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Introduction
Substantial efforts over the past few years have led chimeric 
antigen receptor (CAR) T cell therapy to success in relapsed and 
refractory (r/r) B cell malignancies. The early concept evaluated  
in experimental academic clinical trials moved to real-world prac-
tice, confirming the impressive clinical results (1). In r/r B cell 
acute lymphoblastic leukemia (B-ALL), which has chances of sur-
vival estimated at 10% to 30% at 5 years with conventional ther-
apy (2–4), minimal residual disease–negative (MRD–) complete 
remission (CR) rates were observed at 1 month after CAR T cell 
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the CD28 and OX40 costimulatory domains (Supplemental Fig-
ure 1A; supplemental material available online with this article; 
https://doi.org/10.1172/JCI138473DS1). The CARCIK-CD19 
batches prepared for clinical use were derived from 3 HLA iden-
tical siblings (ISD), 4 matched unrelated donors (MUD), and 6 
haploidentical donors (Haplo). After electroporation, cells were 
differentiated by using a single stimulation with anti-CD3 and 
IFN-γ and IL-2 for T cell expansion (Supplemental Figure 1B). In 
total, we manufactured 19 batches by seeding a median of 129.3 
× 106 allogeneic PBMCs. Three of these 19 batches were manufac-
tured for the purpose of good manufacturing practices (GMP) pro-
cess validation starting from PB of voluntary donors, whereas 16  
batches were produced for clinical use from 12/20/2017 to 
07/30/2019. At the end of the expansion process, a mean of 6.91 
× 109 nucleated cells (range, 1.39 to 20.0 × 109; Figure 1A) was har-
vested with a mean fold increase of 71.08 (range, 14.41 to 338.8; 
Supplemental Figure 2A). Manufactured cells had high levels of 
viability (mean, 96.06% ± SD 2.60%; range, 89.10%–98.90%) and 
were mostly CD3+ lymphocytes (mean, 98.92% ± SD 1.24%) with 
high killing activity and effector memory phenotype (Figure 1, B–D, 
and Supplemental Figure 2, B and C). Of these, a mean of 43.05% 
(range, 15.10%–73.17%) were CAR+, 46.85% (range, 31.62%–
71.80%) were CD56+, and 80.90% (range, 55.80%–93.20%) were 
CD8+, with a median number of transgene copies per cell of 3.54 
(range, 0.62–4.92; Figure 1D and Supplemental Figure 2D). The 
majority of CD3+CAR+ T cells had a CD8+ effector memory phe-
notype (Figure 1, E and F). The median length of cell product man-
ufacturing was 23 days (range, 20–32 days), and batches could be 
released 7 to 10 days after the production ended. All the enrolled 
patients had successful manufacturing of a CARCIK-CD19 batch 
(Supplemental Table 1). The quality requirements for batch release 
were met in 15 out of 19 productions. One batch was rejected due 
to a bacterial contamination. Another batch, manufactured for 
the same patient, was released and infused according to the orig-
inal treatment schedule. Three batches partially deviated from  
specifications due to a lower level of CAR expression (15.01% CD3+-

CAR+ instead of ≥20%) and a higher value of transposase expres-
sion (41.68 and 97.06, respectively instead of <20 copies/10,000 
β-glucuronidase [GUS]), but largely below the safety limit for pos-
sible enzyme activity (ref. 26 and Supplemental Figure 2E). How-
ever, the out-of-specification batches were infused (patients 6,  
12, and 13) as per clinical decision based on the absence of any 
alternative treatment options (27).

Clinical trial. We designed a multicentric clinical study 
(ClinicalTrials.gov NCT03389035) to assess the safety and fea-
sibility of infusing allogeneic CARCIK-CD19 in patients with 
B-ALL relapsed after HSCT. The trial followed a 4-dose escala-
tion scheme (1 × 106, 3 × 106, 7.5 × 106, and 15 × 106 transduced 
CARCIK-CD19 cells/kg) using the Bayesian optimal interval 
design (BOIN). From January 2018 to November 2019, a total of 
20 patients were screened, and 16 were enrolled (Figure 2). Two 
patients were excluded from receiving lymphodepletion che-
motherapy and cell infusion, one due to rapid disease progres-
sion leading to premature death and one due to acquisition of a 
myeloid phenotype. An additional patient decided to withdraw 
from the study. A total of 13 patients, 4 children and 9 adults, pro-
ceeded to lymphodepletion and treatment with a single infusion 

infusion in 63% to 93% of the patients, with an overall survival 
(OS) of 60% to 80% at 6 months in multiple studies (5–10). Still, 
a substantial heterogeneity in clinical outcomes was observed 
when comparing pediatric and adult patients, different CAR T cell 
products, and transduction modalities (11). In addition, logistical 
complexity, high costs, and toxicities are currently the main bar-
riers to the use of CAR T cell therapy. Production and handling of 
viral vectors are time consuming and require specialized biosafety 
level 2 (BSL2) facilities and trained staff resources. Furthermore, 
patient-derived CAR T cell production may be limited due to fail-
ure to collect sufficient T cells or to expand products in selected  
patient populations who received intensive chemotherapy. Nota-
bly, patients with a T cell signature predicting dysfunctional 
response or with high leukemic blast contamination might benefit 
from donor-derived products (12–14).

We therefore propose nonviral engineering of an allogeneic 
T cell population according to cytokine-induced killer (CIK) cell 
protocol of differentiation (15). This population is characterized by 
the enrichment of CD3+CD56+ cytotoxic cells and a high profile 
of safety, leading to minimal occurrence of graft-versus-host dis-
ease (GVHD) after allogeneic CIK (16–18). Sleeping Beauty (SB) is 
an integrating vector belonging to the Tc1/mariner family of DNA 
transposon that was reconstructed by inverse engineering of an 
inactive gene in fish genome (19, 20). The SB transposon vector 
allows for permanent genetic modification through stable integra-
tion of the transgene cassette, conferring prolonged expression in 
T cells. The SB vector has recently been validated in clinical tri-
als for the manufacture of CAR T cells (21) that were selectively 
propagated ex vivo with multiple stimulations in the presence of 
artificial antigen presenting cells (AaPCs). We have previously 
reported an improved platform of nonviral engineering using the 
SB vector that consists of a single stimulation step and was applied 
to different CAR molecules, including anti-CD19, anti-CD123, 
and anti-BAFFR (22, 23). Herein, we report the clinical applica-
tion of this concept for treating adult and pediatric patients with 
B-ALL relapsed after allogeneic hematopoietic stem cell trans-
plantation (allo-HSCT) by using nonviral CD19-specific CAR CIK 
cells (CARCIK-CD19) manufactured from the previous transplant 
donor. These data demonstrate the feasibility and safety of our 
manufacturing platform and support further clinical application 
of nonviral allogeneic CAR T cell products.

Results
Product manufacturing. Nonviral SB-engineered CAR T cells were 
produced according to our previously established platform (24) 
and named CARCIK-CD19 cells. We chose to differentiate T cells 
to generate a memory T cell population according to CIK cell pro-
tocol, as the incidence of GVHD is usually less prevalent using 
memory cells (17, 25). An objective of our study was to determine 
the feasibility and reproducibility of manufacturing and releasing 
donor-derived nonviral products with a level of CAR expression 
higher than 20%, an enrichment in CD3+CD56+ T cells higher 
than 30%, a cell viability higher than 80%, in vitro potency higher 
than 25%, and safety compliance. Cellular products were gener-
ated starting from 50 mL of peripheral blood (PB) from the pre-
vious transplant donor by electroporation of total PBMCs with SB 
plasmids expressing a CD19 third-generation CAR incorporating 
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tein, with robust expansion (>100,000 copies per μg DNA and >40 
cells per μl) achieved in 8/13 patients (Figure 3, A–C). The median 
time to maximal expansion was 14 days (range, 7–22 days), and the 
maximal expansion reached about 1 × 106 transgene copies per μg 
DNA and 70% of CAR+ T cells in PB with a median AUC from day 
0 to day 28 of 1.08 × 106 copies per μg DNA (range, 3,915.5–4.80 × 
106; Supplemental Table 3). Engrafted CAR T cells were detected  
also in BM (Supplemental Figure 3, A and B). CAR T cells were 
effective in promoting ablation of malignant CD19+ cells in PB and 
BM. CD19+ cell ablation was achieved in association with expan-
sion and persistence of CAR T cells, even in a patient with massive 
BM blast infiltration persisting after lymphodepletion (Figure 3D). 
CAR T cell expansion was influenced by the dose level in terms of 
exposure (median AUC-28d, where 28d indicates measurement 
from time 0 to 28, 6.0 × 105, 5.3 × 104, 1.3 × 106 and 2.2 × 106 for 
patients treated with dose levels 1, 2, 3, and 4, respectively) and 
time to reach expansion (Figure 3, E–G) as well as by the tumor 
burden after lymphodepletion (median AUC-28d, 3.4 × 105 and 2.7 
× 106; Cmax-28d, 4.2 × 104 and 3.8 × 105 for patients with less than 
or greater than 15% tumor burden, respectively). Interestingly, 
expansion was similar in pediatric and adult patients and did not 

of CARCIK-CD19 product, with a median time from enrollment 
to infusion of 76.6 days (range, 50–107 days). Median age was 32 
years (range, 2–63 years). All patients had undergone multiple 
prior lines of therapy (median, 2; range, 1–7) and at least 1 alloge-
neic transplant, with a median of 9 months (range 2–30 months) 
from allo-HSCT to relapse. Seven out of 13 patients experienced 
acute and/or chronic GVHD after allo-HSCT and were treated 
with steroids (5/13), steroid and tacrolimus (1/13), or infliximab 
(1/13). The BM blast count at enrollment ranged from 5% to 98%, 
and 4 patients presented active extramedullary diseases (Table 1). 
Notably, the median lactate dehydrogenase (LDH), platelet, and 
neutrophil counts before lymphodepletion were 306 U/L (range, 
148–595 U/L), 68,000 platelets/mmc (range, 12,000–237,000 
platelets/mmc), and 650 neutrophils/mmc (range, 60–64,150 
neutrophils/mmc), respectively, reflecting the aggressive progres-
sion of the disease that indeed required bridging therapy before 
infusion for all the patients (Table 1 and Supplemental Table 2).

Engraftment and expansion of CAR T cells. Detectable peripheral  
CAR T cell engraftment was observed in 13/13 patients (100%) 
by transgene copy quantitative evaluation and in 12/13 patients 
(92.9%) by flow cytometry using a recombinant human CD19 pro-

Figure 1. Cell expansion and composition of manufactured medicinal products. (A) Expansion kinetics of 19 different batches are represented as total 
number of nucleated cells (TNC) over time. Each line represents a single batch. (B) Viability of TNC over time (n = 19). Arrow indicates time point at which 
electroporation was performed. (C) Flow cytometric immunophenotyping by dual-density plots in 1 representative batch (n = 9). CD3+ cells were selected by 
CD3/side scatter (SSC) gating (left). CD3+CAR+ cells were gated, and CD4/CD8, CD45RO/CD62L, and CD3/CD56 expression were measured. (D) Expression 
of CD3+, CAR+, CD56+, CD4+, and CD8+ cells as percentages of TNCs. Each symbol represents a single batch. (E) Expression of CD56+, CD4+, and CD8+ cells as 
percentages of CD3+CAR+ T cells. Each symbol represents a single batch. (F) Expression of naive, central memory (CM), effector memory (EM), and terminal 
effector (EMRA) cells as percentages of CD3+CAR+ T cells. Means are shown as horizontal lines.
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toxicity syndrome (ICANS). Furthermore, the persistent engraft-
ment of allogeneic CAR T cells was not associated with any sign 
or symptom of GVHD, although some patients had experienced 
GVHD after previous allo-transplant.

Response data. The overall response rate (CR/CR with incom-
plete blood count recovery [CRi]) was 61.5% (8 out of 13 patients, 
95% CI = 31.6%–86.1%). Six out of 7 patients, receiving the 2 
highest doses, achieved CR/CRi, with an overall response rate 
at day 28 after infusion of 85.7% (95% CI = 42.1%–99.6%, Figure 
5B and Table 2). Patient 6 experienced BM remission, but per-
sistent extramedullary disease with a mixed CD19+CD19– phe-
notype and was not accounted as a responder, accordingly. MRD 
was assessed by both multiparametric flow cytometry and PCR 
for leukemia-specific immunoglobulin (IG)/T cell receptor (TR) 
gene rearrangements in all responder patients. Five out of the 
6 patients (83.3%, 95% CI = 35.9%–99.6%) in CR at the highest 
doses were also MRD–. MRD– status was achieved by 75% of all 
responders (6 out of 8, 95% CI = 34.9%–96.8%). The 2 patients in 
CR, but who were MRD+, relapsed with a CD19+ disease at +2.3 
and +1.9 months after infusion, respectively, and one of them is 
alive and receiving salvage therapy. Among the 6 patients who 
achieved MRD– CR, 2 children underwent consolidation with a 
second allo-HSCT and are still alive and disease free (+14 and +10 
months), 2 adult patients died of subsequent CD19+ disease relapse, 
and 2 adult patients who did not undergo allo-HSCT are still alive 
and disease free (+12 and +9 months) without additional therapies 
at +9 months from the data cutoff date. Interestingly, patient 12 
relapsed after allo-HSCT with a diffuse B-ALL presenting elevated  
S-aspartate aminotransferase (AST)/S-alanine aminotransfer-
ase (ALT) (157/287 UI/L), S-γ glutamil transpetidase (γGT) (1,183 
UI/L), and bilirubin (Bil) (18.8 mg/dL) due to malignant liver 
infiltration. CT scan performed 44 days after treatment showed 
shrinking of the tumor mass associated with recovery of liver  
function (AST/ALT, 12/58 UI/L; γGT: 82 UI/L; Bil, 0.8 mg/dL) 
(Figure 5C). This latter case indicated the ability of CIK cells to 
infiltrate large tumor masses (29) and to tackle extramedullary 
leukemia. Such ability was further corroborated by the detection 
of massive infiltration of CAR T cells in the 2L pleural effusion. 
The overall median follow-up among the patients who received  
CARCIK-CD19 infusion was 8.7 months (range, 1.02–20.03 
months). So far, 4 of the 7 patients treated with the last 2 high-
est dose levels are alive and in CR with a median follow-up of 
6.9 months as of the data cutoff date, whereas 3 adult patients 
relapsed, all with retention of CD19 antigen expression.

Integration site analysis. We performed a comprehensive inte-
gration site (IS) analysis on genomic DNA extracted from the 
medicinal product batches at release and from the PB of 13 treated 
patients, harvested at different time points (ranging from 7 to 28 
days) after infusion. Moreover, we also analyzed a BM sample from 
a single patient (strategy depicted in Figure 6A). For the retrieval 
of SB IS, we adopted a technique similar to linker-mediated (LM) 
PCR (30), where genomic DNA is sheared by sonication, ligated 
to a DNA linker cassette, and amplified by PCR using oligonucle-
otides complementary to the vector sequence and the linker cas-
sette bound to the shear site and then sequenced (NCBI’s Sequence 
Read Archive [SRA] PRJNA643365). On average, CARCIK-CD19 
batches yielded a higher amount of PCR products compared with in 

depend on the type of donor (Supplemental Figure 3, C–F). CD8+ 
T cells represented the predominant circulating CAR+ T cell sub-
set along with CD3+CD56+ CIK cells and CD4+ T cells to a lesser 
extent. Persistence of central memory CAR+ T cells was observed 
after infusion. The majority of CAR T cells had a central and effec-
tor memory phenotype in vivo (Figure 4, A–C). Twelve out of 13 
patients had detectable CAR T cells measured as transgene copy 
number at the last available assessment, with a median duration 
of 94 days (range, 22 to 300 days).

Toxicity. Toxicities are summarized in Table 2 and Sup-
plemental Table 4. The infusion was uneventful in all patients 
except 1 pediatric patient (patient 6), who experienced gener-
alized seizures, tachycardia, and loss of consciousness due to a 
DMSO reaction, which rapidly responded to diazepam. No fur-
ther infusion-related reactions were observed. Two grade I and 
1 grade II cytokine-release syndrome (CRS) cases (assessed with 
criteria in Lee et al. [ref. 28]; Supplemental Table 4) occurred in 
3 patients treated with the highest dose. CRS was associated with 
increased concentrations of serum cytokines (Supplemental Fig-
ure 4). Patient 12, who was the only patient experiencing grade 
II CRS, with fever and hypoxia, required low-flow oxygen (FiO2 
<40%) and treatment with 2 doses of tocilizumab with benefit 
and resolution of symptoms. The day of the infusion, patient 5 
experienced pneumonitis with acute respiratory distress, which 
required oxygen therapy and antibiotics; tocilizumab was also 
infused at day +1 after infusion, as CRS could not be excluded at 
the time. On day +10, for a worsening of respiratory failure, the 
patient was transferred to an intensive care unit (ICU), where she 
received noninvasive ventilation. Clinical improvement followed 
methylprednisolone and further antibiotic changes. Deep pancy-
topenia was reported in 2 out of 13 patients and severe infections 
in 4 patients. Consistent with the concomitant in vivo detection 
of CAR T cells, B cell aplasia (BCA) was observed in all treat-
ed patients. Six of these patients had persistent BCA at the last  
follow-up, with a median duration of 3 months (Figure 5A). None 
of the treated patients developed immune-effector cell neuro-

Figure 2. Study flow. Study participant flow chart from the time of screen-
ing to treatment.
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vivo samples (Supplemental Figure 5). By this 
approach, we identified a total of 101,020 
and 88,034 IS in in vitro and in vivo samples, 
respectively (Supplemental Table 5). The rel-
ative number of retrieved IS for each sample 
was proportional to the marking levels (Sup-
plemental Figure 6). The distribution of SB 
IS around the transcription start site (TSS) 
showed no bias for integratations near pro-
moter sequences (Figure 6B). Gene ontology  
enrichment analysis, performed with the 
Genomic Regions Enrichment of Annota-
tions Tool (GREAT), revealed a significant 
enrichment of genes involved in T cell biology  
including T cell activation, differentiation, 
and proliferation (Supplemental Figure 7). To 
identify additional signs of insertional muta-
genesis, we searched for common insertion 
sites (CIS). We identified sporadic CIS in 
single patients and targeting nearby genes 
by a relatively small number of IS (3 to 5), 
and none of them was classified as a cancer- 
related gene (Figure 6C and Supplemental 
Figure 8). All in vitro and in vivo samples har-
vested at early time points showed a highly 
polyclonal repertoire, reaching thousands of 
distinct IS in several samples, with the great-
est represented IS in terms of abundance of 
4%. All patients showed identical IS per-
sisting over different time points, although 
no clonal expansions were observed in any 
patient. However, at later time points (≥ 
28 days after infusion), the repertoire of IS 
showed a marked reduction toward oligoclo-
nality, which was further evidenced by the 
analysis of the Shannon diversity index (Fig-
ure 6, D and E, and Supplemental Figure 9). 
The increase in clonal abundance in the late 
data sets was similar among all IS and was 
not enriched for IS targeting cancer-related 
genes, suggesting that the observed oligo-
clonality was not caused by the appearance 
of specific dominant clones, but was rather 
the result of the reduction in the number of 
retrieved IS.

Discussion
This study provides the first evidence, to our 
knowledge, that donor-derived cells engi-
neered with the SB transposon are a safe and 
valid therapeutic option for B-ALL patients 
relapsed after allo-HSCT. This platform 
reproducibly produces CARCIK-CD19 cel-
lular products starting from a small amount 
of donor-derived PB. Manufactured cells 
were able to expand rapidly and efficiently 
in vivo, with persistence measurable for up Ta
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to 10 months in patient’s blood and BM. The infusion of CAR-
CIK-CD19 was remarkably safe in all treated patients, since CRS 
incidence and grade were negligible and acute GVHD and neuro-
toxicity were never observed. At the higher dose levels, a substan-
tial rate of hematological and molecular response was achieved. 
Most of the responders are still in remission at this writing, with 
an average follow-up of 6 months. Therefore, early results from 
our trial suggest that allogeneic nonviral manufacturing is a valid 
strategy for generating CAR-mediated immunotherapy.

So far, manufacture of CAR T cells, including the existing FDA- 
and European Medicines Agency–approved (EMA-approved) 
products, has relied on viral vectors, which take a minimum of 
2 weeks for production and require multiple steps and quality 
assessments (5, 31–33), leading to costs as high as about 30% of 
the cost of the entire process and difficulties in securing a viral 

supply in due time. In our study, we showed that 50 mL of blood 
was more than adequate for manufacturing sufficient numbers of 
CARCIK-CD19 for 13/13 patients. The process has a relatively low 
cost of goods, with an estimated cost ranging from 5 to 10 times 
lower than viral processes, with an average transduction efficiency 
and final cell viability comparable to that of viral vectors. A poten-
tial weakness of our study is represented by the duration of in 
vitro culture currently required to generate CARCIK-CD19 cells,  
mainly due to the mandatory complete clearance of SB11 trans-
posase activity. SB11 transposase–expressing plasmid, though 
bearing the transiently active cytomegalovirus early promoter, 
causes at low frequency extended transposase protein expression 
that could potentially lead to remobilization of the transposon in 
other genomic compartments (34). For a further platform imple-
mentation, the hyperactive SB100X (35) variant in mRNA (36) or 

Figure 3. Postinfusion expansion and persistence of CAR T cells in PB according to dose level. Transgene copy number per μg in blood (A), percentage  
of CAR+ T cells within the total CD3+ T cells in blood (B), absolute counts of CAR+CD3+ cells in blood (C) measured at different intervals of time after  
CARCIK-CD19 infusion in patients treated at different dose levels. Each symbol and color codifes an individual patient sample (n = 13). Measures under LOQ 
(<50 copies/μg) were inserted in the graphs with a fixed reference value. (D) Flow cytometric dual-density plots showing leukemic blast clearance assessed 
as MRD detection and CAR T cell engraftment in BM (upper panels) and PB (bottom panels) at different time points in patient 13. Numbers within the 
diagrams represent the percentages of cells. (E) AUC-28d according to dose level. (F) Tmax-28d according to dose level. (G) Cmax-28d according to dose level. 
Each symbol represents a single patient (n = 13). AUC (transgene copies/μg DNA).
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protein (37) version could be used. These alternatives may lead to 
a level of integration of SB minicircles up to 45% and 20%–30%, 
respectively, thus avoiding the theoretical risk of chromosomal 
integration and reducing the time of in vitro culturing.

The rationale of using donor-derived memory T cells as CIK 
cells over conventional CAR T cells comes from clinical experi-
ences clearly demonstrating safety and tolerability of repeated 
CIK cell infusions with minimal and manageable GVHD occur-
rence (17, 18, 38). Minimal GVHD results from acquisition of 
an NK-like MHC-unrestricted cytotoxity during stimulation 
with CD3 and IFN-γ and differentiation in the presence of IL-2 
(29). In our study, we observed no occurrence of GVHD even 
in the context of patients who had undergone haplo-HSCT and 
accordingly received CARCIK-CD19 cells from their haploiden-
tical donor. Interestingly, even patients who experienced GVHD 
after the initial HSCT did not show any signs of GVHD after 
use of CARCIK-CD19 produced from the PB of the same allo-
geneic donor. The absence of GVHD occurrence was consistent 
with recent clinical studies with donor-derived memory T cells 
after allo-HSCT (25). The small amount of starting material and 
the lack of GVHD activity pave the way for the development 
of an off-the-shelf product (39). In keeping with our strategy,  
other studies are currently exploiting the use of unrelated donor- 
derived TCR-edited T cells (40–43) or cord blood–derived NK 
cells (44, 45). However, with respect to NK, T cells have a sus-
tained in vivo persistence, which we have also reported for  
CARCIK-CD19, while that persistence is difficult to achieve 
with nonengineered NK cells (45). Genome editing is rather 
limited by enrichment requirements and risk of translocations 
and rearrangements. Similarly to our platform, differentiation 

of HSC using a CD28-based CAR construct 
drove progeny differentiation to an NK-like 
phenotype (46) associated with antigen- 
directed antileukemic activity across MHC 
barriers (47).

SB-engineered T cells used as adjuvant 
therapy after transplantation and adminis-
tered without additional lymphodepletion 
showed limited expansion and persistence, 
with an average of 201 and 51 days for autol-
ogous and allogeneic recipients, respectively, 
in the absence of BCA (21). In our study, we 
found excellent expansion of infused CAR T 
cells with a cumulative exposure of 1.08 × 106 
copies per μg DNA, as assessed by the median 
AUC, and a median time to maximal expan-
sion of 14 days, which was comparable to that 
reported in previous studies in pediatric and 
adult patients treated with second-generation 
viral CD19CARs (10, 48). Likewise, expan-
sion was associated with clinical activity 
and led to BCA. Interestingly, patients with 
higher tumor burden persisting after lym-
phodepletion experienced higher exposure 
and reached maximal expansion faster, which 
further corroborates the observation that 
antigen-driven stimulation drives CAR T cell 

expansion (12). While it has been clearly demonstrated that tumor 
burden is an important factor contributing to CAR T cell expan-
sion, the impact of the infused cell dose remains controversial (7, 
49). An association between cell dose and CAR T cell expansion 
was observed, which may be determined by the prevalence of 
effector memory phenotype in the cell product. The most effec-
tive treatment doses were higher than the T cell dose previously 
reported for other CAR T cell products. It is likely that the predom-
inance of CD8+ effector memory cells, the costimulatory design, 
and the use of SB transposon require the infusion of higher doses 
of CARCIK-CD19. For the same reasons, these cells are associated 
with a better safety profile characterized by the absence of mas-
sive cytokine secretion. Persistent engraftment was detected at 
low levels up to 300 days and in the vast majority of patients at the 
last available measure. The use of standard lymphodepletion and 
the incorporation of the OX40 module in the CD28-based CAR 
(50) might have contributed to long-term CAR T cell persistence, 
as observed with a combination of costimulatory domains in some 
third-generation CAR structures (51, 52). In association with  
CAR T cell massive expansion, marked cytokine increase in the 
serum levels and severe toxicities have occurred in most CAR T 
clinical trials (6–9, 49). The modulation of the typical cytokine 
production storm, associated with aggravation of CRS mediated 
by IFN-γ, IL-6, TNF-α, and IL-8, might explain the lower incidence 
of CRS and the absence of neurotoxicity despite an expansion 
equivalent to that in other CAR trials (53).

We found for the first time, to our knowledge, that the inte-
gration profile of SB, without preferences for gene dense regions 
and with no bias to target regions near TSS, is maintained after 
infusion, suggesting a lack of selective pressure for genomic 

Figure 4. Postinfusion immunophenotype and kinetic of CAR T cells. (A) Percentages of 
CD3+CD8+, CD3+CD4+, and CD3+CD56+ cell subsets within the CAR+CD3+ T cells in PB at different 
intervals of time after CARCIK-CD19 infusion (n = 11). (B) Expression of naive, central memory, 
effector memory, and terminal effector cells as percentages of CAR+CD3+ T cells in PB at different 
intervals of time after CARCIK-CD19 infusion (n = 11). (C) Flow cytometric dot plots showing the 
phenotype of circulating CAR T cells in a representative B-ALL patient at 21 days after CARCIK-CD19 
infusion (n = 13).
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in keeping with that reported in other adult patient series (7, 8). 
The limited number of pediatric patients treated so far prevents 
us from drawing premature statements in this setting. Overall, we 
are tempted to speculate that CARCIK-CD19 may exert an anti-
leukemic effect that is not limited to the CAR engagement, but 
may involve long-lasting allogeneic recognition. Furthermore, the 
predominance of the effector memory T cell phenotype, the large 
number of produced cells, and their safety profile will allow us to 
design subsequent studies with multiple maintenance infusions. 
Despite the data looking very encouraging in terms of safety and 
efficacy, the small number of treated patients makes it difficult to 
claim that this approach is as effective as commercially available 
CAR T cell products. Likewise, assessment of the CARCIK-CD19 
production variability in relation to the treatment outcome is not 
possible at this time. Interestingly, the lack of GVHD activity when 
using HLA-mismatched donors and our ability to generate cord 
blood–derived CIK cells (39) open the possibility of using cord 
blood–derived CARCIK-CD19 even in patients who did not under-
go HSCT. Following a deep lymphodepletion aimed at preventing 
rejection and allowing robust in vivo expansion, this approach 
may mostly benefit patients who fail collection or manufacturing 
of autologous CAR T cells.

Methods
Manufacturing. CIK cells were generated from 50 mL of donor- 
derived PB by electroporation with GMP-grade CD19.CAR/
pTMNDU3 and pCMV-SB11 plasmids (24) (manufactured by 
VGXI Inc.) according to the method described in European patent 
EP20140192371 (60). Full details of the manufacture and release 
are provided in the Supplemental Methods. Briefly, PBMCs were 
electroporated using the 4D-Nucleofector System (Lonza) with the 
P3 Primary Cell 4D-Nucleofector Kit (Lonza) in the presence of a pT 
SB vector expressing the FMC63-derived CD19-specific scFv fused 
to a CD28 transmembrane domain and the CD28.OX40.CD3ζ sig-

regions with different properties in vivo. Moreover, gene ontology  
analysis showed a significant enrichment of genes expressed in  
T cells, in agreement with the typical SB profile characterized by 
a bias for targeting accessible chromatin regions that, in this case, 
are T cell specific, possibly due to the temporal proximity of inte-
gration with the CD3-specific activation (22, 54). As shown pre-
viously, viral insertions in HIV-infected subjects may alter T cell 
regulatory pathways and thus promote clonal expansion and, con-
sequently, persistence of the latent HIV reservoir (55). Similarly, 
vector insertions in CAR T cells might trigger clonal expansions 
of genetically modified cells, showing dramatic in vivo expansion 
of a single clone. As documented in CAR T cell trials using viral 
vectors, vector insertion within the CBL oncogene and disruption 
of the normal TET2 allele were reported (56, 57). Despite a recent 
study suggesting that vector insertions might promote CAR T 
clonal expansion, which correlates with positive outcome (58), 
we did not find any evidence that SB insertions in our trial have 
triggered any clonal dominance nor selection of genes targeted 
by CIS that have been associated with potential leukemogenic 
insertional events in preclinical and clinical gene therapy. Impor-
tantly, a sizable amount of IS present in CARCIK-CD19 was also 
found in vivo, indicating that the progeny of infused CAR T cells 
were able to engraft, expand, and persist over time. At later time 
points, the clonal repertoire was markedly reduced, in agreement 
with the observed contraction phase, as measured by transgene 
PCR and flow cytometry.

We observed a dose-dependent clinical response associated 
with low toxicity in a category of patients with r/r B-ALL follow-
ing allo-HSCT (59), whose chances of survival are very low. The 
infusion of high CARCIK-CD19 doses induced CR/CRi in 6 out 
of 7 patients, 4 of whom remained in remission with a median fol-
low-up of 6.9 months as of the data cutoff date. BCA was sustained 
at the last follow-up in 6 out of 13 patients, with a median dura-
tion of 3 months. The occurrence of CD19– relapses was limited, 

Table 2. Toxicity and response to therapy

No. Patient ID Dose 
(106/Kg)

GVHD CRS Neurotoxicity Disease 
response 
(day 28)

MRD qPCR 
BM (day 28)

Duration of 
response (months 

from CR) 

Overall survival 
from infusion 

(months)

Current 
status

1 11010001 1 None None None NR Positive – 1.0 Dead
2 21020001 1 None None None NR Positive – 20.0C Alive
3 21020002 1 None None None NR Positive – 1.6 Dead
4 21020004 3 None None None CR Positive 1.4 4.0 Dead
5 21020007 3 None None None CR Negative 3.9 9.8 Dead
6 11010004 3 None None None NR Positive – 6.1 Dead
7 11010003 7.5 None None None CR Negative 8.7B 9.6D Alive
8 11010005 7.5 None None None CR Negative 7.8B 8.7D Alive
9 21020010 7.5 None None None NR Positive – 7.8E Alive
10 21020011 15 None Grade 1 None CR Positive 1.0 6.1 Alive
11 21020013 15 None None None CR Negative 4.6B 5.4 Alive
12 21020014 15 None Grade 2 None CRi Negative 1.1 2.2 Dead

13 21020015 15 None Grade 1 None CR Negative 2.2B 3.1 Alive

NR, no response. ACR in BM with extramedullary disease. BOngoing response. CPatient 2 received inotuzumab (0.83 months from infusion) and, 
subsequently, HSCT. DPatients 7 and 8 underwent HSCT (2.08 and 5.32 mos from infusion, respectively). EPatient 9 received inotuzumab (3.74 months 
from infusion)
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statistical properties and performance superior to the traditional 3 
+ 3 design. The threshold for toxicity was set at 30%, and decision 
rules for the conduction of the trial were guided by the observed rate 
of dose-limiting toxicity and are depicted in Supplemental Table 6. 
During the cell-manufacturing period, bridging antileukemic therapy  
from patient registration to the beginning of lymphodepletion was 
allowed. Products were thawed at bedside in the pediatric setting and 
in the Cell Factory in the adult setting.

Assessment of clinical response. The primary endpoint of this study 
was to define the maximum tolerated dose (MTD) and assess for 
safety. Toxicity was graded using the National Cancer Institute (NCI) 
Common Terminology Criteria for Adverse Events (CTCAE) (version 
4.03; Supplemental Table 7 and refs. 28, 64).

Key secondary endpoints included the assessment of complete 
hematologic response (CR), defined as less than 5% abnormal blasts 
in BM, less than 1% circulating blasts, restoration of normal hema-
topoiesis, and no clinical evidence of extramedullary disease as well 
as the measurement of CAR T cell persistence in PB and BM. CRi 
is defined as when all criteria for CR are met, but there are not ade-
quate neutrophils (≤ 1.0 × 109/L) and platelets (≤ 100 × 109/L). MRD 
was assessed by morphology and flow cytometry (limit of detection, 
1:10,000) and, in those patients with a known molecular marker, by 
quantitative PCR (qPCR).

Detection of integrated copy number by qPCR. DNA was extracted 
from cultured T cells using QIAamp DNA Mini Kit (QIAGEN) accord-
ing to the manufacturer’s instructions. Quantitative real-time PCR was 
performed on 100 ng of genomic DNA using TaqMan Gene Expression 
Master Mix (Applied Biosystems) and TaqMan qPCR (RT-PCR System 

naling endodomain under the control of the synthetic MNDU3 (61) 
promoter and flanked by pT inverted repeats (IR)/direct repeats (DR) 
sequences (20) and the pCMV vector encoding the transposase SB11 
gene (62). Autologous PBMCs irradiated with 60 Gy of 137Cs γ-rays 
were added after electroporation. IFN-γ (1000 U/mL; Boehringer 
Ingelheim) was added at day 0, and IL-2 (300 U/mL; Novartis) and 
OKT-3 (50 ng/mL; Takara) were added at day 1. Cells were then cul-
tured in GMP Advanced RPMI-1640 Medium (Gibco, Thermo Fisher 
Scientific) supplemented with heat-inactivated GMP FBS (Hyclone, 
GE Healthcare) for 18 to 28 days, and IL-2 was added weekly.  
CARCIK-CD19 were formulated with cryopreservation (23.9% of 
normal saline solution for intravenous injection; 56.1% of HSA solu-
tion, at 20%, 10% of DMSO, and 10% of ACD-A).

Study design. The study was conducted at the Pediatric Clinic of 
the University of Milano-Bicocca/Fondazione MBBM for 1- to 17-year-
old patients and at the Papa Giovanni XXIII Hospital for patients 
older than 18 years. The target population consisted of patients with 
B-ALL who were either refractory or relapsed after allo-HSCT. Here, 
we report the early results on the first 13 patients infused, with data 
frozen as of 30 November 2019. Details regarding enrollment are 
provided in the Supplemental Methods. After lymphodepletion 
with fludarabine (30 mg/m2/d) for 4 days and cyclophosphamide 
(500 mg/m2/d) for 2 days, patients underwent a single infusion of  
CARCIK-CD19 cells. The clinical trial followed a 4-dose escalation 
scheme (1 × 106, 3 × 106, 7.5 × 106, and 15 × 106 transduced CAR+ T cells/
kg) and was planned to include up to 18 patients treated in cohorts of 3. 
The dose assignment for patients who sequentially entered the study 
was prespecified according to the BOIN (63), a design with desirable 

Figure 5. Clinical outcome and antileukemic response duration. (A) Waterfall plot of individual patient BCA duration. (B) Waterfall plot of individual 
patient remission duration (n = 13), remission duration in presence of transgene copy number, and timing of relapse, allo-HSCT, and eventually death. (C) 
CT scan at baseline and 44 days after CARCIK-CD19 infusion in patient 12 with a diffuse B-ALL presenting with massive liver infiltration. VCN, vector copy 
number; PD, progressive disease.
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in the Supplemental Methods. Libraries of pooled PCR products 
were sequenced with the MiSeq Illumina platform. All sequence data 
obtained in the IS analysis study are available at the NCBI’s SRA data-
base (PRJNA643365). Of note, the in vivo samples harvested at the 
latest time points yield low amounts of PCR products and needed ded-
icated sequencing runs. Sequencing reads were processed by a dedi-
cated bioinformatics pipeline (VISPA2), as previously described (68). 
Briefly, paired sequence reads were filtered for quality standards, bar-
codes identified for sample demultiplexing of the sequence reads, the 
cellular genomic sequence mapped on the reference Human genome 
(Human Genome_GRCh37/hg19 Feb. 2019), and the nearest RefSeq 
gene assigned to each unambiguously mapped IS. CIS analysis was per-
formed using the Grubbs test for outliers, which allows identification of 
genes in which insertions are significantly enriched with respect to the 
average gene integration frequency. For the quantification of the abun-
dance of each clone, we adopted an estimation method, SonicLength, 
based on the analysis of sheared DNA fragments containing the same 
IS (69). We used custom R scripts to combine data from different sam-
ples, filter data set on the known IS, and produce graphical results.

Statistics. Categorical data were summarized by counts and 
percentages, while continuous data were described with mea-
sures of location (i.e., arithmetic or geometric mean, median) and 
variability (i.e., range, SD, coefficient of variation), as appropriate. 
The remission rate estimates were reported along with 95% exact  
Clopper-Pearson CIs. Statistical analyses were performed with SAS 
9.4, except those on GMP manufacture and CAR T persistence, 
which were performed with GraphPad Prism 5.0. The duration of 
response was defined as the time from the achievement of CR at 28 
days to time of progression. The duration of the follow-up was calcu-
lated from the time of the infusion.

Study approval. The phase I/II study entitled “Transposon-manip-
ulated allogeneic CARCIK-CD19 cells in pediatric and adult patients 
with r/r ALL post HSCT (CARCIK)” was performed in accordance with 
the protocols of the EMA, approved by the Italian Regulatory Central 
Authorities (AIFA) and by the local ethical committees (Comitato 
Etico della Provincia di Monza e Brianza), and registered (EudraCT 
2017-00900-38 and ClinicalTrials.gov NCT03389035). Written con-
sent was obtained from patients or their guardians in compliance with 
institutional guidelines and the Helsinki Declaration.
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Tr-VCN, reverse: GTGTCATGCACAAAGTAGATGTCCTA; Tr-VCN-
PR-labeled (FAM) MGB probe, CTGACTTGCCAAAACT.

Pharmacokinetic analysis. The Cmax, the time to the maximum 
observed expansion (Tmax), and the AUC at 28 days and at the last 
observation were calculated. AUCs were estimated through the trap-
ezoidal rule.

Assessment of CAR T cell persistence by flow cytometry. PB and BM 
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IS retrieval protocol bioinformatics analysis. Transposon IS were 
retrieved and sequenced as previously described (67). Amplified PCR 
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tified by qPCR in order to compose equimolar sequencing libraries. 
Additional details regarding the IS retrieval protocol are provided  

Figure 6. Transposon IS analyses in patient PB and cellular products. (A) 
Experimental and analytical workflow adopted for IS retrieval and analysis 
in vitro and in vivo samples. (B) Frequency distribution of SB IS around 
genes’ TSS (interval ± 10 Kb divided in 500 bp bins) in vitro (black bars) 
and in vivo (gray bars), expressed as percentages relative to the total IS for 
each data set (n = 40 samples). (C) CIS analysis was performed on the IS 
identified for each patient using the Grubbs test for outliers and volcano 
plot representation. All genes targeted by IS were tested and plotted with 
dots of size proportional to the gene length; gene integration frequency 
normalized by gene length was placed on the x axis, while the y axis shows 
the P value of the CIS Grubbs test for outliers (–log base 10 of P value). 
Tumor suppressor genes are annotated in blue, protooncogene in red, and 
a generic “other” in green for the remaining genes. Dots with significant 
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and the height is proportional to the relative percentage of genomes of 
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point after infusion; ribbons connect tracked clones between 2 consecutive 
time points. Four out of 11 patients are represented. (E) Shannon diversity 
(H) index was calculated for the IS data sets obtained from each patient 
over time (n = 13).
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