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DYRK1A protein kinases
Kinases comprise a large class of eukary-
otic proteins that evolved to regulate key 
cellular processes by chemically adding 
phosphates to modulate protein function. 
DYRK1A (dual-specificity tyrosine-reg-
ulated kinase 1A) is among a conserved 
family of CMGC kinases (named by the 
first letter of the family members, includ-
ing cyclin-dependent kinases, mito-
gen-activated protein kinases, glycogen 
synthase kinase 3, and, CDK-like kinases) 
(1). On the basis of structure and func-
tion, DYRK kinases are designated class 
I (DYRK1A, DYRK1B) or class II (DYRK2, 
DYRK3, DYRK4). DYRK1A is considered 
to have dual specificity because it phos-
phorylates diverse regulatory proteins 
at serine/threonine residues and auto-
phosphorylates its own activation loop to 
enhance its activity (1). DYRK1A has been 
intensely investigated, given its position-
ing on the Down syndrome (DS) critical 

region of chromosome 21 (HSA21) (1, 2), 
and was later linked to autism and Alz-
heimer’s disease (1, 3–5). Mice that have 
heterozygous Dyrk1a deficiency recapit-
ulate many of the neurodevelopmental 
phenotypes observed in DS (1). DS is also 
associated with a predisposition to can-
cer, including B cell acute lymphoblastic 
leukemia (B-ALL), although the mecha-
nisms underlying these seemingly dispa-
rate pathologies have remained elusive 
until now (2, 6). As reported in this issue 
of the JCI, Bhansali, Rammohan, and co- 
authors’ work on DYRK1A sheds light on 
why individuals with DS develop B-ALL 
(2). This study also reveals signaling path-
ways that occur not only in B-ALL in DS, 
but also in B-ALL with HSA21 polyploidy. 
Thus, in addition to dual specificity, DYR-
K1A function, ironically, has dual roles in 
B-ALL. Notably, the DYRK1A signaling 
pathway also provides a promising thera-
peutic target.

DYRK1A and leukemia
Studies identifying therapeutic targets in 
B-ALL are critical because B-ALL is the 
leading cause of cancer death in children 
(7–11). Although multidrug therapies have 
led to cure rates that approach 90%, out-
comes for children with relapse remain 
poor (9). Even those who achieve cures are 
at risk for toxicity from therapy that can 
result in complications including diabetes, 
obesity, and vascular disease. Importantly, 
children with DS and B-ALL have worse 
outcomes compared with children with-
out DS (11–14). DS is a relatively common 
genetic disorder causing pathologic neu-
rodevelopment (3, 5). Most frequently, DS 
is caused by chromosomal nondisjunction 
during meiotic cell division, resulting in an 
extra copy (trisomy) of chromosome 21. 
Children with DS are predisposed to acute 
megakaryocytic leukemia, which is asso-
ciated with mutant GATA1 and DYRK1A 
overexpression (15). In DS megakaryo-
cytic leukemia, DYRK1A dysregulates the 
nuclear factor of activated T cell (NFAT) 
transcription factors, which normally 
function in megakaryopoiesis (15). Com-
pared with megakaryocytic leukemia, the 
incidence of B-ALL is even higher in DS, 
although B-ALL is more heterogenous 
genetically and includes loss-of-function 
molecular lesions that inactivate IKZF1 
and PAX5, cause CRLF2 overexpression, 
and activate JAK2 (11).

Prior research revealed that DYRK1A 
is dispensable for myeloid development 
but required for normal lymphopoiesis, 
where it targets cyclin D3 for degradation, 
allowing lymphocytes to become quies-
cent and differentiate (Figure 1A) (16). 
The gene encoding high-mobility group N 
(HMGN) protein is also positioned within 
HSA21 and thought to contribute to leu-
kemogenesis by fostering what are known 
as “poised” or “bivalent promoters” to 
alter gene expression. HMGN protein also 
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DYRK1A, the dual-specificity kinase, is again doubling up on function, 
as reported by Bhansali, Rammohan, and colleagues in this issue of 
the JCI. DYRK1A is an evolutionarily conserved protein kinase with 
dual specificity; it adds phosphates to serine/threonine residues 
of diverse regulatory proteins and activates its own function by 
autophosphorylating a critical tyrosine at position 321 in the activation 
loop. Bhansali, Rammohan, and colleagues investigated B cell acute 
lymphoblastic leukemia (B-ALL) in individuals with Down syndrome (DS) 
and in children with leukemia characterized by aneuploidy. The study 
revealed a DYRK1A/FOXO1 and STAT3 signaling pathway in B-ALL that 
could be targeted pharmacologically, thus opening the door to therapeutic 
strategies for patients with leukemia with or without DS.
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prognostic features such as BCR-ABL trans-
locations (Philadelphia chromosome). 
Because Dyrk1a alone failed to confer 
clonal expansion in murine B cells in vitro, 
Bhansali, Rammohan, and colleagues test-
ed whether catalytically active DYRK1  was 
required for leukemogenesis through a set 

Unique targetable mechanisms 
in B-ALL
Bhansali, Rammohan, and colleagues 
found that, compared with bone marrow 
mononuclear cells, DYRK1A was overex-
pressed in diverse B-ALL cell lines and 
patient samples, including those with poor 

marks critical B progenitor genes with his-
tones for amplification (17–19). Indeed, 
overexpression of diverse HMG chromatin 
regulator genes has been linked to aber-
rant growth and differentiation through 
epigenetic activation of stem cell tran-
scriptional networks (20–23).

Figure 1. Model for DYRK1A/FOXO1 and STAT3 
in B-lymphopoiesis and B-ALL. (A) In normal 
lymphopoiesis, DYRK1A targets cyclin D3 for 
degradation, allowing lymphocytes to become 
quiescent and differentiate. DRYK1A also phos-
phorylates FOXO1 for degradation, while the 
remaining FOXO1 enters the nucleus to sense 
DNA damage, delay the cell cycle, and repair 
damage. DYRK1A also phosphorylates STAT3, 
enabling STAT3 to repress mitochondrial ROS. 
(B) Trisomy 21 or DYRK1A polyploidy results in 
overexpression of DYRK1A and increased phos-
phorylation of DYRK1A and its substrates (cyclin 
D3, FOXO1, STAT3). In B-ALL, FOXO1 and STAT3 
are frequently overexpressed, contributing to 
even higher levels of phosphorylated FOXO1 
and STAT3 when the DYRK1A copy number is 
increased. The resulting disruptions in cell-cycle 
progression and decreases in mitochondrial ROS 
promote leukemogenesis. (C) Inhibition of DYR-
K1A reduces phosphorylation of DYRK1A and 
cyclin D3, allowing for cell-cycle progression and 
chemosensitivity. Inhibition of nuclear FOXO1 
also facilitates cell-cycle progression, while 
blocking repair, thereby fostering chemosensi-
tivity. Blocking STAT3 increases mitochondrial 
ROS, which could promote B-ALL cell death.

https://www.jci.org
https://doi.org/10.1172/JCI142627


The Journal of Clinical Investigation   C O M M E N T A R Y

3J Clin Invest. 2021;131(1):e142627  https://doi.org/10.1172/JCI142627

some of which are likely to contribute 
to leukemogenesis and normal lympho-
poiesis, although further studies will be 
needed to dissect their roles in each con-
text. Nonetheless, this study illuminates 
actionable DYRK1A substrates in B-leu-
kemogenesis. Of note, clinical trials are 
ongoing with JAK/STAT inhibitors (rux-
olitinib) in B-ALL with hyperactive JAK/
STAT signaling (BCR-ABL translocated or 
Philadelphia chromosome-like ALL) and 
are showing promising results. Studies are 
warranted to determine whether therapy 
targeting DYRK1A and FOXO1 enhances 
the efficacy of JAK/STAT3 inhibitors in 
these aggressive forms of B-ALL. More-
over, the work of Bhansali, Rammohan, 
and colleagues (2) beautifully exempli-
fies the serendipity of science — research 
focused on B-ALL in DS revealed thera-
peutic targets relevant to other forms of 
B-ALL. Thus, while further studies are 
needed to test whether these results can be 
safely translated to patients, these findings 
have the potential to improve outcomes 
for children with DS as well as others who 
have B-ALL along with HSA21 polyploidy.
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