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Baroreceptor reflex
Blood pressure (BP), the major determi-
nant of organ perfusion, is tightly regulated  
by negative feedback systems to ensure 
homeostasis in the event of cardiovascu-
lar stress. For example, gravity, one of the 
greatest stressors for the cardiovascular 
system, would induce profound hypoten-
sion and compromised brain perfusion 
due to blood pooling if the negative feed-
back systems failed to function. The main 
negative feedback system controlled by 
the autonomic nervous system is mediated 
by baroreceptors and called the barorecep-
tor reflex. It constricts veins and arteries 
and increases heart rate (HR), myocardial 
contractility, and the cardiac output that 
sustains BP when moving from a supine to 
an upright posture.

The baroreceptor reflex is initiated 
by baroreceptor mechanosensors located 
at afferent nerve endings in the adventi-
tia of carotid sinuses and the aortic arch 
(Figure 1). Although a rudimentary under-
standing of this critically important reflex 
was known in the 19th century, it took the 
elegant work of the Austro-German phys-
iologist Heinrich Hering to demonstrate 
that electrical or mechanical stimulation 

of the carotid sinus provokes a reflex that 
induces bradycardia and hypotension (1). 
In parallel, the Belgian physiologist Jean-
François Heymans and his son Corneille 
(who won the Nobel Prize for Physiology 
and Medicine in 1938), using the parabio-
sis technique in dogs, proposed that hyper-
tensive bradycardia is a reflex mechanism 
mediated by the vagal nerve (1). The first 
detailed studies of the innervation of the 
carotid body were conducted by De Cas-
tro, who demonstrated that the “nude” 
sensory terminals extending and rami-
fying through the adventitial layer of the 
artery are such that they can directly sense 
the changes in pressure and volume in the 
vessel (1). Since this time, a robust liter-
ature and understanding has developed 
regarding this reflex including the nature 
of the electrical activity of the afferents, 
the role of baroreceptor afferents in coor-
dinating CNS structure and function, and 
the influence of the baroreceptor reflex on 
cardiovascular effector organs (2).

Molecular substrates of 
baroreceptors
Molecular identities of baroreceptors have 
long been elusive, although earlier stud-

ies have proposed that epithelial sodium 
channel (ENaC), acid-sensing ion channel 
2 (ASIC2), and transient receptor potential 
channel 5 (TRPC5) channels are molecular 
substrates of baroreceptors (3–6). Genetic 
deletion of these molecules impaired the 
baroreceptor reflex. However, there has 
been a lack of evidence in mammalian 
sensory afferent nerves showing that these 
channels are sensitive to physiologically 
relevant mechanical stimuli, which places 
their role as baroreceptors into question 
(7). Recently, Piezo channels (Piezo1 and 
Piezo2) have been identified as putative 
baroreceptors (8). Piezo1 and Piezo2 chan-
nels are the first confirmed mammalian 
mechanoreceptors that mediate rapidly 
adapting (RA) inward currents in response 
to mechanical stimulation (9). Piezo chan-
nels are involved in a broad range of phys-
iological processes in sensory cells, endo-
thelial cells, smooth muscle cells, and red 
blood cells (10). Both Piezo1 and Piezo2 
channels are expressed in nodose ganglion  
(NG) neurons, which are the somas of 
vagus nerves, and genetic deletion of Piezo 
channels impairs baroreceptor reflex func-
tion, resulting in labile hypertension and 
increased BP variability (8). These findings 
have partially, but not fully, satisfied the 
criteria for Piezo channels to be consid-
ered baroreceptor mechanosensors (11).

In order for an ion channel to qualify  
as a baroreceptor it must meet several  
criteria (11). (a) The ion channel must show 
mechanical sensitivity and be able to trans-
duce mechanical stimuli such as mem-
brane stretch into electrical activity and 
nerve impulses. (b) It must be expressed 
in the afferent nerve endings that inner-
vate the carotid sinus and aortic arch. (c) 
Mechanical activation of the ion channel 
must induce afferent nerve activity that 
is consistent with known properties of 
baroreceptors. (d) Ion channels that are 
pharmacologically blocked, genetically 
knocked down, or deleted must abolish the 
baroreceptor reflex. (e) Blocking, knocking 
down, or deleting the putative receptor in 
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Mechanical stretch of baroreceptors in the wall of the aortic arch and 
carotid sinus initiates autonomic reflexes to change heart rate and blood 
pressure for cardiovascular homeostasis. In this issue of the JCI, Lu et al. 
show that tentonin 3 (TTN3), a recently identified stretch-sensitive ion 
channel, was present at the vagus afferent nerve endings innervating the 
aortic arch to function as a baroreceptor. This study expands the molecular 
profiles of baroreceptors and provides new insights into molecular 
mechanisms underlying the regulation of cardiovascular functions through 
baroreceptor function.
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because baroreceptors in the aortic arch 
are vagus nerve endings derived from 
NGs. The researchers showed that TTN3 
immunoreactivity was indeed present in 
many NG neurons of WT mice but absent 
in NG neurons of TTN3 gene–knockout 
mice (Ttn3–/–). To determine whether func-
tional TTN3 channels were present in NG 
neurons that innervate the aortic arch, the 
authors retrogradely labeled aortic arch–
projecting NG neurons using the fluores-
cent tracer DiI and then applied mechan-
ical pulses and recorded currents from 
DiI-labeled NG neurons. They showed 
that mechanical stimulation of aortic 
arch–projecting NG neurons elicited three 
types of inward currents: RA currents, 
intermediately adapting (IA) currents, and 
SA currents. They further showed that SA 
currents were absent in DiI-labeled NG 
neurons of Ttn3–/– mice. Together, these 
elegant experiments establish TTN3 as a 
mechanoreceptor responsible for SA cur-
rents in aortic arch–projecting NG neurons 
(12). To satisfy the criteria for TTN3 being 
a baroreceptor, TTN3 must reside at the 
afferent nerve terminals in the aortic arch 
and/or carotid sinus. Lu et al. addressed 
this key issue by visualizing TTN3+ nerve 
terminals in aortic depressor nerves. They 
used enhanced yellow fluorescent protein– 
expressing (EYFP-expressing) transgenic 
mice along with a tissue-clearing tech-
nique to visualize TTN3-expressing nerve 
fibers and convincingly demonstrated 
that TTN3 channels were expressed at 
the vagus afferent terminals in aortic arch 
adventitia (12). To further determine that 
TTN3 channels at afferent terminals at the 
aortic arch sense pressure changes in the 
aortic lumen, the authors applied hydrau-
lic pressures within the aortic lumen 
and then recorded from aortic depressor 
nerves. They found that nerve impulse fre-
quencies were enhanced with increases of 
aortic pressures in WT mice, but the pres-
sure-induced increases of nerve impulses 
were substantially abolished in Ttn3–/– 
mice. This finding indicates that TTN3 is 
required for pressure-evoked impulses in 
the aortic depressor nerve, providing elec-
trophysiological evidence that activation 
of TTN3 channels initiates the barorecep-
tor reflex (12). It is worth noting that pres-
sure-evoked impulses were not completely 
abolished in the aortic depressor nerves of 
Ttn3–/–– mice, which is consistent with the 

adapting (SA) inward currents in response 
to mechanical stimulation (13). The SA 
kinetics of TTN3-mediated currents is in 
sharp contrast to Piezo-mediated inward 
currents, which are RA in their kinetics (9, 
14). In the somatosensory nervous system, 
TTN3 channels are shown to localize to 
muscular spindle afferent nerves and are 
involved in proprioception-related motor 
coordination (13). Until now, however, it 
was unknown whether TTN3 was involved 
in mechanotransduction in other tissues. 
To explore potential roles of TTN3 as a 
baroreceptor in the regulation of cardio-
vascular homeostasis, Lu et al. first char-
acterized TTN3 expression in NG neurons 
using immunohistochemical methods, 

awake animals should increase BP lability. 
Up to now, however, none of the previously 
identified baroreceptor candidates has ful-
ly satisfied these criteria.

TTN3 is a mechanoreceptor
In this issue of the JCI, Lu et al. have identi-
fied tentonin 3 (TTN3) as a baroreceptor in 
the aortic arch (Figure 1) that well satisfies 
the criteria described above (12). TTN3 is 
a mechanoreceptor cloned recently fol-
lowing a bioinformatic investigation. The 
channel was initially identified in a subpop-
ulation of somatosensory neurons in dor-
sal root ganglions (DRGs) (13). In both the 
heterologous expression system and DRG 
neurons, TTN3 channels mediate slowly 

Figure 1. TTN3 is a new baroreceptor in the aortic arch. Diagram illustrating the cellular and molecu-
lar elements involved in the baroreceptor reflex. The baroreceptor reflex is initiated by pressure- 
induced stretch of baroreceptors located at afferent nerve terminals in the aortic arch and carotid 
sinuses. The vagus nerve and the glossopharyngeal nerve are two afferent nerves that innervate 
the aortic arch and carotid sinus. Baroreceptor activation generates afferent nerve impulses that are 
conveyed to the cardiovascular center in the pons and medulla. This subsequently changes autonom-
ic efferent activity, leading to changes in HR and BP. A number of ion channels including ENaC, ASIC2, 
TRPC5, and Piezo have previously been considered as molecular substrates of baroreceptors. Lu et al. 
show that TTN3 is a baroreceptor located at the vagus nerve terminals innervating the aortic arch and 
is essential for the baroreceptor reflex.
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provides insights into the complexity of 
molecular mechanisms underlying the 
baroreceptor reflex, and calls for more 
detailed studies on how different types of 
baroreceptors may work in a temporally 
and spatially synergistic manner to control 
cardiovascular homeostasis.
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