercalator-Ir (Fluidigm). Following fixation, cells were 
washed with CSB, resuspended in milli-Q water, and stored at 4°C until 

and the cells then stained with a titered, aliquoted, and frozen cocktail 
of monoclonal antibodies conjugated to metal isotopes for 20 minutes 
at 4°C. Red blood cell lysis was performed using RBC Lysis/Fixation 
solution (BioLegend) for 5 minutes at room temperature followed by 

Figure 10. Early immune responses to tocilizumab but not convalescent plasma in severe COVID-19. (A) Serum CRP in patients receiving tocilizumab 
(top; n = 7) or convalescent plasma (bottom; n = 7) measured in clinical labs relative to day of treatment. Each line represents an individual patient. (B and 
C) Change in blood immune populations measured by CyTOF after treatment with tocilizumab (B) or convalescent plasma (C). The fold change in each 
population for each subject was determined by dividing the percentage of each population in the first posttreatment sample at day +2 or more after treat-
ment with the closest pretreatment sample available as detailed in Supplemental Table 3. All are shown as percentage of CD45+ cells unless otherwise 
indicated. (D) Plots showing the percent of the indicated populations in tocilizumab-treated patients before and after treatment, using the time points 
used for analysis in B and Supplemental Table 3. (E) Plots showing all the data points available for tocilizumab-treated patients for the indicated popula-
tions shown in D and Supplemental Table 3. Each line represents an individual patient and the color of the line reflects the clinical ordinal score at the time 
of sampling. *P < 0.05 Wilcoxon matched pairs test, adjusted for multiple comparisons.
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value. Plot points with no error bars are those with only 1 sample 
or represent an inferred value. Loess smoothing was performed on 
the median values for each disease severity class using the geom_
smooth function in the R ggplot library (33).

The UMAP plots in Figure 7 were generated directly from the 
CyTOF signal intensities following archsinh transformation with a 
cofactor value of 5. To ensure against batch and other potential con-
founding effects, we specifically selected samples collected and stained 
in a highly uniform fashion from a single donor and z score normalized 
probe intensities for each sample prior to UMAP projection to 2D.

Study approval. Samples from COVID-19 subjects and from hos-
pitalized COVID-19–negative control subjects were recovered from 
the Virginia Mason Medical Center Central Processing Lab after all 
tests required for clinical care were complete, under approval by the 
Benaroya Research Institute (BRI) protocol IRB20-036. All healthy 
control samples were from healthy subjects in the BRI Immune-Medi-
ated Disease Registry and Repository who had given written informed 
consent in accordance with the Declaration of Helsinki and according 
to the BRI IRB-approved protocol IRB07109.
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acquisition. All antibodies from BioLegend and BD Biosciences were 
conjugated to their respective metal isotopes using the MaxPar X8 Mul-
timetal Labeling Kit (Fluidigm). Samples were stained within 48 hours 
of blood draw. Sample stability with the CyTOF assay was established 
with 3 COVID-19 samples assayed on the day of collection (baseline, 
day 0), one day after collection (day 1) or 2 days after collection (day 
2). Populations and markers on populations were standard and based 
on Staser et al. (31). All populations and markers with a frequency 
greater than 5% of live CD45+ cells had a CV less than 40% between 
baseline and each time point. This variation was less than that of bio-
logical comparisons. MaxPar Four Element Calibration Beads (Flui-
digm) were added to each sample immediately before acquisition. All 
samples were acquired on a Helios CyTOF mass cytometer (Fluidigm) 
with a target cell acquisition of 100,000 live events at a rate of 500 
events/second to capture greater than 50 cells per gated population or 
marker. The CyTOF panel is shown in Supplemental Table 1 and gating 
strategies are shown in Supplemental Figures 2–4. To determine gates 
for activation markers such as CD25, CD69, and CD38 on T cells and 
PD-L1 on myeloid cells, we first analyzed 12 samples from 6 subjects 
with moderate COVID-19 and 6 subjects with severe COVID-19. Gates 
were set based on a comparison between samples that were clearly 
highly activated and those that were clearly nonactivated. These gates 
were then applied to all samples in the study and used consistently for 
all populations analyzed. Specifically, gates for CD25, CD38, CD69, 
HLA-DR, PD-1, and PD-L1 were the same for all cell types where they 
were applied. For example, the CD38 gate was the same for CD4+ T 
cells, CD8+ T cells and Tfh cells, the CD25 gate was the same for CD4+ 
and CD8+ T cells, and the CD69 gate was the same for CD4+ T cells, 
CD8+ T cells, NK cells, eosinophils, neutrophils, etc. Data were ana-
lyzed using a FlowJo software versions 10.6.0 and 10.6.1 (FlowJo).

Statistics. Apart from the paired-sample tests in Figure 10, all P 
values were calculated using unpaired, 2-tailed Wilcoxon rank sum 
tests. In all cases, corrections for multiple testing were performed 
using the FDR method. For between group comparisons of the clinical 
data, P values were calculated using the Kruskal-Wallis 1-way analysis 
of variance test. The correlation graph in Figure 2A was built from the 
matrix of Pearson correlations in Figure 2B using the R iGraph package 
(32). The heatmap in Figure 6 was generated using Euclidean distance 
and the clustering method Ward.D2.

Time-series data from each patient were organized in terms of 
the relative number of days from the date of the first sample (hereon 
denoted pseudo-time), and then aligned by first sample. To reduce 
the potential effects of outlier samples, median values were calcu-
lated for each severity category and each day for the samples avail-
able. If no samples were available at a given pseudo-time day, we 
inferred a value using linear interpolation between the before and 
after pseudo-time points. The vertical bars at each pseudo-time 
point are equal to 1 standard deviation from the indicated median 
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