

Supplemental Figure 1. SLC9A1 and NHE1 are not differentially expressed in T2DM β cells. (A) SLC9A1 expression in human non-diabetic (ND) and type 2 diabetic (T2DM) β cells and α from GSE83139 (n=38-100 cells). (B) Meta-analysis of SLC9A1 expression in ND and T2DM islets from five independent whole-gene transcriptomic array studies. FDR<.05, denotes statistical significance (Benjamini-Hochberg method). (C) mRNA expression of SLC9A1 in ND and T2DM isolated human islets (n=4 independent ND and T2DM human islet shipments). (D) Representative images of human pancreatic sections from lean ND and obese T2DM subjects immunostained for NHE1 (red), Insulin (green), Glucagon (white), and nuclear marker DAPI (blue) imaged at 20x magnification. Images are representative of 3 ND and 3 T2DM subjects. Scale bars represent 20 µm in all images. Values are represented as mean ± SEM.

Supplemental Figure 2. Intracellular acidification enhances β cell function in T2DM. (A) Intracellular pH (pH_i) measurements in T2DM human islet cells exposed to either vehicle or 100 µM sodium butyrate in 4 mM glucose KRBH buffer. *p<.05 denotes statistical significance (unpaired, two-tailed t-test; n=86-99 independent cells from 3 T2DM islet shipments). (B) Glucose-stimulated insulin secretion (GSIS) during 30 min static incubations at hyperglycemic 16 mM glucose and basal 4 mM glucose concentration in isolated T2DM human islets exposed to either vehicle or 100 µM sodium butyrate in KRBH buffer (left). Quantification of fold change in insulin secretion (16 vs. 4 mM glucose; right). *p<.05 denotes statistical significance (unpaired, two-tailed t-test; n=12 independent experiments from 2 T2DM human islet shipments). All values are represented as mean ± SEM.

Supplemental Figure 3. Chronic inhibition of NBCe1 does not modulate β cell function of ND islets. Glucose-stimulated insulin secretion (GSIS) during 30 min static incubations at hyperglycemic 16 mM glucose and basal 4 mM glucose concentrations in human non-diabetic (ND) islets. Islets were treated with vehicle or chronic NBCe1 inhibition (30 µM S0859) for 72 h. Islets exposed to chronic NBCe1 inhibition were not exposed to S0859 during GSIS procedure (left). Quantification of fold change in insulin secretion (16 mM vs. 4 mM glucose; unpaired, two-tailed t-test; n=7-8 independent experiments from 2 independent ND islet shipments). All values are represented as mean \pm SEM.

Supplemental Figure 4. RIP-Cre mediated *SIc4a4* deletion does not modulate hypothalamic NBCe1 expression. Representative examples of hypothalamic immunostaining for NBCe1 (red) and DAPI (blue) imaged at (A) 5x (Scale bars represent 50 µm) and (B) 20x (Scale bars represent 20 µm) obtained from β -*SIc4a4*^{+/+} (*SIc4a4*^{fl/fl}+/+) and β -*SIc4a4*^{-/-} (*SIc4a4*^{fl/fl}*Ins2*^{Cre/+}) mice. Images are representative of n=3 independent repeats per group.

Supplemental Figure 5. Deletion of Slc4a4 in β cells does not influence response to diet-induced obesity in female mice in vivo. Percent change in body mass from baseline (left), glucose tolerance at week 8 (center), and corresponding glucose tolerance area under the curve (right) of female β -SIc4a4^{+/+} (SIc4a4^{fl/fl}+/+) and β -SIc4a4^{-/-} (SIc4a4^{fl/fl}Ins2^{Cre/+}) mice exposed to 8 weeks of chow or HFD. *p<.05 denotes statistical significance of β -Slc4a4^{+/+} HFD and β -Slc4a4^{-/-} HFD vs. β -Slc4a4^{+/+} Chow (two-way ANOVA with Dunnet method for multiple comparisons; n=3-5 independent experiments). All values are represented as mean ± SEM.

Supplemental Figure 6 Deletion of *Slc4a4* in β cells does not influence changes to diet-induced insulin resistance in male mice. Percent change in plasma glucose from baseline (left) and corresponding insulin tolerance area under the curve (right) of male β -*Slc4a4*^{+/+} (*Slc4a4*^{fl/fl}+/+) and β -*Slc4a4*^{-/-} (*Slc4a4*^{fl/fl}*Ins2*^{Cre/+}) mice exposed to 8 weeks of chow or HFD. *p<.05 denotes statistical significance (unpaired, two-tailed t-test; n=5-6 independent experiments). All values are represented as mean ± SEM.

Supplemental Figure 7. Deletion of Slc4a4 mediates protection from diet-induced glucose tolerance through reduction in basal hyperinsulinemia. Mean glucose-stimulated insulin secretion (GSIS) in response to hyperglycemic 16 mM glucose (16-48) min) and basal 4mM glucose (0-16 min) concentrations in β -Slc4a4^{+/+} (Slc4a4^{fl/fl}+/+) and β -Slc4a4^{-/-} (Slc4a4^{fl/fl} Ins2^{Cre/+}) islets exposed to 8 weeks of HFD (left). Corresponding area under the curve calculated from integration of insulin secretion during exposure to 4 mM and 16 mM glucose (center) and GSIS normalized to fold change in insulin secretion (16 vs. 4 mM glucose) in control β -S/c4a4^{+/+} HFD (right). *p<.05 denotes statistical significance (unpaired, two-tailed t-test; n=3 independent experiments from 3 mice per group). All values are represented as mean ± SEM.

Supplemental Figure 8. Deletion of *Slc4a4* **in** β **cells does not influence depolarization-induced insulin secretion.** Depolarization-stimulated insulin secretion at depolarizing 30 mM KCI and basal 4 mM glucose concentrations in islets from β -*Slc4a4*^{+/+} (*Slc4a4*^{fl/fl}+/+) and β -*Slc4a4*^{-/-} (*Slc4a4*^{fl/fl} *Ins2*^{Cre/+}) mice exposed to 8 weeks of HFD. ***p<.001 denotes statistical significance (unpaired, two-tailed t-test; n=5-6 independent experiments from 2-3 mice). All values are represented as mean ± SEM.

Supplemental Figure 9. Quality control of RNA-sequencing. (A) Log₂ normalized mean gene expression expressed as counts per million reads (CPM) in β -Slc4a4^{+/+} (Slc4a4^{fl/fl}+/+) and β -Slc4a4^{-/-} (Slc4a4^{fl/fl} Ins2^{Cre/+}) islets exposed to 8 weeks of HFD. Values expressed as mean ± min/ max log₂ CPM. Global mean transcript levels were not found to be statically significant (one-way ANOVA with Dunnet method for multiple comparisons). **(B)** Principal component analysis (PCA) visualizing principal component 1 (27.7% of variance) and 2 (20.4% of variance) from global transcriptome of β -Slc4a4^{+/+} and β -Slc4a4^{-/-} islets exposed to 8 weeks of HFD. **(C)** Linear correlation analysis between independent RNA-seq replicates. All replicates had linear correlation coefficient, R² >0.95.

Supplemental Figure 10. Pharmacological and genetic inhibition of NBCe1 enhances expression of key regulators of oxidative phosphorylation in islets. (A) mRNA expression of key genes related to β cell identity/ dedifferentiation and oxidative phosphorylation in human type 2 diabetic (T2DM) islets exposed to either vehicle or 30 µM S0859 for 72 h. *p<.05 denotes statistical significance (unpaired, two-tailed t-test; n=3 independent experiments from one T2DM islet shipment). (B) mRNA expression of key genes related to β cell identity/ dedifferentiation and oxidative phosphorylation in islets from β -SIc4a4^{+/+} (SIc4a4^{fl/fl}+/+) and β -SIc4a4^{-/-} $(Slc4a4^{fl/fl} Ins2^{Cre/+})$ mice exposed to 8 weeks of HFD. *p<.05 denotes statistical significance (unpaired, two-tailed t-test; n=3) independent experiments). All values are reported as mean ± SEM.

Supplemental Table 1. Donor characteristics associated with cadaveric human islets used for studies.

	Human Islets for Studies																	
Unique Identifier	HP-15162	HP-16012	HP-18270	HP-18275	HP-18032	HP-19051	HP-18068	HP-19053	HP118038	HP18103	HP18243	HP18017	HP16280	HP18032	HP-20268	HP-20346	SAMN17833 574	SAMN17 831932
Donor Age (y)	27	42	31	30	45	53	55	47	45	35	51	57	52	45	55	37	45	60
Donor Sex (M/F)	М	М	М	F	М	М	М	F	М	F	М	F	М	М	М	F	М	М
Donor BMI (kg/m²)	29.7	43.7	22.0	40.1	29.6	30.1	29.9	32.7	27.3	34.0	37.3	21.4	22.0	29.6	23	26.1	35.6	41.3
Donor HbA1c	4.9%	6.6%	5.5%	6.5%	5.1%	7.8%	8.5%	5.3%	6.7%	7.1%	6.2%	5.8%	5.6%	5.1%	4.7%	5.0%	5.0%	7.5%
Source of Islets	UNOS	UNOS	UNOS	UNOS	UNOS	UNOS	UNOS	UNOS	UNOS	UNOS	UNOS	UNOS	UNOS	UNOS	UNOS	UNOS	IIDP	IIDP
Islet Isolation Center	Prodo Laboratories	Prodo Laboratories	Prodo Laboratories	Prodo Laboratories	Prodo Laboratories	Prodo Laboratories	Prodo Laboratories	Prodo Laboratories	Prodo Laboratories	Prodo Laboratories	Prodo Laboratories	Prodo Laboratories	Prodo Laboratories	Prodo Laboratories	Prodo Laboratories	Prodo Laboratories	University of Pennsylvania	Southern California Islet Resource Center
Donor History of Diabetes	No	Yes	No	Yes	No	Yes	Yes	No	Yes	Yes	Yes	No	No	No	No	No	Yes	Yes
	For T2DM donors																	
Diabetes Duration (years)	-	Not Reported	-	Not Reported	-	Not Reported	Not Reported	-	Not Reported	0.5	25	-	-	-	-	-	0 to 5	Not Reported
Glucose Lowering Therapy	-	Not Reported	-	Diet	-	Glipizide, Januvia	Not Reported	-	Diet	Diet	Diet/Oral Medications	-	-	-	-	-	Diet, Insulin	Not Reported

Supplemental Table 2. Clinical characteristics associated with human pancreatic autopsy specimens used for studies.

Lean non-diabetic donors (n=8), obese non-diabetic donors (n=6), and obese, documented type 2 diabetic donors (n=8).

	Clinical Characteristics of Lean Non-Diabetic							
Case Id	1	2	3	4	5	6	7	8
Age (y)	86	81	67	84	85	78	84	64
Sex (M/F)	М	М	М	М	М	F	М	F
BMI (kg/ m²)	24.7	26.1	16.3	23.3	24.6	16.6	29.4	20.7
Cause of Death	Sepsis	Acute bronchopneumonia	Adenocarcinoma of the lung, stage IV	Aspiration pneumonia	Cardiogenic shock	Intracranial hemorrhage	Acute bronchopneumonia	Fibrinous pneumonia
		CI	inical Characteri	istics of Obese	Non-Diabetic			
Case Id	1	2	3	4	5	6		
Age (y)	62	72	59	75	78	57		
Sex (M/F)	М	М	F	М	F	М		
BMI (kg/ m²)	33.5	32.3	43.7	34.6	37.6	29.8		
Cause of Death	Ischemic heart disease	Multiple organ system failure	Liver failure associated with cirrhosis	Hypotension, arrhythmias, and right ventricular tamponade	Pulmonary hypertension	non-penetrating blunt force trauma		
		Clir	nical Characteris	tics of Obese 1	ype 2 Diabetic			
Case Id	1	2	3	4	5	6	7	8
Age (y)	49	58	63	70	66	61	69	67
Sex (M/F)	F	F	F	М	Μ	F	М	М
BMI (kg/ m²)	46.1	50.1	37.0	48.1	38.2	49.8	40.7	32.6
Cause of Death	ARDS	Aspiration of bilious gastric contents	Ischemic heart disease	Dissecting thoracoabdominal aneurysm	Acute myocardial ischemia	Hypoxic encephalopathy	Dilated cardiomyopathy	Hypertensive and atherosclerotic CV disease
Length of Diabetes (y)	5	5	5	8	22	25	3.5	-
Medication	Sulfonylurea	Sulfonylurea	Insulin	Diet	Insulin	Insulin; Glucophage	Insulin	Insulin

Supplemental Table 3. Deletion of Slc4a4 in β cells does not influence changes to in vivo blood gas and metabolite **concentration.** Blood gas and metabolite concentration (with specified unit) in male β -Slc4a4^{+/+} (Slc4a4^{fl/fl}+/+) and β -Slc4a4^{-/-} (SIc4a4^{fl/fl} Ins2^{Cre/+}) mice exposed to 8 weeks of chow or HFD (One-way ANOVA with Dunnet's method for multiple comparisons; n=4-5 independent experiments). No statistically significant metabolites or gases were identified. All values are represented as mean with SEM in parentheses.

	β-SIc4a4 ^{+/+} Chow	β-SIc4a4 ^{+/+} HFD	β-SIc4a4 ^{-/-} Chow	β-SIc4a4 ^{-/-} HFD
Na⁺ (mM)	151.2 (0.4)	148.5 (0.9)	150.7 (0.3)	148.6 (0.9)
K+ (mM)	7.8 (0.2)	6.4 (0.2)	7.2 (0.1)	7.4 (0.2)
Cl⁻ (mM)	114.2 (0.3)	116.3 (0.5)	113.4 (0.4)	116.0 (0.5)
рН	7.31 (0.02)	7.34 (0.02)	7.36 (0.00)	7.34 (0.01)
HCO ₃ - (mM)	17.1 (0.3)	17.4 (0.4)	17.9 (0.3)	17.1 (0.8)
BUN (mg/dL)	21.3 (0.3)	21.2 (1.0)	16.8 (0.2)	21.2 (0.3)
Lactate (mM)	5.9 (0.3)	6.1 (0.3)	5.5 (0.1)	6.2 (0.4)
Osm (mOsm/kg)	307.9 (0.7)	305.3 (2.0)	305.7 (0.4)	306.5 (1.6)
PCO ₂ (mmHg)	31.4 (0.9)	29.8 (0.9)	31.0 (0.5)	33.1 (0.7)
PO ₂ (mmHg)	45.7 (1.1)	46.8 (1.9)	45.2 (0.4)	47.0 (1.5)
Hct (%)	43.6 (0.5)	43.3 (0.2)	43.0 (0.5)	44.2 (0.2)

Supplemental Table 4. Significantly enriched KEGG pathways annotated to transcripts up-regulated in β-Slc4a4^{-/-} HFD islets.

ld	Description	LogP	Terms/List	
mmu04932	Non-alcoholic fatty liver disease (NAFLD)	-6.48	24/151	Akt1,Cox6a1,Cox6a2, N
mmu05016	Huntington's disease	-6.02	27/194	Ap2a1,Cox6a1,Cox6a qcr11,Ndufb7
mmu00190	Oxidative phosphorylation	-5.65	21/134	Atp6v0c,Cox17,Cox6
mmu05012	Parkinson's disease	-5.14	21/144	Cox6a1,Cox6a2,Nduf
mmu03040	Spliceosome	-5.13	20/133	Hspa1b,Hspa2,Sf3a2
mmu05010	Alzheimer's disease	-3.87	21/175	Apoe,Cox6a1,Cox6a2
mmu04950	Maturity onset diabetes of the young	-3.61	7/27	
mmu04330	Notch signaling pathway	-2.62	8/49	
mmu04213	Longevity regulating pathway - multiple species	-2.52	9/62	
mmu04152 AMPK signaling pathway		-2.05	13/126	Akt1,Cp
mmu04211 Longevity regulating pathway		-1.90	10/90	
mmu04612 Antigen processing and presentation		-1.87	10/91	H2-
mmu00532	Glycosaminoglycan biosynthesis - chondroitin sulfate / dermatan sulfate	-1.83	4/20	
mmu05221	Acute myeloid leukemia	-1.76	7/55	
mmu04931	Insulin resistance	-1.75	11/109	Akt
mmu04911	Insulin secretion	-1.64	9/85	
mmu05169	Epstein-Barr virus infection	-1.63	18/220	T23,Hdac5,Hspa1b,F
mmu02010	ABC transporters	-1.62	6/46	
mmu04140	Autophagy - animal	-1.59	12/130	Akt1,Da
mmu04930 Type II diabetes mellitus		-1.54	6/48	
mmu05168	Herpes simplex infection	-1.45	17/215	H2-Ab1,H2-Eb1,H
mmu05164	Influenza A	-1.44	14/168	Akt1,H2-Ab1,H
mmu04915	Estrogen signaling pathway	-1.34	9/96	

Symbols
Ddit3,Ndufa2,Ndufv1,Pik3r2,Srebf1,Uqcrc1,Map3k11,Mlxipl,Uqcr10,Ndufa7,Uqcr11,Ndufb7,
dufa13,Ndufc2,Ndufb10,Ndufa11,Ndufs7,Ndufb11,Ndufs8,Irs2,Ndufa4I2
a2,Dctn1,Grin1,Hap1,Ndufa2,Ndufv1,Uqcrc1,Creb3l1,Dnal4,Atp5d,Uqcr10,Ndufa7,Polr2e,U
,Ndufa13,Atp5g2,Ndufc2,Ndufb10,Ndufa11,Ndufs7,Ndufb11,Bbc3,Ndufs8,Ndufa4l2
a1,Cox6a2,Ndufa2,Ndufv1,Uqcrc1,Atp5d,Uqcr10,Ndufa7,Uqcr11,Ndufb7,Ndufa13,Atp5g2,N
dutc2,Ndutb10,Nduta11,Nduts7,Ndutb11,Nduts8,Nduta4l2
a2,Ndutv1,Ucnl1,Uqcrc1,Park7,Atp50,Uqcr10,Nduta7,Uqcr11,Ndutb7,Nduta13,Atp5g2,Ndut
Sart1 Sref5 Sprpp70 Sprph Charp Lem4 Sprpa Ddv30b Prpf40b Acip1 Sref4 Sf3b5 Yab2 C
,Sart ,Sisis,Shirip70,Shirp5,Cherp,Lshi4,Shirpa,Dux390,Prpi400,Acim,Sisi4,Sisb5,Aab2,C cdc12.Sf3b4.Hspa1a.U2af1l4
.Grin1.Ndufa2.Ndufv1.Ugcrc1.Atp5d.Ugcr10.Ndufa7.Ugcr11.Ndufb7.Ndufa13.Atp5g2.Ndufc
2,Ndufb10,Ndufa11,Ndufs7,Ndufb11,Ndufs8,Ndufa4l2
Mnx1,Foxa2,Nkx6-1,Pdx1,Hnf1a,Gck,Mafa
Ctbp1,Jag2,Notch1,Numbl,Ncor2,Dll4,Dtx2,Dtx3
Akt1,Foxa2,Hspa1b,Hspa2,Pik3r2,Rps6kb2,Akt1s1,Hspa1a,Irs2
ot1b,Pfkl,Pik3r2,Srebf1,Stk11,Creb3l1,Rps6kb2,Akt1s1,Crtc2,Cpt1c,Scd4,Irs2
Akt1,Atf6b,Pik3r2,Stk11,Creb3l1,Rps6kb2,Akt1s1,Ehmt2,Sesn2,Irs2
-Ab1,H2-Eb1,H2-Q2,H2-T23,Hspa1b,Hspa2,Psme2,Rfxank,Tap2,Hspa1a
B3gat3,Chpf,Chpf2,B4galt7
Akt1,Jup,Pik3r2,Pim2,Ppard,Map2k2,Rps6kb2
1,Cpt1b,Pik3r2,Srebf1,Nr1h2,Creb3l1,Slc27a1,Mlxipl,Rps6kb2,Crtc2,Irs2
Fxyd2,Atf6b,Gna11,Pdx1,Rab3a,Abcc8,Vamp2,Creb3I1,Gck
Akt1,H2-Q2,H2-
lspa2,Nfkbib,Pik3r2,Ncor2,Psmd3,Map2k7,Polr3e,Irf3,Akap8I,Adrm1,Polr2e,Polr3d,Hspa1a
Abcg1,Abcc8,Tap2,Abca7,Abcb9,Abcc10
apk3,Pik3r2,Stk11,Map2k2,Rps6kb2,Akt1s1,Atg16l2,Atg16l1,Atg4d,Atg2a,Irs2
Pdx1,Pik3r2,Abcc8,Gck,Mafa,Irs2
2-Q2,H2-T23,Nfkbib,Per1,Per2,Per3,Cfp,Srsf5,Tap2,Mcrs1,Nxf1,Irf3,Srsf4,Nop53,Cdc34
2-Eb1,Hspa1b,Hspa2,Nfkbib,Furin,Pik3r2,Map2k2,Map2k7,Nxf1,Ddx39b,Irf3,Hspa1a
Akt1,Atf6b,Hspa1b,Hspa2,Pik3r2,Map2k2,Creb3l1,Hspa1a,Shc2

Supplemental Table 5. Significantly enriched KEGG pathways annotated to transcripts up-regulated in β -Slc4a4^{+/+} HFD islets.

	ld	Description	LogP	Terms/List	
	mmu04110	Cell cycle	-7.56	23/124	Atm,Bub1,Ccna2,Ccr
	mmu04914	Progesterone-mediated oocyte maturation	-6.08	17/87	Bub1,Ccna2,Ccnb2,C
	mmu04120	Ubiquitin mediated proteolysis	-5.38	21/140	Xiap,Brca1,Birc6,Soc
	mmu04114	Oocyte meiosis	-4.91	18/116	Bub1,Calm2,Ccnb2,C
	mmu04071	Sphingolipid signaling pathway	-4.60	18/122	Asah1,Degs1,Gna13
	mmu04150	mTOR signaling pathway	-3.78	19/153	Chuk,Eif4e,Fzd6,Grb
	mmu04141	Protein processing in endoplasmic reticulum	-3.73	20/167	Canx,Hsp90aa1,Stt3a
	mmu04510	Focal adhesion	-3.54	22/199	Xiap,Arhgap5,Ctnnb1
	mmu05200	Pathways in cancer	-3.36	35/393	Apc,Xiap,Birc5,Ctnnb ,Itga2,Itga6,Met,Pik3
	mmu05205	Proteoglycans in cancer	-3.33	22/206	Ctnnb1,Ccnd1,Cd44,
I	mmu05211	Renal cell carcinoma	-2.95	10/65	
Ī	mmu04919	Thyroid hormone signaling pathway	-2.86	14/115	Atp1b1,Ctnnt
	mmu04720	Long-term potentiation	-2.85	10/67	С
	mmu04115	p53 signaling pathway	-2.80	10/68	
	mmu00310	Lysine degradation	-2.68	9/59	
I	mmu04520	Adherens junction	-2.61	10/72	
	mmu05202	Transcriptional misregulation in cancer	-2.60	18/177	Atm,Bcl2a1a,Cdkn2c
	mmu05210	Colorectal cancer	-2.53	9/62	
	mmu05215	Prostate cancer	-2.49	11/87	(
Ī	mmu03013	RNA transport	-2.49	17/167	Eef1a1,Eif4a2,Eif4
I	mmu01212	Fatty acid metabolism	-2.47	8/52	
	mmu04024	cAMP signaling pathway	-2.45	19/197	Atp1b1,Cacna1c,Cal
I	mmu05214	Glioma	-2.44	9/64	
	mmu04810	Regulation of actin cytoskeleton	-2.39	20/214	Apc,Cdc42,Gna13,G
I	mmu04972	Pancreatic secretion	-2.37	12/103	Atp1b1,Bst
Ĩ	mmu01521	EGFR tyrosine kinase inhibitor resistance	-2.27	10/80	
ĺ	mmu03018	RNA degradation	-2.24	10/81	
ĺ	mmu04010	MAPK signaling pathway	-2.22	22/252	Cacna1c,Cacna2d1,
1					

Symbols
nb2,Ccnd1,Ccne2,Cdc25c,Cdk1,Cdkn2c,Hdac2,Mcm3,Prkdc,Rb1,Stag1,Stag2,Smc1a,Orc4 ,Mad2l1,Espl1,Cdc20,Cdc27,Atr,Ccnb1
dc25c,Cdk1,Gnai3,Hsp90aa1,Igf1r,Pde3b,Pik3r1,Mapk10,Mad2l1,Cpeb4,Braf,Rps6ka3,Cd c27,Ccnb1
s3,Trip12,Herc2,Ube2b,Ube3a,Cop1,Cul3,Ube2d2a,Huwe1,Ube2c,Ubr5,Cul2,Cul4b,Ube3c ,Cdc20,Ube2q2,Cdc27,Herc1
cne2,Cdc25c,Cdk1,Igf1r,Ppp1cb,Ppp2ca,Ppp3r1,Smc1a,Mad2l1,Cpeb4,Espl1,Cdc20,Rps6 ka3,Cdc27,Ccnb1
,Gnai3,Gnaq,Pik3r1,Prkca,Ppp2ca,Pten,Rock1,Rock2,Sgpl1,Mapk10,Asah2,Sgms2,Sgpp1, Sgms1,Ppp2r3a
10,Igf1r,Lrp6,Pik3r1,Prkca,Pten,Sos1,Rragd,Seh1I,Rictor,Deptor,Atp6v1h,Braf,Rps6ka3,Fni p1,Fnip2
a,Hspa4I,Mapk10,Ero1a,Ube2d2a,Ngly1,Uggt2,Erlec1,Edem3,Ssr3,Ero1b,Stt3b,Tram1,Svip ,Sec63,Edem1,Mbtps2,Dnajc3
,Ccnd1,Cdc42,Igf1r,Itga2,Itga6,Met,Pak3,Pik3r1,Prkca,Ppp1cb,Pten,Rock1,Rock2,Sos1,Sp p1,Mapk10,Braf,Rap1a,Rap1b
1,Ccnd1,Ccne2,Cdc42,Chuk,Fzd6,Gna13,Gnai3,Gnaq,Gng12,Hdac2,Hif1a,Hsp90aa1,Igf1r sr1,Prkca,Pten,Rb1,Rock1,Rock2,Sos1,Tgfbr1,Mapk10,Cks2,Arhgef12,Cul2,Appl1,Tpr,Braf
Cdc42,Dcn,Fzd6,Hif1a,Igf1r,Itga2,Met,Pdcd4,Pik3r1,Prkca,Ppp1cb,Rdx,Rock1,Rock2,Sos1, Timp3,Arhgef12,Ank2,Braf
Cdc42,Hif1a,Met,Pak3,Pik3r1,Sos1,Cul2,Braf,Rap1a,Rap1b
1,Ccnd1,Dio1,Hdac2,Hif1a,Kat2b,Pik3r1,Prkca,Thrb,Med14,Med13l,Med13,Med12l
acna1c,Calm2,Gnaq,Prkca,Ppp1cb,Ppp3r1,Braf,Rap1a,Rps6ka3,Rap1b
Atm,Ccnb2,Ccnd1,Ccne2,Ccng1,Cdk1,Pten,Cop1,Atr,Ccnb1
Ezh2,Nsd1,Setmar,Nsd2,Acat1,Ash1I,Kmt2a,Kmt2c,Setd2
Ctnnb1,Cdc42,Csnk2a1,Igf1r,Met,Afdn,Ptprj,Tgfbr1,Yes1,Nectin3
,Etv1,Hdac2,Igf1r,Met,Pbx1,Cdk14,Prom1,Ptcra,Sp1,Kdm6a,Fut8,Gria3,Nupr1,Nsd2,Kmt2a
Apc,Birc5,Ctnnb1,Ccnd1,Pik3r1,Tgfbr1,Mapk10,Appl1,Braf
Ctnnb1,Ccnd1,Ccne2,Chuk,Hsp90aa1,Igf1r,Pik3r1,Pten,Rb1,Sos1,Braf
e,Eif4g2,Fxr1,Eif3e,Ranbp2,Strap,Eif2s3x,Nup37,Seh1l,Xpot,Eif3j1,Xpo1,Tpr,Eif5,Thoc2
Acadl,Cpt1a,Acsl4,Acaa2,Fads2,Elovl5,Acat1,Acsl5
m2,Gnai3,Afdn,Oxtr,Pde3b,Pde4b,Pik3r1,Ppp1cb,Rock1,Rock2,Mapk10,Gria3,Ghrl,Braf,Ra p1a,Rap1b,Gpr119
Calm2,Ccnd1,Igf1r,Pik3r1,Prkca,Pten,Rb1,Sos1,Braf
ng12,Itga2,Itga6,Pak3,Pik3r1,Pikfyve,Ppp1cb,Rdx,Rock1,Rock2,Sos1,Nckap1,Diaph2,Arpc 5,Arhgef12,Braf,Iqgap3
1,Gnaq,Prkca,Try4,Pla2g2f,Rab11a,1810009J06Rik,Try5,Rap1a,Rap1b,Gm10334
Eif4e,Igf1r,Jak2,Met,Nf1,Pik3r1,Prkca,Pten,Sos1,Braf
Btg1,Btg3,Ddx6,Hspd1,Dcp2,Dhx36,Pan3,Ttc37,Cnot6I,Cnot1
Cdc42,Chuk,Gng12,II1r1,Stmn1,Nf1,Prkca,Ppp3r1,Dusp1,Sos1,Tgfbr1,Map3k2,Map4k1,Ma
pk10,Braf,Rap1a,Rps6ka3,Rap1b,Taok1,Rasa1

Supplemental Table 5. Significantly enriched KEGG pathways annotated to transcripts up-regulated in β -Slc4a4^{+/+} HFD islets. (continued)

mmu05166	HTLV-I infection	-2.22	24/283	Apc,Xiap,Atm,Canx,
mmu04070	mmu04070 Phosphatidylinositol signaling system		11/96	Cal
mmu05222	Small cell lung cancer	-2.16	10/83	
mmu04611	Platelet activation	-2.13	13/124	Col3a1,Gna
mmu05412	Arrhythmogenic right ventricular cardiomyopathy (ARVC)	-2.10	9/72	
mmu00600	Sphingolipid metabolism	-2.09	7/48	
mmu00071	Fatty acid degradation	-2.04	7/49	
mmu04730	Long-term depression	-2.04	8/61	
mmu05213	Endometrial cancer	-1.99	7/50	
mmu05212	Pancreatic cancer	-1.92	8/64	
mmu04068	FoxO signaling pathway	-1.91	13/132	Atm,Co
mmu04728	Dopaminergic synapse	-1.86	13/134	Arntl,Cacna
mmu04014	Ras signaling pathway	-1.80	19/228	Calm2,Cdc42,Chuk,0
mmu05031	Amphetamine addiction	-1.77	8/68	
mmu05220	Chronic myeloid leukemia	-1.67	8/71	
mmu05223	Non-small cell lung cancer	-1.66	7/58	
mmu05224	Breast cancer	-1.63	13/144	A
mmu04670	Leukocyte transendothelial migration	-1.56	11/117	Arh
mmu04974	Protein digestion and absorption	-1.51	9/90	A
mmu01522	Endocrine resistance	-1.43	9/93	
mmu04961	Endocrine and other factor-regulated calcium reabsorption	-1.33	6/54	
mmu04360	Axon guidance	-1.33	14/175	Bmpr2,Cdc42
mmu05218	Melanoma	-1.30	7/69	
mmu04270	Vascular smooth muscle contraction	-1.30	11/129	Cacna

Ctnnb1,Ccnb2,Ccnd1,Cdkn2c,Chuk,Dlg1,Egr1,Fzd6,Il1r1,Kat2b,Pik3r1,Ppp3r1,Rb1,Tgfbr1, Mad2l1,Trp53inp1,Xpo1,Cdc20,Cdc27,Atr
m2,Mtm1,Pik3c2a,Pik3r1,Pikfyve,Prkca,Pten,Pik3c3,Ppip5k2,Impad1,Ocrl
Xiap,Ccnd1,Ccne2,Chuk,Itga2,Itga6,Pik3r1,Pten,Rb1,Cks2
13,Gnai3,Gnaq,Itga2,Pik3r1,Ppp1cb,Rock1,Rock2,Snap23,Arhgef12,Rap1a,Rap1b
Cacna1c,Cacna2d1,Ctnnb1,Dsc2,Dsg2,Itga2,Itga6,Slc8a1,Dsp
Asah1,Degs1,Sgpl1,Asah2,Sgms2,Sgpp1,Sgms1
Acadl,Adh7,Cpt1a,Acsl4,Acaa2,Acat1,Acsl5
Gna13,Gnai3,Gnaq,Igf1r,Prkca,Ppp2ca,Gria3,Braf
Apc,Ctnnb1,Ccnd1,Pik3r1,Pten,Sos1,Braf
Ccnd1,Cdc42,Chuk,Pik3r1,Rb1,Tgfbr1,Mapk10,Braf
cnb2,Ccnd1,Chuk,Igf1r,Pik3r1,Pten,Sos1,Tgfbr1,Mapk10,Fbxo32,Braf,Ccnb1
1c,Calm2,Gnai3,Gnaq,Gng12,Kif5b,Prkca,Ppp1cb,Ppp2ca,Mapk10,Gria3,Ppp2r3a
Gng12,Igf1r,Met,Afdn,Nf1,Pak3,Pik3r1,Prkca,Sos1,Mapk10,Pla2g2f,Rap1a,Rap1b,Rasa1,R asal2,Rab5a
Cacna1c,Calm2,Fosb,Pdyn,Prkca,Ppp1cb,Ppp3r1,Gria3
Ccnd1,Chuk,Hdac2,Pik3r1,Rb1,Sos1,Tgfbr1,Braf
Ccnd1,Pik3r1,Prkca,Rb1,Sos1,Eml4,Braf
pc,Brca1,Ctnnb1,Ccnd1,Fzd6,Igf1r,Lrp6,Pik3r1,Pten,Rb1,Sos1,Sp1,Braf
gap5,Ctnnb1,Cdc42,Gnai3,Afdn,Pik3r1,Prkca,Rock1,Rock2,Rap1a,Rap1b
xtp1b1,Col3a1,Mep1a,Slc8a1,Try4,Ace2,1810009J06Rik,Try5,Gm10334
Ccnd1,Cdkn2c,Igf1r,Pik3r1,Rb1,Sos1,Sp1,Mapk10,Braf
Atp1b1,Gnaq,Prkca,Slc8a1,Rab11a,Cltc
,Gnai3,Met,Pak3,Pik3r1,Prkca,Plxna2,Ppp3r1,Rock1,Rock2,Arhgef12,Rasa1,Robo2
Ccnd1,Igf1r,Met,Pik3r1,Pten,Rb1,Braf

a1c,Calm2,Gna13,Gnaq,Prkca,Ppp1cb,Rock1,Rock2,Pla2g2f,Arhgef12,Braf

Supplemental Table 6. Gene Specific Primers

Primer	Sequence				
Mouse					
	F-CTGCACAGTATGGCCGAGATG				
NKX6.1	R-CCGGGTTATGTGAGCCCAA				
	F-CTGTGGCACTGAACCACTTGA				
Тарр	R-TGTTGCACTTCCGTTTGTCCA				
	F-ATCAACAACGACTGGCACGAA				
Aldn1a3	R-CACATCGGGCTTATCTCCTTC				
Sladad	F-AGGAGGAGGACATGGTGACT				
510444	R-GCCCAGGAAACTCTCCAACA				
Cavea	F-CTGCTCCCTTAACTGCTGGAT				
COXUAZ	R-GATTGTGGAAAAGCGTGTGGT				
Məfə	F-ATCATCACTCTGCCCACCAT				
Iviaia	R-TGGAGCTGGCACTTCTCGCT				
Pdv1	F-GAACCCGAGGAAAACAAGAGG				
	R-GTTCAACATCACTGCCAGCTC				
Atn5d	F-TGCTTCAGGCGCGTACATAC				
Лірой	R-CACTTGCTTGACGTTGGCA				
Ndufa7	F-TCCGCTACTCGCGTTATCCA				
	R-GATTGAGGGAGGCACAACTTC				
Ndufb11	F-CTCCAGGGCTGTAATCGCC				
Νααιστι	R-CGCGTAGACGTTTTCGTCCT				
Actin	F-GCAGGAGIACGAIGAGICCG				
	R-ACGCAGCICAGIAACAGICC				
Human					
SICANA	F-AGCACCTCACTATCTGAAAGGC				
SLC4A4	R-CACAACTTGACTGGTTGGCG				
SI COA1	F-GCCTTCTCTGGGCTACCT				
	R-CTTGTCCTTCCAGTGGTGGT				
ΔΤΡ5Π	F-AAACTTGGAGAAGGCCCAG				
	R-GATTCGGATCTGGATCTCTGC				
NDUFA7	F-TCATCATGTCGTCGCAGAAG				
	R-GACAGCTCCCACCTCTTATG				
NDUFB11	F-TGAGAGGCTTGTGAAATACCG				
	R-CAACIGGICACICAICCICIG				
COX6A2	F-ACTCAACAGGTGATTGGCCC				
	R-GIIGGIAGGGACGGAACICG				
ALDH1A3	F-ATCTCGACAAAGCCCTGAAG				
NKX6.1					
PDX1					
MAFA					
IAPP					
ACTIN					
	F-GAAGGTGAAGGTCGGAGTC				
GAPDH	R-GAAGATGGTGATGGGATTTC				