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Brief description of insulin mRNA quantity  
and quality
Many factors may contribute to the control of insulin mRNA 
levels (1, 2), including transcriptional networks that control β 
cell function (3) as well as mRNA stability (4). While a detailed 
analysis of the transcriptional regulation of β cell development, 
differentiation, and dedifferentiation is beyond the scope of this 
Review, it is certainly clear that PDX1 and NEUROD1 can act 
together to directly stimulate transcription from the INS promoter 
(5). Moreover, PDX1, in combination with NKX2.2 (downstream 
of NEUROG3; ref. 6) and FOXA2, stimulates the expression of 
the β cell–specific activator MafA (7); in turn, MafA homodimers 
(or MafA/MafB heterodimers) help support β cell INS gene tran-
scription (8) (two alleles in humans, four alleles in mice and rats), 
along with additional upstream factors (9). A number of human 
diabetes–related genes associated with INS mRNA expression are 
summarized in Table 1.

Classic studies of the islets of insulin-resistant C57BL/KsJ  
db/db mice, a genetic model of type 2 diabetes (T2D), have shown 
that at 5 weeks of age (when glycemia is not yet significantly per-
turbed and pancreatic insulin content is still similar to that in  
+/db controls), there is an elevation of Ins mRNA that is likely 

to be disproportional to β cell mass, which helps to provide the 
insulin needed to mount a hyperinsulinemic response in these 
animals (10). The db/db mice then progress to diabetes, and 
with this, the abundance of Ins mRNA is not sustained (although 
interventions to limit obesity and diabetes with diet or medica-
tions that provide β cell rest tend to preserve some of the eleva-
tion of Ins mRNA levels, as well as insulin secretory capacity; 
refs. 10, 11). Thus, regulating INS mRNA level is at least part of 
the response by which β cells compensate for insulin resistance, 
although this may not be maintained as hyperglycemia progresses. 
Accumulated clinical and basic research data suggest that declin-
ing INS mRNA levels may be just one feature of a larger phe-
nomenon of β cell dedifferentiation, and this may be a relatively 
early signature of β cell failure in the natural progression of T2D 
in humans and animal models (12–15). Not surprisingly, many 
genes associated with β cell differentiation (including INS mRNA 
expression) also appear as (loss-of-function) GWAS candidates for 
T2D in humans (Tables 1, 2, 3, and 4).

There are also murine models in which hyperglycemia (from 
experimentally induced partial insulin deficiency) appears to lead 
directly to decreased β cell transcription factors (PDX1, Nkx6.1, 
HNF1A, and MafA — all of which contribute to differentiated 
function) in pancreatic islets, along with downregulation of β cell–
enriched genes (Glut2 and Gck) and accompanied by increased 
endocrine progenitor markers (Ngn3) and β cell–disallowed genes 
(Ldha and G6pc). The effects of hyperglycemia have also been 
observed in residual islets after incomplete pancreatectomy (16), 

Both basal and glucose-stimulated insulin release occur primarily by insulin secretory granule exocytosis from pancreatic  
β cells, and both are needed to maintain normoglycemia. Loss of insulin-secreting β cells, accompanied by abnormal glucose 
tolerance, may involve simple exhaustion of insulin reserves (which, by immunostaining, appears as a loss of β cell identity), 
or β cell dedifferentiation, or β cell death. While various sensing and signaling defects can result in diminished insulin 
secretion, somewhat less attention has been paid to diabetes risk caused by insufficiency in the biosynthetic generation and 
maintenance of the total insulin granule storage pool. This Review offers an overview of insulin biosynthesis, beginning with 
the preproinsulin mRNA (translation and translocation into the ER), proinsulin folding and export from the ER, and delivery 
via the Golgi complex to secretory granules for conversion to insulin and ultimate hormone storage. All of these steps are 
needed for generation and maintenance of the total insulin granule pool, and defects in any of these steps may, weakly or 
strongly, perturb glycemic control. The foregoing considerations have obvious potential relevance to the pathogenesis of type 
2 diabetes and some forms of monogenic diabetes; conceivably, several of these concepts might also have implications for  
β cell failure in type 1 diabetes.
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dent preproinsulin translation is, to a considerable extent, depen-
dent on factors that associate with untranslated regions (UTRs) 
of the INS mRNA (4, 28, 29). In isolated rat pancreatic islets, total 
islet protein synthesis increases about 2-fold within ≤1 hour of 
high glucose exposure, but much of this overall increase compris-
es the biosynthesis of preproinsulin along with copackaged secre-
tory granule content proteins (30), with a much higher fold change 
during the same period (31, 32). Most Ins mRNA is associated with 
the ER, and a key step of glucose-dependent preproinsulin biosyn-
thesis includes ribosome recruitment to initiate translation (33).

The preproinsulin mRNA yields a polypeptide that can be 
synthesized via cap-dependent or -independent translation (4), 
encoding a protein from N- to C-terminus comprising the signal 
peptide to direct translocation into the ER, the B chain, the con-
necting (C)-peptide (that is removed within immature secretory 
granules), and concluding with the A chain. Mature, optimally 
bioactive insulin requires a two-chain structure with two disulfide 
bonds that link the B and A chains plus one internal disulfide bond 
within the A chain.

Problems with preproinsulin translation may affect either 
the quantity or the quality of the translation product. Interesting-
ly, based on rodent studies (that will require further validation 
in humans as well as animal models), it has been suggested that 
there is a steady decline of preproinsulin translation as a function 
of age (34); this might correlate with the age-related increase in 
the incidence of T2D (35). As for quality, aberrant preproinsulin 
translation has been linked to defects in Cdkal1 (a tRNA methylth-
iotransferase required for the fidelity of reading AAA and AAG), 
and its deficiency can result in the misreading of Lys codons (36). 
Thus, in addition to effects on insulin target tissues, Cdkal1 defi-

as well as in transgenic mice expressing a mutated form of the ATP 
channel (Kir6.2-V59M, which impairs insulin secretion in β cells, 
causing hyperglycemia; ref. 17). Additionally, even without known 
genetically predisposing factors, INS mRNA has been shown to 
be dramatically decreased in human islet grafts exposed in vivo 
to hyperglycemic conditions (i.e., after transplantation into NSG 
mice), again suggesting that chronic hyperglycemia — along with 
other factors (18) — is detrimental to the maintenance of β cell INS 
mRNA as well as other key transcriptional machinery needed for 
the differentiated β cell phenotype (19, 20).

The INS mRNA may also be subject to abnormal splicing, 
including formation of the INS-IGF2 chimera, which — although 
it may occur at only a low level (21) — could offer an INS-specific 
sequence contribution limited to the signal peptide, B chain, cleav-
age site, and a short portion of the C-peptide (22). Another errant 
splice donor-acceptor combination occurs in patients with early- 
onset autosomal dominant diabetes (MIDY, discussed in greater 
detail below) caused by a mutation within the INS gene intron 2, 
creating a preferential splice acceptor site, thus terminating the nor-
mal preproinsulin sequence in the same place as in INS-IGF2, but 
thereafter leading to a frameshifted protein replacing the remaining 
C-peptide and A chain with a novel peptide sequence (23).

Preproinsulin translation and translocation  
into the ER
Insulin biogenesis (Figure 1) begins with preproinsulin translation 
and translocation across the endoplasmic reticulum (ER) mem-
brane, to synthesize proinsulin. Translation from the INS mRNA 
is acutely regulated by multiple drugs, hormones, and nutrients, 
especially glucose and its metabolites (24–27). Glucose-depen-

Table 1. Human diabetes–related genes associated with INS gene transcriptionA

Gene Function Diabetes phenotypes and other symptoms References
INS Encodes preproinsulin MODY; PNDM; T2D; T1D 60, 201
PDX1 Transcription factor; stimulates transcription from the INS promoter;  

involved in early pancreas development
MODY4 or PNDM, usually with  

pancreatic agenesis; T2D
5, 202

NEUROD1 Transcription factor; stimulates transcription from the INS promoter;  
involved in pancreatic and neuronal development

MODY6; PNDM with neurological  
abnormalities; T2D

203, 204

MAFA Transcription factor; binds to insulin enhancer elements and stimulates INS gene transcription Insulinomatosis; diabetes; T1D 205–207
PAX6 Transcription factor; involved in islet, eye, brain, and pituitary development PNDM with brain anomaly;  

diabetes and aniridia
208, 209

GLIS3 Positively regulates INS gene transcription; expressed early in embryogenesis PNDM with congenital  
hypothyroidism; T2D; T1D

210, 211

APrimarily focused on genes mentioned in the main text. MODY, maturity-onset diabetes of the young; PNDM, permanent neonatal diabetes mellitus.

Table 2. Human diabetes–related genes linked to preproinsulin translation and/or translocationA

Gene Function Diabetes phenotypes and other symptoms References
CDKAL1 tRNA methylthiotransferase; required for the fidelity of AAA and AAG codon translation T2D 37
EIF2B1 Guanine nucleotide exchange factor for eukaryotic initiation factor 2; regulates translation initiation PNDM with transient hepatic dysfunction 212
EIF2S3 Involved in the translation of protein synthesis and regulation of the integrated stress response MEHMO syndrome 213
SSR1 Involved in preproinsulin translocation and proinsulin processing T2D; GDM 71, 214, 215
APrimarily focused on genes mentioned in the main text. GDM, gestational diabetes mellitus; PNDM, permanent neonatal diabetes mellitus.
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whatsoever with preproinsulin (41). Along with aberrant splicing 
noted above, these mistranslated products are fascinating pro-
teins, potentially generating neoantigens that may be recognized 
by the immune system to trigger autoimmune response (42, 43).

A critical step for preproinsulin entry into the secretory path-
way involves its translocation across the ER membrane. There are 
at least two modes of entry: cotranslational translocation that is 
signal recognition particle–dependent (SRP-dependent), and 
posttranslational translocation that does not require SRP (44–46). 
Cotranslational translocation is the main ER entry pathway for 
most secretory proteins; however, posttranslational translocation 
may be important especially for small secretory proteins and those 
with suboptimal SRP recognition/binding sequences (47, 48). 
Preproinsulin had long been thought to enter the ER exclusively 

ciency can adversely affect the quality of the proinsulin translation 
product (triggering ER stress; ref. 37) as well as subsequent proin-
sulin-to-insulin conversion (38). Further, it was recently demon-
strated that proper β cell iron status, mediated by iron-responsive 
element binding protein 2 (IRP2), is required for the ongoing func-
tion of Cdkal1, and IRP2 deficiency also results in Lys codon mis-
reading that leads to impaired proinsulin folding with diminished 
insulin biosynthesis (39). (Alternatively, diabetogenic SNPs in the 
CDKAL1 locus may reflect alteration in the expression of SRY-box 
transcription factor 4 [SOX4], as reviewed in ref. 40.) Moreover, 
translational initiation at an improper AUG start site could poten-
tially lead either to the production of a preproinsulin bearing an 
N-terminally foreshortened signal peptide, or to a novel defec-
tive ribosomal initiation product that shares no sequence identity 

Table 3. Human diabetes–related genes involved in proinsulin folding or ER homeostasisA

Gene Function Diabetes phenotypes and other symptoms References
HYOU1 HSP70 family member; participates in misfolded proinsulin degradation Immunodeficiency 59 and hypoglycemia (IMD59) 96
SPRY2 A target and a negative regulator of the PERK arm of the UPR T2D 9
SEL1L Plays a role in ERAD system; involved in ubiquitin-dependent degradation of misfolded ER proteins T1D 216
P4HB Participates in the oxidative folding of proinsulin to the native state in β cells As a carbonylated autoantigen in T1D 217
EIF2AK3 Induced by ER stress and rapid decrease of translational initiation and repression  

of global protein synthesis to regulate ER stress
Wolcott-Rallison syndrome 218

APrimarily focused on genes mentioned in the main text.

Table 4. Human diabetes–related genes associated with insulin granule packaging, processing, or secretionA

Gene Function Diabetes phenotypes and other symptoms References
PTPRN Plays a role in vesicle-mediated secretory processes; helps to support luminal protein condensation  

in young granules of β cells
Associated with presence of islet autoantibody 

(IA-2) and a high risk of T1D 
219

GCK Acts as “glucose sensor” in glucose-stimulated insulin secretion MODY; T2D; hypoglycemia 220
SLC2A2 Facilitates bidirectional glucose transport and triggers adequate insulin secretion in β cells Fanconi-Bickel syndrome 221
SLC30A8 Encodes zinc transporter 8, which provides zinc for insulin maturation and/or storage T2D 222
KCNJ11 ATP-sensitive potassium channel subunit; involved in regulating insulin secretion of β cells MODY; NDM; DEND syndrome;  

hyperinsulinemic hypoglycemia
223

ABCC8 ATP-sensitive potassium channel subunit; involved in regulating insulin secretion of β cells MODY; NDM; DEND syndrome;  
hyperinsulinemic hypoglycemia

223

KCNQ1 Adjusts insulin secretion through regulating the potassium channel current T2D 224
KCNK16 Pancreatic β cell potassium channel that modulates β cell excitability, controlling Ca2+ influx  

and insulin secretion
T2D 225

KCNH6 Stimulates insulin secretion through regulating intracellular calcium concentration Hypoglycemia; MODY 226
CAMKK2 Contributes to the regulation of insulin production in pancreatic β cells though Ca2+ signaling T2D 227
BCL11A Transcription factor; regulates multiple genes involved in insulin exocytosis in β cells T2D 228
PAM Has effects on insulin availability and the dynamics of granule exocytosis T2D 229
PIM3 Negatively regulates insulin secretion by inhibiting the activation of MAPK1/3 (ERK1/2), through SOCS6 T2D 230
WFS1 Participates in the regulation of cellular Ca2+ homeostasis; involved in insulin secretion  

accompanied by regulation of cellular calcium responses to the secretagogue
Wolfram syndrome 231

ADRA2A Overexpression impaired insulin granule docking at the plasma membrane and  
reduced exocytosis in β cell

T2D 232

ZMIZ1 Involved in exocytosis and insulin secretion T2D 233, 234
MADD Participates in glucose-induced insulin release T2D 235
STARD10 Involved in glucose-stimulated Ca2+ dynamics and insulin secretion and proinsulin processing T2D 236
SLC9B2 Critical for insulin secretion and clathrin-mediated endocytosis in β cells T2D 237
APrimarily focused on genes mentioned in the main text. MODY, maturity-onset diabetes of the young; NDM, neonatal diabetes mellitus.
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sulin) indicates that up to 15%–20% of full-length preproinsulin 
(110 residues) can be detected immediately after its biosynthe-
sis. As cleavage of the signal peptide is not itself thought to be 
rate-limiting, these data suggest that completion of the full-length 
translation product is too rapid to fully engage SRP-dependent 
cotranslational translocation (50, 51). This subset of fully trans-
lated molecules can nevertheless undergo subsequent conversion 
to proinsulin, strongly suggesting posttranslational translocation 
into the ER (47, 48). This may be an important “backup” mech-
anism to enhance newly synthesized preproinsulin translocation 
efficiency (44, 47). A positive charge within the N-terminal portion 
of the preproinsulin signal peptide appears to be an important fac-
tor in determining translocation efficiency for preproinsulin and 
other small secretory proteins (47, 50, 52).

Importantly, recent studies suggest that translocation into the 
ER is regulated, and decreased translocation efficiency may be 
a cellular response to overload of the ER (53, 54). This has been 
termed “preemptive quality control” accompanied by protea-
somal disposal of untranslocated proteins, with the notion that 
decreased ER protein loading can alleviate ER stress (53, 55, 56). 
This preemptive quality control has been observed primarily for 
small secretory proteins and/or those with a suboptimal SRP rec-
ognition sequence (44, 57, 58). However, it is worth noting that 
although this mechanism may reduce ER stress, it may also result 
in cytosolic accumulation of untranslocated preproteins. Indeed, 
failure to translocate prion protein has been linked to neurodegen-
erative diseases (56). Thus, in order to avoid toxic accumulation in 
cells, untranslocated preproteins need to be efficiently degraded. 
Components of the ER-associated protein degradation (ERAD) 
machinery, including Derlins, p97 (valosin-containing protein), 
Bag6, and AIRAPL (zinc finger AN1-type containing 2B), have all 
been suggested to play a role in the preemptive proteasomal clear-
ance of untranslocated preproteins (54, 59). Given the fact that 
preproinsulin is a small protein that may be predisposed to inef-
ficient translocation (44, 50), it will be important to know wheth-
er it is also subject to preemptive regulation under ER stress, and 
whether inefficiently translocated preproinsulin can contribute to 
β cell failure during the ER stress of type 1 diabetes (T1D), T2D, 
or selective forms of monogenic diabetes (60–65). Certainly, the 

through cotranslational translocation (i.e., formation of the ribo-
some-preproinsulin-SRP complex for delivery to the Sec61 trans-
locon via binding to the SRP receptor on the ER membrane; ref. 
49). However, recent experimental evidence from human islets 
(as well as non-β cells transfected to express wild-type preproin-

Figure 1. An overview of insulin biosynthesis in β cells. (i) Expression of 
INS gene is controlled quantitatively and qualitatively by transcriptional 
networks including PDX1, NGN3, NEUROD1, NKX2.2, FOXA2, and MAFA. 
(ii) Newly synthesized preproinsulin (PPI) undergoes cotranslational 
(SRP- and Sec61-dependent) and posttranslational (Sec62/63-dependent) 
translocation across the ER membrane, in which TRAP plays an important 
yet poorly defined role. (iii) Upon delivery to the ER lumen, the preproinsu-
lin signal peptide is rapidly excised, forming proinsulin (PI) that under-
goes rapid oxidative folding — ultimately forming three highly conserved 
disulfide bonds. ER folding machinery (BiP, ERO1, PDI, ERp46, GRP94, etc.) 
acts in concert to promote folding, and may recognize unfolded/misfolded 
proinsulin for degradation through ERAD and ER-phagy. Misfolded proin-
sulin can also activate the unfolded protein response (UPR; including three 
classic arms involving PERK, IRE1, and ATF6). (iv) Well-folded proinsulin is 
exported from the ER via COPII vesicles for delivery to the Golgi complex, 
where proinsulin forms hexamers in the presence of Zn2+. Upon proinsulin 
delivery to (more acidic, Ca2+-rich) immature secretory granules (ISGs), 
PC1/3, PC2, and CPE act to convert proinsulin to insulin, which is ultimately 
stored in mature granules (MGs).
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dimerization surface. Independently, misfolded proinsulin may 
also impair, in trans, other exportable proteins in the β cell secre-
tory pathway, such as the precursor insulin receptor (ProIR), which 
can inhibit ProIR maturation and insulin signaling in β cells (86).

In addition to the foregoing interactions, proinsulin has the 
potential to interact with multiple resident proteins of the ER, and 
these interactions are likely to be altered under pathological condi-
tions. Proinsulin has been reported to coprecipitate with ERp46, but 
the expression level of this ER oxidoreductase (and thus its proba-
ble interaction with proinsulin) decreases upon onset of diabetes 
(at least in C57BL/KsJ db/db mice) — although this may be partially 
rescued upon treatment with GLP-1 agonists (87). BiP is a well- 
established ER chaperone with preferential binding to misfolded 
proinsulin (88, 89). BiP function is potentially supported by the Sil1 
nucleotide exchange factor (90). Additionally, GRP94 function is 
needed for proper post-ER processing of proinsulin, and deficiency 
of GRP94 increases the numbers of abnormally enlarged secretory 
granules bearing diminished mature insulin (91).

Further, proinsulin that is misfolded under altered redox con-
ditions may present itself for interactions with ER-resident pro-
teins that perhaps do not participate as importantly in the normal 
proinsulin folding pathway. New evidence indicates that PRDX4 
may be an important proinsulin interactor in normal human islets 
— particularly under altered redox conditions (92). Further, the 
lectin-like chaperone calreticulin appears to interact with reduced 
proinsulin and facilitates its lysosomal degradation (93). Misfold-
ed mutant proinsulin is also known to interact with PDIA1 (also 
known as PDI; encoded by P4HB) (94), which assists proinsulin 
under conditions of oxidative stress (95); misfolded proinsulin 
also interacts with GRP170 (encoded by HYOU1) (96). ERO1 is 
thought to function upstream of PDIA1 and other isomerases/
oxidoreductases. Deletion or downregulation of ERO1 impairs 
proinsulin oxidative folding and decreases insulin production 
(97, 98). Conversely, overexpression of ERO1 in β cells appears to 
accelerate oxidative folding and enhances the ER export of WT 
proinsulin in the presence of MIDY mutants (51, 99), although 
excessive β cell–specific expression of ERO1β does not improve 
insulin production (100), suggesting that a fine-tuned oxidative 
state of the ER is needed to optimize insulin biosynthesis.

Misfolded proinsulin, at least in part, undergoes intracellular 
disposal (101) by ERAD and ER macroautophagy. ERAD has an 
important role to play in normal β cell ER homeostasis (102). The 
evolutionarily conserved ERAD core machinery includes Hrd1 
(involved in retrotranslocation of the target protein) and Sel1L (the 
cofactor essential for Hrd1 protein stability; ref. 103); additional 
factors may contribute to the expression and/or stability of these 
core components (104). The basic steps involved in ERAD of pro-
insulin (105) and other secretory proteins involve (a) recognition 
of the (presumably misfolded) protein target via binding to various 
resident proteins within the ER that either positively or negatively 
facilitate the efficiency of the degradation process (96, 106); (b) 
retrotranslocation from the luminal side of the ER membrane to 
the cytosolic side (94); (c) ubiquitylation of the target protein (107) 
via Hrd1; (d) extraction of the ubiquitylated target protein via the 
p97 ATPase for the delivery to proteasomes (108); and (e) protea-
somal degradation, which may involve the stress-inducible prote-
asome subunit β5i (109).

pathophysiological significance of inefficient translocation for 
preproinsulin is highlighted by the recent discovery of INS gene–
encoded signal peptide mutations that cause early-onset diabetes 
in humans (66–69). Further, even in the absence of such signal 
peptide mutations, defective IRE1α-mediated ER stress signaling 
is known to result in the accumulation of unprocessed preproinsu-
lin (70), which normally is virtually undetectable in healthy β cells 
(71). Recently, translocon-associated protein-α (TRAPα), encoded 
by the T2D-associated gene SSR1 (signal sequence receptor 1), 
has also been shown to play an important role in the efficiency 
of preproinsulin translocation (71). These realizations open new 
avenues for further studies to evaluate the potential pathophysi-
ological importance of defective preproinsulin translation and/or 
translocation during the development of diabetes, and the gene 
variants that may contribute to these defects (Table 2).

ER quality control in proinsulin folding/
misfolding
In general, proteotoxic forms of proinsulin are selected against in 
evolution (72), as they seem to impair β cell mass in addition to 
their impairment of insulin biogenesis (73, 74) as well as general 
dysfunction of the secretory pathway (75). Nevertheless, misfold-
ing of the INS gene product is not incompatible with life, as a large 
family of INS gene mutations underlie the autosomal dominant 
disorder known as MIDY (mutant INS gene–induced diabetes of 
youth) (76). MIDY does not represent all INS gene mutations, as 
some mutant alleles may merely decrease preproinsulin expres-
sion (77), or alter aspects of the biology of the INS gene product 
other than proinsulin folding (60). All MIDY patients thus far 
described are heterozygotes, still bearing one wild-type (WT) INS 
allele (78). It is clear that misfolded MIDY proinsulins are synthe-
sized yet entrapped within the ER lumen (79), and this is the loca-
tion where the mutant protein first engages (and blocks the traf-
ficking of) WT bystander proinsulin (80). Indeed, MIDY mutant 
proinsulins can form aberrant, intermolecular disulfide bonds 
with WT proinsulin, propagating the defects of impaired folding 
and ER export onto the WT bystanders (51, 76, 81). These abnor-
mal interactions appear to be an initiating event leading to insu-
lin-deficient diabetes, well before decreased β cell mass (82–84).

How these aberrant interactions are initiated has not been 
clear, but recent evidence suggests that initial contact between 
mutant and WT molecules involves one or more residues that 
would normally be used for noncovalent proinsulin dimerization 
(85), which engages a relatively hydrophobic helical region span-
ning residues 8–29 of the insulin B chain from two apposed part-
ners. Structural analysis indicates that Tyr-B16 contributes more 
surface area to the dimerization contact surface than any other 
single residue (85). Whereas substitution of Tyr-B16 with either 
Ala or Asp does not affect the folding and trafficking of WT pro-
insulin, introduction of these substitutions into a MIDY proinsulin 
(such as the Akita mutant) functions as an intragenic suppressor, 
substantially limiting cross-dimerization, decreasing abnormal 
intermolecular disulfide bonding between mutant and WT proin-
sulin, and increasing WT insulin production. These data support 
the idea that dominant-negative propagation of misfolding from 
mutant proinsulin onto bystander proinsulin is initiated by inter-
molecular contact involving residues of the natural proinsulin 
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Deficiency of Sel1L expression (which causes instabili-
ty of Hrd1 protein; ref. 110) has long been known to block glu-
cose-stimulated insulin secretion from islet β cells (111). Hrd1 
may act on proinsulin but also on other β cell degradation sub-
strates (112). Indeed, new work has highlighted that Sel1L-Hrd1 
activity in β cells is needed for the maintenance of full function-
ality and identity of β cells — especially including insulin biosyn-
thesis — in particular by limiting the activity of the TGF-β sig-
naling pathway (113). Thus, loss of β cell Sel1L appears to trigger 
hyperactivation of TGF-β signaling, which accompanies a dedif-
ferentiated β cell phenotype.

Beyond ERAD, quality control of misfolded proinsulin results 
in active clearance by ER autophagy (ER-phagy); this occurs under 
all conditions but is especially true when ERAD of proinsulin is 
impaired (114), or in β cells bearing Ins mutations that cause pro-
insulin misfolding (115). In the latter case, mTOR activity appears 
diminished (73) and AMP kinase activity appears stimulated. 
While ER-phagy is likely to be beneficial in clearing misfolded pro-
insulin and thereby enhancing efficiency of the remaining proin-
sulin to be properly folded and to undergo successful intracellular 
transport (114), generalized hyperactivation of autophagy is not a 
cure-all for β cells, as this can stimulate enhanced autophagic turn-
over of transport-competent proinsulin (116) as well as turnover of 
mature insulin secretory granules, leading to a diminution of the 
insulin storage pool (117, 118). The regulation of lysosome-mediat-
ed proinsulin turnover is also not yet understood (119); however, if 
therapies can be designed that selectively activate β cell ER mac-
roautophagy, such therapies may hold promise as potential treat-
ments for diabetes linked to proinsulin misfolding (114).

ER stress and ER stress response signaling pathways in pancre-
atic β cells have been extensively reviewed elsewhere (120–123), 
including heterogeneity in responses that accompany the hetero-
geneity of proinsulin biosynthetic/folding activity among islet β 
cells (124). The biosynthesis and folding of proinsulin itself con-
trols a set-point of ER stress activation within β cells (125). Addi-
tionally, β cell ER stress appears to be a hallmark of T2D in both 
humans and rodent models (126) — and failure to mount adaptive 
ER stress responses is known to make matters worse (127, 128).

The Ire1 limb of the ER stress response is of acute and pro-
found benefit to insulin biosynthesis (129). In particular, Ire1-Xbp1 
upregulates multiple ER factors promoting proinsulin biosynthe-
sis, including preproinsulin translocation across the ER mem-
brane (70, 130) (see previous section). Moreover, Ire1-Xbp1 upreg-
ulation of various ER oxidoreductases is thought to participate 
in the oxidative folding of proinsulin to the native state (includ-
ing PDIA1, PDIA5 [also known as PdiR], PDIA6 [P5], ERp44 
[PDIA10], and TXNDC5 [PDIA15, or ERp46]) — of these, PDIA1 
has been demonstrated to contribute to the reduction of aberrant 
intermolecular proinsulin disulfide bonds that are formed upon 
redox stress (94, 95). Nevertheless, Ire1 activation must be fine-
tuned, as its hyperactivation appears clearly detrimental to insulin 
biosynthesis and β cell survival (131–133).

The role of PERK in regulating insulin biogenesis is firmly 
established, but the proposed mechanism(s) have varied consider-
ably between different groups and systems. Classic work described 
PERK as one of the four kinases involved in the phosphorylation of 
eIF2α (134), negatively regulating pancreatic (exocrine and endo-
crine) translation (135, 136). Consistent with this, conditions of 
insufficient PERK activity have been reported to result in hyper-
synthesis of proinsulin, albeit with an increase in the abundance of 
non-native folded forms (88, 89, 137) that may contribute to the β 
cell failure of Wolcott-Rallison syndrome (138, 139). However, other 
studies have not corroborated that PERK activity negatively regu-
lates proinsulin biosynthesis (140), concluding instead that PERK 
regulates multiple other functions (141) including β cell proliferation 
(142, 143) — although this too has been challenged (144). Further, 
there is reason to suspect that PERK expression is needed for the 
maintenance of β cell differentiation as a result of its role in regu-
lating multiple aspects of ER homeostasis (82, 145). Like the find-
ings regarding Ire1, these findings may not necessarily be internally 
contradictory, as they may reflect the homeostatic importance of 
PERK in β cells in which both too little and too much activity can be 
detrimental (146). However, in studies of proinsulin translation and 
its regulation by PERK, we do wish to sound a strong note of caution 
about conclusions based largely on the INS-832/13 rat β cell line. 
These cells may indeed be useful for studies of proinsulin traffick-
ing, conversion to insulin, and glucose-stimulated insulin secretion, 
as well as sensitivity to ROS and other β cell toxins (147). Neverthe-
less, this clone of INS-1 cells (expressing endogenous rat proinsulin-1 
and -2) is uniquely complicated for studies of proinsulin biosynthe-
sis, because the INS-832/13 cells also synthesize transfected human 
proinsulin expressed from a nonphysiological CMV promoter and 
bearing nonphysiological 5′- and 3′-UTR sequences (148) — thus its 
translation cannot be regulated in a physiological way.

PERK activity is also thought to support the expression of 
another ER stress sensor, ATF6 (149). As with Ire1 and PERK, dif-

Figure 2. β Cell phenotypes of defective insulin production and storage. 
β Cell dysfunction may begin many years before diagnosis of diabetes, and 
progressive deterioration of β cell function represents the natural history 
of T2D. In healthy, well-differentiated and well-compensated β cells (left), 
the synthesis of proinsulin (green) and its folding and processing are 
homeostatically regulated to meet metabolic demand in order to maintain 
the biogenesis of insulin (red), which is stored in granules for insulin 
secretion. Well before end-stage β cell failure, proinsulin biosynthesis 
may be actively ongoing even in β cells that no longer maintain an insulin 
storage pool (middle). β Cell degranulation appears (by immunofluores-
cence analysis of insulin content) as a loss of β cell identity. As the disease 
progresses further (right), there is also a diminution of proinsulin bio-
synthesis in addition to the loss of insulin storage. This schematic figure 
shows individual β cells for clarity, but given the heterogeneity of islet β 
cells, these representations should be viewed not as a fixed stage for all β 
cells in the population, but rather as the phenotype for a prevailing portion 
of islet β cells across the pancreas during disease progression. β Cell death 
is not shown in the figure, but this is also a relevant consideration in many 
forms of diabetes.
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ferent studies of ATF6 in β cells have reached somewhat differing 
conclusions regarding its impact on insulin production and release 
(150). In brief, physiological (i.e., mild) ER stress is thought to pro-
mote ATF6 expression in a manner that is favorable to β cell growth 
and survival (128, 151); on the other hand, transcription activated 
by ATF6 stimulates production of the proapoptotic transcription 
factor CHOP (152, 153). There is reason to think that inadequate 
ATF6 and Xbp1 expression may be linked to inadequate insulin 
production during the progression of T2D (154). In summary, each 
of the ER stress response signaling limbs requires fine tuning and 
has the potential to lead to both helpful and harmful effects on 
insulin biogenesis and β cell viability. A number of genes involved 
in ER homeostasis whose variants may be linked to human diabe-
tes are listed in Table 3.

Delivery to granules with processing and insulin 
storage
A list of human diabetes–related genes associated with insulin 
granule packaging, processing, or secretion is presented in Table 
4. Formation of insulin secretory granules, and maintenance of 
the granule compartment, is a broad topic that will be only briefly 
summarized here. It is important to note, however, that morpho-
metric studies of human T2D islets have shown that the volume 
density of total mature insulin granules in β cells is significantly 
diminished, and this pool size correlates with the diminished mag-
nitude of the glucose-stimulated insulin secretion response (155).

Recent proteomics studies have suggested that to support the 
upregulation and maintenance of insulin secretory granule biogen-
esis (in mice; ref. 156), there are differential posttranslational mod-
ifications of ER molecular chaperones and proteins involved in 

redox homeostasis (see previous section), as well as those involved 
in protein trafficking. This may be important, because ongoing 
ER-to-Golgi transport itself helps to maintain the ER environment 
and limit ER stress (157). Indeed, augmented proinsulin export is 
thought to be linked to enhanced insulin secretion (158).

Upon transport through the Golgi complex, proinsulin and 
its processing enzymes emerge in immature secretory granules 
(ISGs) budding from the trans-Golgi network (a process that 
appears to be microtubule-dependent; ref. 159). The formation 
and maturation of insulin granules involve a complex set of pro-
cesses that coordinate ionic control of the organelle interior (160, 
161), acquisition of competence for stimulus-dependent secretion 
(162, 163), enzymatic processing of proinsulin (164, 165), packag-
ing (protein condensation) (166), and membrane trafficking and 
lipid modification (167–170), as well as stability of the organelle 
during its intracellular transport through the cytoplasm (171–173); 
many of these steps are interconnected, and they are ultimately 
transcriptionally orchestrated (174). For example, the peripheral 
membrane protein HID-1 is thought to support proinsulin-to-in-
sulin conversion that is synchronized with other steps of insulin 
secretory granule maturation (175).

As for processing enzymes, ISG acidification and high Ca2+ are 
both required for optimal proinsulin conversion to insulin (176). 
Prohormone convertase-1 (PC1/3) is the dominant endoproteo-
lytic activity required for proinsulin-to-insulin conversion, with a 
lesser contribution from prohormone convertase-2 (177). Addition-
ally, the activity of carboxypeptidase E (CPE) is strongly linked to 
β cell insulin production and storage (178). These enzymes depend 
on the dibasic endoproteolytic cleavage sites of proinsulin; diabe-
tes-related insulin deficiency is observed either when these cleav-
age sequences are not present, or when they are present but inef-
ficiently acted upon. Indeed, deficiency of proinsulin conversion 
appears to correlate with insulin deficiency in diabetes (179–183).

With regard to intragranular packaging, chromogranins A and 
B have both been long suspected to play an important role (184), 
but their precise molecular role has remained somewhat elusive 
(185, 186), in part because it is difficult to distinguish direct and 
indirect effects of the expression of these molecules. Additional-
ly, other proteins such as VGF or IA-2/ICA512 (islet cell autoan-
tigen 512, an integral membrane protein with either a detached 
or an intact luminal domain) may also help to support luminal 
protein condensation in young granules (187, 188). While luminal 
condensation is occurring, there appears to be active modeling/
remodeling of the ISG membrane, controlled in large part by the 
recruitment of cytosolic factors that interact with ISG membrane 
proteins to drive the remodeling (189), as well as dynamic mem-
brane interchange with the endosomal system — in part regulated 
by the endosome-associated recycling protein (EARP) complex 
and the EARP-interacting protein EIPR1 (190).

Diabetes caused by defective β cell insulin 
storage
Absolute/relative insulin deficiency is a hallmark of both T1D 
and T2D. However, beginning with relatively healthy compensa-
tion including robust (or even increased) insulin biosynthesis, the 
onset and subsequent development of T2D leads β cells through 
a gradual progression of different phenotypes, from diminished 

Figure 3. Proinsulin and insulin during progression to β cell failure. 
Prediabetes: β Cell function has a greater chance of recovery. β Cell insulin 
synthesis increases and insulin content is maintained, although intracel-
lular proinsulin/Cpep or proinsulin/insulin ratio begins to rise, accompa-
nied by defective GSIS and elevated proinsulin/Cpep or proinsulin/insulin 
ratio in the secretion. Early T2D: β Cell function still has a good chance 
of recovery. Insulin content declines and progresses toward depletion as 
demonstrated by immunostaining, making it more difficult to identify β 
cells (“loss of identity”), but (pre)proinsulin biosynthesis is still actively 
ongoing. Proinsulin/Cpep or proinsulin/insulin ratio in the islets and 
secretion is more markedly elevated. Later T2D: β Cell function may still be 
recoverable, but the chance of recovery is lower at this stage. Evidence of β 
cell dedifferentiation is detectable and (pre)proinsulin biosynthesis drops 
(though still detectable) with a decreased expression of pancreatic proin-
sulin. β Cell–specific transcription factors exhibit diminished expression; 
endocrine progenitor cell markers increase. End-stage T2D: β Cell function 
appears unrecoverable and β cell mass is diminished, consistent with some 
level of β cell demise. Cpep, C-peptide; GSIS, glucose-stimulated insulin 
secretion; PI, proinsulin.
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in the ER is nonessential, could the dimerization contact surface 
be a druggable target to promote increased insulin biogenesis, 
comparable to pharmacochaperones being developed for other 
degenerative diseases caused by protein misfolding (200)?

(c) Correct disulfide pairing is a critical event both for proin-
sulin folding in the ER, and for the ultimate bioactivity of insulin. 
Does the oxidative environment of the β cell ER change in T2D, 
and if so, is this too a druggable target?

(d) Proinsulin folding is a kinetic process, during which we 
hypothesize that there are discrete folding intermediates. How 
do β cells differentiate “on-pathway” folding intermediates from 
“dead-end” misfolded proinsulin in order to distinguish the fates 
of not-yet-folded versus misfolded proinsulin molecules?

(e) If there really are transition zones during the development 
and progression of T2D at which β cell function can be fully (or 
even partially) restored, can β cell rest promote recovery of β cell 
function even after dedifferentiation has occurred, and could pro-
insulin status be used as a biomarker to determine this?

Accumulating evidence indicates that genetic or acquired 
defects in the Ins gene translation product are central to virtually 
all of these key questions. In the coming years, we would hope to 
see development of therapies designed to attenuate the detrimen-
tal effects of improperly translocated preproinsulin or misfolded 
proinsulin. These strategies may span approaches designed to 
increase the biological yield of properly folded proinsulin (and 
thus insulin) in β cells, or to enhance the degradative clearance of 
improperly folded products. Such approaches may well have broad 
translational significance for future developments in the manage-
ment of β cells in diabetes.
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insulin storage, to functionally exhausted cells that can no lon-
ger be identified as β cells owing to loss of immunostaining with 
anti-insulin antibodies, and ultimately to the loss of islet β cells 
that may result from dedifferentiation and eventual β cell death 
(Figure 2) (15, 36, 191–193). Importantly, accumulating evidence 
from both mouse (17) and human (14, 194, 195) studies supports 
the idea that at some points during the progression of T2D, β cell 
function can be partially or even fully restored in those favorably 
responding to weight loss; however, the ability to regain β cell 
function appears to be time-dependent (196). Although the rate of 
remission after extensive intervention can be as high as 50%–90% 
for patients with T2D of ≤1.5 years’ duration (194, 195), reversal 
essentially cannot be achieved in patients who have had T2D for 
more than 11 years (197). These data suggest progression beyond 
one or more transition points that determine recoverability across 
the β cell population (Figure 3).

Unfortunately, to date, there are no reliable biomarkers to 
identify/distinguish these stages in a living individual, or even in 
histological analysis of the pancreas from deceased individuals. 
Although absence of islet insulin immunostaining is perhaps the 
most widely used marker to define loss of β cell identity, deple-
tion of insulin storage does not necessarily mean dedifferentia-
tion or β cell death. For example, it has been shown that depleted 
insulin storage in the islets of C57BL/KsJ db/db diabetic mice can 
still be significantly restored when the islets are cultured ex vivo 
in 5.6 mmol/L glucose (198). It has also been found that in islets 
from Akita diabetic mice with profound insulin deficiency, (pre)
proinsulin biosynthesis is nevertheless still ongoing, although this 
fails to result in the efficient formation of mature insulin (84). A 
generally similar phenotype can be discerned in the islets of young 
C57BL/KsJ db/db mice, in which many insulin-depleted β cells 
continue to abundantly express proinsulin (199). Such data indi-
cate early depletion of the insulin storage pool prior to any dimi-
nution of translation of the INS mRNA.

Concluding questions and comments
Recent genetic and biological evidence suggests that early steps 
of insulin biosynthesis, including preproinsulin translocation into 
the ER, proinsulin folding, and ER export, are not as efficient as 
was once thought. Indeed, key questions in these areas remain to 
be addressed:

(a) Does the efficiency of co- and posttranslational transloca-
tion vary between healthy β cells and the islets of individuals with 
diabetes? To what extent do signaling pathways regulate the effi-
ciency of preproinsulin translocation under different physiological 
and/or pathological conditions?

(b) Proinsulin dimerizes in the ER, and cross-dimerization 
between misfolded proinsulin and bystander WT proinsulin con-
tributes to dominant-negative effects. If proinsulin dimerization 
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