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Introduction
COVID-19 disease morbidity and mortality 
have swept the globe since early 2020. The 
role of the immune response in SARS-CoV-2 
pathogenesis and its determinants for the 
clinical course and outcomes remain elu-
sive. An effective and coordinated immune 
response controls viral replication and limits 
immune pathology for a favorable clinical 
outcome (e.g., asymptomatic or a self-lim-
iting respiratory viral infection). In contrast, 
an ineffective and dysregulated immune 
response could eventually control the virus, 
but sustained and excessive inflammation 
results in organ injury and an unfavorable 
outcome (e.g., respiratory failure, acute 
respiratory distress syndrome [ARDS], and 
multiorgan failure).

Approximately 14% of hospitalized 
patients with symptomatic COVID-19 infec-
tion develop severe disease with respiratory 

failure requiring intensive care unit support 
(1, 2). Clinical severity involves multiple 
systems, including respiratory, neurologi-
cal, cardiovascular, hematological, renal, 
and even dermatological. Although other 
respiratory viruses, such as influenza, respi-
ratory syncytial virus, other coronavirus, 
metapneumovirus, etc., can cause severe 
pneumonia and ARDS, SARS-CoV-2 dif-
fers in severity and duration, suggestive of 
hyperinflammation and/or impaired repair 
or resolution of inflammation.

As the scientific community eluci-
dates the immunopathology of COVID-19, 
elevated proinflammatory cytokines and 
chemokines have led to the term cytokine 
storm. We and others feel this term is a mis-
nomer, as other clinical syndromes, such 
as non-COVID ARDS, sepsis, and other 
cytokine release syndromes after CART-T 
therapy, are among clinical entities with 

similar cytokine profiles (3), yet these 
entities do not usually display a protract-
ed ARDS course. Further, cytokine release 
syndrome secondary to CART-T therapy 
responds therapeutically to anti–IL-6. In 
addition to cytokine abnormalities and 
antibodies specific to COVID-19, dysreg-
ulated cellular immune responses include 
CD4+ T cell activation, hyperactivated or 
exhausted CD8+ T cells, decreased fol-
licular helper cells, variable plasmablast 
responses (4), decreased regulatory T 
cells (5), decreased γδ T cells, increased 
NK cell activity, and increased neutrophil 
extracellular traps (6). Emerging literature 
also implies that myeloid cells play a role 
in COVID-19 severity (7). In this issue of 
the JCI, Sánchez-Cerrillo, Landete, and 
colleagues explore the role of myeloid cells 
in COVID-19 (8). The authors reveal the 
need for extensive profiling and evaluation 
of myeloid cell function and fate at differ-
ent stages and severities of the disease.

The role of myeloid cells  
in ARDS
Myeloid cells including monocytes and 
macrophages initiate and maintain lung 
inflammatory responses to a variety of local 
or systemic insults (9); they also orches-
trate resolution of lung inflammation (10). 
Research in mouse models of ARDS under-
scores the importance of monocytes that 
are recruited from blood. These blood- 
recruited monocytes mature into mono-
cyte-derived macrophages that are involved 
with lung repair and lung fibrosis. Similar-
ly, resident lung macrophage populations 
also contribute at different phases of the 
repair/fibrosis processes. Notably, the liter-
ature regarding the role of monocytes and 
macrophages in human ARDS pathogen-
esis is mainly descriptive and speculative. 
Previous studies in ARDS patients show 
increases in total alveolar macrophages 
(AMs); specifically, surface and maturation 
markers implied that AMs are of mono-
cytic origin and are proinflammatory (11, 
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COVID-19 spans a wide range of symptoms, sometimes with profound 
immune system involvement. How immune cell subsets change during 
the disease course and with disease severity needs further study. While 
myeloid cells have been shown to initiate and maintain responses to 
pneumonia and lung inflammation, often playing a role in resolution, 
their involvement with COVID-19 remains unknown. In this issue 
of the JCI, Sánchez-Cerrillo and Landete et al. investigated DCs and 
monocytes from blood and bronchial secretions of patients with varying 
COVID-19 severity and with healthy controls. The authors conclude that 
circulating monocytes and DCs migrate from the blood into the inflamed 
lungs. While sampling differences in sex, collection timing, bacteria/
fungal infection, and corticosteroid treatment limit interpretation, we 
believe that reprogramming monocyte or macrophages by targeting 
immunometabolism, epigenetics, or the cytokine milieu holds promise in 
resolving lung inflammation associated with COVID-19.
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to an inflammatory macrophage pheno-
type, consistent with the phenotyping of 
cells collected from the lower respirato-
ry airway of COVID-19 patients (8, 23). 
Monocytes from COVID-19 patients also 
spontaneously secrete IL-1β and IL-8 (26). 
Excessive cytokine secretion is supported 
energetically by a switch to aerobic gly-
colysis (27). Transcriptional profiling has 
revealed a type I IFN gene signature, over-
expression of genes that promote reactive 
oxygen and nitrogen species formation, 
inflammation-related chemokines, and a 
tissue-repair phenotype (28). This gene 
signature is consistent with a robust anti-
viral response and fibrotic response, which 
likely contribute to the collateral tissue 
damage and fibrosis seen in later stages of 
this disease. Although direct evidence that 
human monocyte-macrophages partici-
pate in COVID-19 pathogenesis is lacking, 
the findings described above and others 
(29) strongly implicate these cells as key 
players in the lung inflammation and dam-
age seen in the disease.

Pulmonary redistribution of 
myeloid subpopulations and 
COVID-19 severity
Sánchez-Cerrillo and Landete et al. (8) 
profiled immune cells from the blood 
and respiratory secretions of a cohort of 

Monocytes and macrophages  
in COVID-19 disease
Monocytes and lung macrophages are 
substantially altered, both in number and 
function, during COVID-19 disease. While 
disease severity affects the number and 
proportion of monocyte subsets in the 
blood and lung, some patterns emerge. 
Generally, in blood, the nonclassical mono-
cyte subset (CD14–CD16++) is depleted, yet 
the intermediate subset (CD14+CD16+) 
is expanded (19-22). The alveolar space 
is enriched for monocytes and mono-
cyte-derived macrophages (19, 23), sug-
gesting the lungs increase recruitment 
from the blood. Phenotypically, blood 
monocytes show diminished HLA-DR 
surface expression, possibly due to excess 
IL-6 exposure, suggesting reduced anti-
gen-presenting capacity. Elevated comple-
ment receptor 3 (CD11b/CD18) expression 
(24) activates the cells to release cytokines. 
It is unclear whether blood monocytes and 
lung macrophages are directly infected by 
the virus or whether cellular changes are 
due to excessive inflammatory mediators. 
Functionally, monocytes from COVID-19 
patients secrete the cytokine GM-CSF 
(25), although spontaneous IL-6 secre-
tion varies by study (25, 26). The combi-
nation of these two cytokines switches 
monocyte differentiation from a DC fate 

12). AMs from ARDS patients also secrete 
more IL-1β and IL-8, which correlate with 
increased mortality (13, 14). Transcription-
ally, AMs and peripheral blood monocytes 
upregulate inflammatory genes, which cor-
relates with worse outcomes (15). These 
data highlight the importance of immune 
cell tissue origin and suggest the need for 
comprehensive analysis of both blood and 
lung. One such mass cytometry analysis 
has revealed three unique AM populations 
in non-COVID ARDS that are defined by 
CD169 and PD-L1 expression. Notably, 
increased abundance of these three popu-
lations correlated with more ventilator-free 
days (16). Furthermore, a persistently acti-
vated AM transcriptional profile and lack 
of transition into a prorepair signature was 
associated with poor prognosis (15). How-
ever, clinical trials targeting macrophage 
function (GM-CSF [ref. 17] and IFN-β [ref. 
18]) in ARDS patients have failed. Blocking 
one target in an intricate milieu in ARDS is 
oversimplistic, and timing of intervention is 
pivotal. With the advent of high-through-
put, high-dimensional flow cytometric, pro-
teomic, and transcriptomic technologies, a 
better understanding of human monocyte/
macrophage subsets, origins, functions, 
and correlations with clinical outcomes in 
both COVID-19-induced and non-COVID-
19-induced ARDS is possible and critical.

Figure 1. Model of changes in myeloid subsets 
during severe COVID-19. Sánchez-Cerrillo and 
Landete et al. (8) showed that in patients 
with severe COVID-19, circulating intermediate 
monocytes CD14+CD16+ increased and non-
classical CD14–CD16++ monocytes decreased. 
Corresponding surface markers CD11b, CD18, 
CD80+ (M1), CD206, CD69, and tissue factor 
CD142 all increased; the MHC class II cell surface 
receptor HLA-DR decreased. DCs decreased both 
in the blood and the lung. Cytokine secretion 
also increased, and phagocytosis was impaired. 
Within the lung, tissue-resident macrophages 
decreased, while mononuclear phagocytes 
derived from blood increased (8). Targeting 
circulating monocytes or lung-residing macro-
phages therapeutically may resolve inflamma-
tion, mitigate fibrosis, and repair lung damage.
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and the scientific community wait for a 
protective and safe vaccine (Figure 1).
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patients with critical disease and com-
pared them with those of patients hav-
ing either mild or severe disease and 
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1). Exhausted effector CD8+ T cells were 
enriched in the lungs of patients with 
COVID-19 compared with their blood and 
the blood of healthy controls. The dom-
inance of inflammatory monocytes over 
CD1c+ DCs may explain the abundance 
of exhausted lung CD8+ T cells. By sur-
veying monocyte and DC populations in 
both the blood and the lungs, the authors 
conclude that the depletion of circulating 
monocytes and DCs is a result of migra-
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