

(A) Determination of hHBV and mHBV interaction with SIGLEC-ECD.Fc by ELISA (n=4). SIGLEC-ECD.Fc fusion proteins (5 μ g) were coated on microtitre plates, followed by the addition of hHBV or mHBV at 4°C for 12 hr with protein-free blocking buffer. After washing with PBST, HBsAg associated with SIGLEC-ECD.Fc were detected by addition of rabbit anti-HBsAg antibody (RT, 2 hr) and HRP-conjugated anti-rabbit antibody (RT, 2 hr) subsequently, followed by coloration reacting using tetramethylbenzidine (TMB) (One way ANOVA). (B) Co-localization of SIGLEC and hHBV under confocal microscopy (green: SIGLEC, red: HBsAg, blue: Hoechst 33342) Scale bars: 10 μ m. Peripheral blood mononuclear cells were isolated from CHB patients and stained with mouse anti-SIGLEC-3 (NBP2-32819, Novus), rabbit anti-SIGLEC-7 mAb (ab111619, Abcam), or mouse anti-SIGLEC-9 (351502, Biolegend) and goat anti-HBsAg antibodies, followed by incubation with Alexa Fluor 488-conjugated (green) goat anti-mouse mAb or Alexa Fluor 555-conjugated (green) donkey anti-rabbit mAb and Alexa Fluor 647-conjugated (red) donkey anti-goat mAb. (C) The frequency of colocalization of SIGLEC-3 and HBsAg (n = 6-7) were quantified using Metamorph® software. Data are expressed as means ± s.d., n.s.: no significant (One-way ANOVA). (A) (C) are represented in independent samples

А

Supplemental Figure 2

Characterization of SIGLEC-3 expression in PBMCs. Human PBMCs isolated from healthy donors or CHB patients were stained with different panels of antibodies and SIGLEC-3⁺ cells were analyzed by flow cytometry. (A) The gating strategy of isotype control. (B) The gating strategy is shown in the followings: T cells (CD3⁺ SSC^{low}), B cells (CD19⁺ SSC^{low}), NK cells (CD3⁻CD56⁺SSC^{low}), monocytes (CD14⁺ SIGLEC-3⁺ HLA-DR⁺), MDSC (CD14⁺ SIGLEC-3⁺ HLA-DR^{-/how}). MDSC: Myeloid-derived suppressor cells

В

HBV binds to CD14⁺ cells in PBMCs. (A) CD14⁺ cells isolated from fresh blood of CHB patients were incubated with anti-HLA-DR mAb (green), anti-HBsAg mAb (red), and Hoechst 33342 (blue) at 4 °C for 1 hr. The binding of HBsAg on CD14⁺HLA-DR^{high} or CD14⁺HLA-DR^{low} cells was observed under a confocal microscopy (Leica TCS SP8 X). Nucleus: Hoechst (blue), HLA-DR: rabbit anti-HLA-DR mAb (Ab257320) and Alexa Fluor 555-conjugated donkey anti-rabbit mAb (green), HBsAg: goat anti-HBsAg (BS-1557G) and Alexa Fluor 647-conjugated (red) donkey anti-goat mAb. Scale bars: 10 µm. (B) Percentage of CD14⁺HBsAg⁺HLA-DR^{high} and CD14⁺HBsAg⁺HLA-DR^{low} from CHB patients (n=2). The fluorescence intensity was captured under a confocal microscope (LEICA TCX SP8 X) and analyzed by Metamorph® software. HLA-DR^{high} (scale: 5.7-95.3); HLA-DR ^{low}: (scale: < 5.7). The percentage of HLA-DR ^{high} vs. ^{low} is (89.9% vs. 10.1% counted from 2209 cells). Data are expressed as means ± s.d.

Cytokine secretion in TLR ligand-stimulated moDC under HBV virion incubation. MoDC from healthy donors were pretreated with hHBV or mHBV in different doses for 24 hr before incubation with Pam3csk4 (A) or poly(I:C) and interferon- γ (B) for another 24 hr. Cytokine levels in the supernatant were determined by ELISA. Data are expressed as means ±s.d.; (Two-way ANOVA) (n=3-8).

Supplemental Figure 5

Influence of *SIGLEC-3* (*CD33*) polymorphic alleles in the production of wild type and exon-2 skip mutant. There are two types of SIGLEC-3 monomer. The wild type protein has the IgV sialic acid binding domains (pink), while D2-CD33 protein generated by exon 2-skip does not contain the IgV domain, thereby cannot bind to sialoglycan. Exon 2 skipping efficiency increases in the two co-segregated rs12459419 T allele and rs3865444 A alleles located in the promotor region. LD: Linkage disequilibrium. TM: Transmembrane. ITIM: Immunoreceptor tyrosine-based inhibitory motif. (B) Human PBMCs were isolated from CHB patients with different types of *SIGLEC-3* SNPs rs12459419/rs3865444. Cells were stained with anti-SIGLEC-3 (clone WM53) and analyzed by FACS. CD14⁺ cells were gated and mean fluorescence intensity (MFI) of SIGLEC-3 was shown.

С

Supplemental Figure 6

Glycans at Asn-146 of HBsAg. (A) Glycan structure at Asn-146 of peptide " $P_{142}TDGN_{146}CTCIPIPSSW_{156}$ " derived from HBsAg (Genotype B) by Tandem Mass spectrum analysis. \clubsuit Neu5Ac, Galactose, GlcNAc, Mannose (B) Determination of Neu5Ac linkage to Galactose by Pseudo-MS³ spectra. (C) Percentage of biantennary sialoglycans in peptide " $P_{142}TDGN_{146}CTCIPIPSSW_{156}$ " from hHBsAg. bi (biantennary glycan with no terminal Neu5Ac), biS1 (single Neu5Ac), biS2 (two Neu5Ac). Experiments were performed and repeated three times with the same results.

Hoechst

SIGLEC-3

10C8-treated, 4 °C, 1h

10C8-treated, 37°C, 1h

Supplemental Figure 7

(A) Internalization of SIGLEC-3 by 10C8 in human CD14⁺ monocytes. Human CD14⁺ monocytes isolated from PBMC were incubated on ice 4° C for 15 min then treated with 3 µg/ml of 10C8 and transferred to 37°C or on ice 4° C for another 1h. The cells then were stained with PE-conjugated anti-SIGLEC-3 antibody (clone WM53, Biolegend) and analyzed by FACSVerse. (B) 10C8 induce SIGLEC-3 internalization in human monocyte-derived dendritic cell. Human monocyte-derived dendritic cells were incubated on ice for 15 min then treated with 3 µg/ml 10C8 and transferred to 37°C or on ice for another 1h to examine whether 10C8 induce internalization of surface SIGLEC-3. The cells then were fixed, permeabilized, and stained with Alexa Fluor 647 conjugated goat anti-hIgG (green). Nuclei were visualized with Hoechst (blue). Scale bars: 5 µm. Experiments were performed and repeated three times with the similar results.

Healthy donor

CHB patient

Supplemental Figure 8

Surface marker expression in PBMC from CHB patients after anti-PD-L1 treatment.PBMCs from healthy donor (n = 5) or CHB patient (n = 7) were pretreated with anti-PD-L1 antibody (Atezolizumab, Roche) or hIgG1 as isotype control (3 µg/ml) for 1 h before 10 nM or 30 nM GS-9620 treatment. 24 h later, cells were resuspended and stained with SIGLEC-3, CD80, CD86, CD40, MHC-I, MHC-II, and PD-L1 antibodies as indicated in materials and methods. Cells were analyzed by flow cytometry and the mean fluorescence intensity of surface marker on CD14⁺ cells were analyzed by FlowJo. All data are expressed as means ± s.d. * p<0.05, ** p<0.01, ***: p<0.001, ***: p<0.001 (One way ANOVA).

Phenotype of CD14⁺ monocyte-derived dendritic cell (moDC) by flow cytometry. CD14⁺ cells isolated from PBMCs were cultured with GM-CSF and IL-4 to differentiate to dendritic cells for 6-7 days. Cells were stained with SIGLEC-3, CD1a, CD11b, CD209, CD14, and CD80 antibodies and analyzed by flow cytometry. Staining results from two healthy donors were shown.

Supplemental Table 1

Immobilized Fc-Lectin (nm)	Ka (1/Ms)	Kd (1/s)	KD (M)
Anti-HBs	8.12 (± 0.01) x 10 ⁶	2.55 (\pm 0.29) x 10 ⁻⁵	3.14 (±0.36) x 10 ⁻¹²
SIGLEC-3	N/A	N/A	N/A
SIGLEC-7	N/A	N/A	N/A
SIGLEC-9	N/A	N/A	N/A
hIgG1	N/A	N/A	N/A

Supplemental Table 1. Determination of HBV-SIGLEC.Fc binding affinity by Bio-layer interferometry (BLI).

Kinetic interaction of mHBV virion with SIGLEC-ECD.Fc fusion protein coated on Biosensor (ForteBio) was performed at room temperature and analyzed by Octet® HTX (ForteBio). Binding affinity between SIGLEC-ECD.Fc fusion proteins and mHBV as compared to immobilized anti-HBV antibodies. Ka: Rate constants for the association. Kd: Rate constants for dissociation. KD: Equilibrium dissociation constant. Results are expressed as means \pm s.d. from three independent experiments.

mHBV

SNP rs12459419

	Univariate analys	is	Multivariate analysis		
Variables	Hazard Ratio (95% CI)	P Value	Hazard Ratio (95% CI)	P Value	
Age: < 40 vs ≥ 40 years old	0.369 (0.306 - 0.445)	<0.0001	0.299 (0.246 - 0.365)	<0.0001	
Gender: Woman vs Man	0.393 (0.330 - 0.467)	<0.0001	0.491 (0.408 – 0.590)	<0.0001	
Liver cirrhosis: No vs Yes	0.083 (0.072 - 0.096)	<0.0001	0.161 (0.137 – 0.189)	<0.0001	
HBeAg: negative vs positive	0.220 (0.191 – 0.255)	<0.0001	0.550 (0.436 - 0.694)	<0.0001	
HBV DNA (log ₁₀ IU/mL)	1.446 (1.401 – 1.493)	<0.0001	1.238 (1.171 –1.308)	<0.0001	
HBsAg (log ₁₀ IU/mL)	1.539 (1.441 – 1.645)	<0.0001	1.041 (0.965 – 0.123)	0.3014	
ALT: < 45 vs ≥ 45 IU/L	0.317 (0.258 - 0.388)	<0.0001	0.878 (0.649 – 1.187)	0.3959	
AST: < 45 vs ≥ 45 IU/L	0.255 (0.183 – 0.275)	<0.0001	0.892 (0.651 – 1.222)	0.4760	
rs12459419: C vs T	1.173 (0.965 – 1.424)	0.1083	1.256 (1.027 – 1.535)	0.0266	

SNP rs3865444

	Univariate analys	is	Multivariate analysis		
Variables	Hazard Ratio (95% CI)	P Value	Hazard Ratio (95% CI)	P Value	
Age: < 40 vs ≥ 40 years old	0.369 (0.306 - 0.445)	<0.0001	0.300 (0.247 - 0.366)	<0.0001	
Gender: Woman vs Man	0.398 (0.335 - 0.474)	<0.0001	0.500 (0.417 - 0.601)	<0.0001	
Liver cirrhosis: No vs Yes	0.083 (0.072 - 0.096)	<0.0001	0.161 (0.137 – 0.188)	<0.0001	
HBeAg: negative vs positive	0.223 (0.193 – 0.257)	<0.0001	0.563 (0.446 - 0.711)	<0.0001	
HBV DNA (log10 IU/mL)	1.447 (1.402 – 1.494)	<0.0001	1.239 (1.172 – 1.309)	<0.0001	
HBsAg (log ₁₀ IU/mL)	1.544 (1.444 – 1.649)	<0.0001	1.046 (0.970 – 1.129)	0.2450	
ALT: < 45 vs ≥ 45 IU/L	0.318 (0.260 - 0.390)	<0.0001	0.877 (0.648 – 1.186)	0.3931	
AST: < 45 vs ≥ 45 IU/L	0.224 (0.183 – 0.275)	<0.0001	0.888 (0.648 - 1.218)	0.4627	
rs3865444: C vs A	1.164 (0.957 – 1.416)	0.1280	1.251 (1.022 – 1.532)	0.0303	

Supplemental Table 2. Association of factors with HCC incidence in patients with CHB

Association factors include age, gender, LC, HBeAg, baseline serum level of HBV DNA, baseline serum level of HBsAg, baseline serum level of ALT, baseline serum level of AST, SNP rs12459419, and rs3865444. The incidence of HCC were analyzed by multivariate Cox proportional hazard regression analysis.

SNP rs12459419

	Univariate analys	is	Multivariate analysis		
Variables	Hazard Ratio (95% CI) P Value		Hazard Ratio (95% CI)	P Value	
Age: < 40 vs ≥ 40 years old	0.539 (0.458 - 0.635)	<0.0001	0.436 (0.368 - 0.517)	<0.0001	
Gender: Woman vs Man	0.372 (0.314 - 0.441)	<0.0001	0.394 (0.330 - 0.469)	<0.0001	
HBeAg: negative vs positive	0.297 (0.257 – 0.342)	<0.0001	0.758 (0.608 - 0.945)	0.0139	
HBV DNA(log ₁₀ IU/mL)	1.351 (1.312 – 1.391)	<0.0001	1.285 (1.223 – 1.350)	<0.0001	
HBsAg (log ₁₀ IU/mL)	1.367 (1.291 – 1.447)	<0.0001	1.012 (0.947 – 1.082)	0.7146	
ALT: < 45 vs ≥ 45	0.296 (0.244 - 0.359)	<0.0001	0.772 (0.580 - 1.029)	0.0775	
AST: < 45 vs ≥ 45 IU/L	0.237 (0.195 – 0.289)	<0.0001	0.629 (0.464 - 0.851)	0.0026	
rs12459419: C vs T	0.995 (0.833 – 1.187)	0.9541	1.043 (0.870 - 1.250)	0.6503	

SNP rs3865444

	Univariate analys	is	Multivariate analysis		
Variables	Hazard Ratio (95% CI) P Value		Hazard Ratio (95% CI)	P Value	
Age: < 40 vs ≥ 40 years old	0.543 (0.461 - 0.639)	<0.0001	0.437 (0.369 - 0.518)	<0.0001	
Gender: Woman vs Man	0.374 (0.315 - 0.443)	<0.0001	0.400 (0.336 - 0.476)	<0.0001	
HBeAg: negative vs positive	0.300 (0.260 - 0.346)	<0.0001	0.774 (0.621 – 0.965)	0.0228	
HBV DNA(log ₁₀ IU/mL)	1.350 (1.311 – 1.390)	<0.0001	1.286 (1.224 – 1.351)	<0.0001	
HBsAg (log ₁₀ IU/mL)	1.369 (1.293 – 1.450)	<0.0001	1.017 (0.951 – 1.087)	0.6302	
ALT: < 45 vs ≥ 45	0.296 (0.244 - 0.359)	<0.0001	0.769 (0.577 – 1.025)	0.0769	
AST: < 45 vs ≥ 45 IU/L	0.237 (0.195 - 0.289)	<0.0001	0.628 (0.464 - 0.851)	0.0026	
rs3865444: C vs A	1.001 (0.837 – 1.197)	0.9895	1.061 (0.883 – 1.275)	0.5271	

Supplemental Table 3. Association of factors with liver cirrhosis incidence in patients with CHB

Association factors include age, gender, HBeAg, baseline serum level of HBV DNA, baseline serum level of HBsAg, baseline serum level of ALT, baseline serum level of AST, SNP rs12459419, and rs3865444. The incidence of liver cirrhosis were analyzed by multivariate Cox proportional hazard regression analysis.

¥7 · 11		rs12459419	rs12459419	rs12459419	P Value
Variables	lotal	(T/T)	(C/T)	(C/C)	
Median ± IQR or N (%)	3554 (100%)	141 (3.97%)	1000 (28.14%)	2413 (67.90%)	
Age	45 ± 17	44 ± 16	44 ± 17	45 ± 17	0.1000 ^A
Gender					0.0983 ^C
Man	2189 (61.59%)	85 (60.28%)	644 (64.40%)	1460 (60.51%)	
Woman	1365 (38.41%)	56 (39.72%)	356 (35.60%)	953 (39.49%)	
Genotype					0.1222 ^C
В	1686 (47.43%)	58 (42.34%)	477 (50.11%)	1151 (49.87%)	
С	908 (25.54%)	48 (35.04%)	255 (26.79%)	605 (26.21%)	
B&C	95 (2.67%)	1 (0.73%)	33 (3.47%)	61 (2.64%)	
HBeAg					0.3323 ^C
No	3010 (84.69%)	113 (80.14%)	850 (85%)	2047 (84.83%)	
Yes	544 (15.31%)	28 (19.86%)	150 (15%)	366 (15.17%)	
HBV DNA(log10 IU/mL)	3.69 ± 2.58	3.76 ± 5.15	$\textbf{3.73} \pm \textbf{2.60}$	$\textbf{3.68} \pm \textbf{2.57}$	0.9564 ^A
HBsAg (log ₁₀ IU/mL)	2.86 ± 1.52	$\textbf{3.05} \pm \textbf{1.47}$	$\textbf{2.82} \pm \textbf{1.49}$	$\boldsymbol{2.87 \pm 1.54}$	0.4660 ^A
ALT: IU/L	12 ± 14	12 ± 11	13 ± 14	12 ± 14	0.7497 ^A
AST: IU/L	15 ± 10	15 ± 11	16 ± 9	15 ± 10	0.6681 ^A
Cirrhosis					0.9693 ^C
No	3146 (88.51%)	125 (88.65%)	882 (88.20%)	2135 (88.48%)	
Yes	412 (11.59%)	16 (11.35%)	118 (11.80%)	278 (11.52%)	
НСС					0.3403 ^C
No	3177 (87.70%)	129 (91.49%)	903 (90.30%)	2145 (88.89%)	
Yes	377 (10.60%)	12 (8.51%)	97 (9.70%)	268 (11.11%)	
Average age of LC	54 ± 14	52 ± 11	55 ± 14	54 ± 15	0.9927 ^A
diagnosed					
Average age of HCC	63 ± 13	64 ± 12	63 ± 13	63 ± 14	0.7289 ^A
diagnosed					

SNP rs12459419

A: ANOVA test and C: Chi-squared test.

	Traci	rs3865444	rs3865444	rs3865444	P Value
variables	Iotai	(A/A)	(C/A)	(C/C)	
Median ± IQR or N (%)	3555 (100%)	138 (3.89%)	979 (27.66%)	2438 (68.45%)	
Age	45 ± 17	44 ± 16	44 ± 18	45 ± 17	0.1546 ^A
Gender					0.1472^C
Man	2187 (61.52%)	86 (62.32%)	627 (64.04%)	1474 (60.46%)	
Woman	1368 (38.48%)	52 (37.68%)	352 (35.96%)	964 (39.54%)	
Genotype					0.2743 ^C
В	1686 (49.62%)	58 (43.28%)	467 (50.05%)	1161 (49.81%)	
С	909 (26.75%)	43 (32.09%)	256 (27.44%)	610 (26.17%)	
B&C	95 (2.80%)	2 (1.49%)	32 (3.43%)	61 (2.62%)	
HBeAg					0.3747 ^C
No	3012 (84.73%)	111 (80.43%)	829 (84.68%)	2072 (84.99%)	
Yes	543 (15.27%)	27 (19.57%)	150 (15.32%)	366 (15.01%)	
HBV DNA(log ₁₀ IU/mL)	3.69 ± 2.58	$\textbf{3.88} \pm \textbf{2.58}$	3.73 ± 2.64	3.67 ± 2.56	0.8214 ^A
HBsAg (log ₁₀ IU/mL)	$\textbf{2.86} \pm \textbf{1.52}$	3.05 ± 1.53	$\textbf{2.84} \pm \textbf{1.49}$	$\textbf{2.87} \pm \textbf{1.53}$	0.7316 ^A
ALT: IU/L	12 ± 14	12 ± 14	13 ± 14	12 ± 14	0.7807 ^A
AST: IU/L	15 ± 10	15 ± 10	16 ± 9	15 ± 10	0.5877 ^A
Cirrhosis					0.9979 ^C
No	3143 (88.41%)	122 (88.41%)	865 (88.36%)	2156 (88.43%)	
Yes	412 (11.59%)	16 (11.59%)	114 (11.64%)	282 (11.57%)	
НСС					0.3797 ^C
No	3178 (89.40%)	126 (91.30%)	884 (90.30%)	2168 (88.93%)	
Yes	377 (10.60%)	12 (8.70%)	95 (9.70%)	270 (11.07%)	
Average age of LC diagnosed	54 ± 14	53 ± 11	55 ± 14	54 ± 15	0.9956 ^A
Average age of HCC diagnosed	63 ± 13	64 ± 13	63 ± 13	63 ± 14	0.7099 ^A

SNP: rs3865444

A: ANOVA test and C: Chi-squared test

Supplemental Table 4. Baseline patient characteristics

Baseline patient characteristics of patients with CHB enrolled from the REVEAL-HBV database. A: ANOVA

test. C: Chi-squared test.

			СНВ	СНВ	
	Antibody	CC 0(20	rs12459419	rs12459419	P value
PBMC	(3 µg/ml)	GS-9020	C/C rs3865444	C/T rs3865444	
			C/C (n = 5)	C/A (n = 2)	
	e 10.00	0 nM	0.17 ± 0.03	0.18 ± 0.01	0.8523
Fold change of SIGLEC-3 MFI after 10C8 treatment (compared to hIgG1-treated)		10 nM	0.17 ± 0.04	0.13 ± 0.03	0.6638
		30 nM	0.11 ± 0.03	0.14 ± 0.01	0.3272
	10.00	0 nM	1.25 ± 0.03	1.32 ± 0.02	0.1433
Fold change of CD80 MFI after 10C8		10 nM	1.31 ± 0.1	1.17 ± 0.02	0.6789
treatment (compared to mgG1	-treated)	30 nM	1.14 ± 0.08	1.06 ± 0.02	0.7899
	10.00	0 nM	2.12 ± 0.11	1.47 ± 0.02	0.0036**
Fold change of CD86 MFI after 10C8		10 nM	1.83 ± 0.37	1.1 ± 0.13	0.1192
treatment (compared to mgG1	-irealeu)	30 nM	1.22 ± 0.15	0.9 ± 0.13	0.1930
Fold shange of CD40 MEL often	1009	0 nM	1.38 ± 0.15	1.17 ± 0.06	0.2381
troatmont (compared to hIgC1-t	rootod)	10 nM	1.54 ± 0.25	1.23 ± 0.32	0.4987
treatment (compared to mgG1-t	Teateu)	30 nM	1.94 ± 0.43	1.00 ± 0.03	0.0952
Eald down a stMHC IMEL of	4 10/00	0 nM	1.2 ± 0.03	1.19 ± 0.07	0.9149
Fold change of MHC-1 MIFI af	troated)	10 nM	1.25 ± 0.10	1.06 ± 0.11	0.3092
treatment (compared to mgo)	-freateu)	30 nM	1.11 ± 0.04	1.05 ± 0.11	0.6829
	R 10.00	0 nM	2.17 ± 0.33	1.49 ± 0.01	0.1095
Fold change of MHC-II MFI after 10C		10 nM	1.73 ± 0.36	1.16 ± 0.06	0.1891
treatment (compared to hige)	-irealeu)	30 nM	1.94 ± 0.43	0.91 ± 0.03	0.0735
	10.00	0 nM	2.66 ± 1.13	1.28 ± 0.28	0.2980
Fold change of PD-L1 MF1 aft	treated)	10 nM	3.2 ± 1.52	1.19 ± 0.06	0.2572
treatment (compared to figG1	-ireated)	30 nM	2.27 ± 0.57	1.01 ± 0.06	0.0919

Supplemental Table 5. Surface marker expression of CD14⁺ cell from CHB patients with different *SIGLEC-3* SNPs rs12459419/rs3865444

Fold change of cell surface marker (SIGLEC-3, CD80, CD86, MHC-I, MHC-II, PD-L1 and CD40) expression of CD14⁺ cells from CHB patients' PBMCs with major allele (rs12459419 C/C/rs3865444 C/C) versus minor allele (rs12459419 C/T /rs3865444C/A). Samples were treated with 10C8 in the presence or absence of GS-9620.

			СНВ	СНВ	
PBMC An	Antibody	GS-9620	rs12459419 C/C	rs12459419 C/T	P value
	(3 µg/ml)		rs3865444 C/C	rs3865444 C/A	
			(n = 6)	(n = 2)	
Fold change	of IFN-α	10 nM	1.00 ± 0.00	0.95 ± 0.42	0.9264
after 10C8 ti	reatment	30 nM	2.10 ± 0.40	$0.38\pm0~.38$	0.0641
Fold change	of TNF-α	10 nM	1.49 ± 0.58	0.39 ± 0.00	0.1164
after 10C8 ti	reatment	30 nM	1.91 ± 0.18	0.87 ± 0.42	0.2034
Fold change	of IL-6	10 nM	0.67 ± 0.25	1.68 ± 1.06	0.5109
after 10C8 ti	reatment	30 nM	2.48 ± 0.81	0.91 ± 0.05	0.1104
Fold change	of IP-10	10 nM	6.36 ± 3.91	1.00 ± 0.00	0.2288
after 10C8 ti	reatment	30 nM	1.22 ± 0.17	1.11 ± 0.32	0.7959

Supplemental Table 6. Cytokine level of PBMCs from CHB patients with different *SIGLEC-3* SNPs rs12459419/rs3865444

Fold change of cytokine levels (IFN- α , TNF- α , IL-6 and IP-10) from CHB patients' PBMCs with major allele (rs12459419 C/C/rs3865444 C/C) versus minor allele (rs12459419 C/T /rs3865444C/A). Samples were treated with 10C8 in the presence or absence of GS-9620.

Supplemental Table 7

Antibodies	Fluorescence	Clone	Company	Cata #
CD11b	APC-Cy7	M1/70	Biolegend	101226
CD14	APC-Cy7	63D3	Biolegend	367108
CD14	PerCP-Cy5.5	M5E2	Biolegend	301824
CD19	PE	HIB19	Biolegend	302208
CD1a	APC	HI149	BD	559775
CD209	PE-Cy7	9E9A8	Biolegend	330114
CD3	APC	HIT3a	Biolegend	300306
CD40	PerCP-Cy5.5	5C3	Biolegend	334316
CD56	Alexa Fluor 488	B159	BD	561905
CD80	Brilliant Violet 421	2D10	Biolegend	305222
CD86	PE-Cy7	BU63	Biolegend	374210
HBsAg	unconjugated	polyclonal	Bioss	BS-1557G
HBsAg	HRP	polyclonal	Bioss	BS-1557G-HRP
HLA-DR	unconjugated	polyclonal	Abcam	Ab257320
HLA-DR	APC	L243	Biolegend	307610
MHC-I	Brilliant Violet 510	W6/32	Biolegend	311436
MHC-II	FITC	Tü39	Biolegend	361706
PD-L1	APC	29E.2A3	Biolegend	329922
SHP-1	unconjugated	polyclonal	Cell Signaling Technology	37598
SHP-2	unconjugated	polyclonal	Cell Signaling Technology	33978
SIGLEC-3	unconjugated	6C5/2	R&D systems	MAB1137
SIGLEC-3	unconjugated	C33/68	Novus	NBP2-32819
SIGLEC-3	APC	6C5/2	R&D systems	FAB1137A
SIGLEC-3	PE	WM53	Biolegend	303404
SIGLEC-3	PerCP-Cy5.5	WM53	Biolegend	303414
SIGLEC-7	unconjugated	polyclonal	Novus	AF1138
SIGLEC-7	unconjugated	194212	R&D systems	MAB1138
SIGLEC-7	unconjugated	polyclonal	Abcam	ab111619
SIGLEC-9	unconjugated	191240	R&D systems	MAB1139
SIGLEC-9	unconjugated	polyclonal	R&D systems	AF1139
SIGLEC-9	unconjugated	K8	Biolegend	351502
GAPDH	unconjugated	6C5	Sigma	MAB374
Donkey anti-	Alexa Fluor	polyclonal	Thermo	A-11056

Goat IgG	546		Scientific	
(H+L)				
Donkey anti- mouse (H+L)	Alexa Fluor 647	polyclonal	Abcam	ab150107
Goat anti- mouse (H+L)	Alexa Fluor 488	polyclonal	Abcam	ab150113
Donkey anti- Rabbit IgG (H+L)	Alexa Fluor 555	polyclonal	Thermo Scientific	A-31572
Streptavidin- HRP			Sigma	RABHRP3

Supplemental Table 7. Antibody list

Full unedited gel for Figure 2A and 2B

gL: glycosylated large HBsAg

- L: Large HBsAg
- gM: glycosylated middle HBsAg
- M: Middle HBsAg
- gS: glycosylated small HBsAg
- S: Small HBsAg

Full unedited gel for Figure 4C

Full unedited gel for Figure 5F

