Supplementary Table

Gene	Sequence (5'to 3')	Length
Pd-1-S	ACCCTGGTCATTCACTTGGG	20
Pd-1-AS	CATTTGCTCCCTCTGACACTG	21
Pd-I1-S	GCTCCAAAGGACTTGTACGTG	21
Pd-I1-AS	TGATCTGAAGGGCAGCATTTC	21
Pd-I2-S	CTGCCGATACTGAACCTGAGC	21
Pd-I2-AS	GCGGTCAAAATCGCACTCC	19
Lag3-S	CTGGGACTGCTTTGGGAAG	19
Lag3-AS	GGTTGATGTTGCCAGATAACCC	22
Tim3-S	TCAGGTCTTACCCTCAACTGTG	22
Tim3-AS	GGCATTCTTACCAACCTCAAACA	23
β-Actin-S	GGCTGTATTCCCCTCCATCG	20
β-Actin-AS	CCAGTTGGTAACAATGCCATGT	22

Table S1. Sequences of RT-PCR primers used in this study

Supplementary Figures

Figure S1. Pulmonary melanoma metastasis stimulates PD-1, PD-L2, LAG3 and TIM3. 8-week-old WT mice were given B16-F10 (B16) melanoma cells or control vehicle (PBS) and the expression of immune checkpoint molecules was evaluated 2 weeks later. Real-time RT-PCR (RT-PCR) was used to quantitate the levels of mRNA encoding PD-1 (A), PD-L2 (B), LAG3 (C) and TIM3 (D) in the lungs from mice treated intravenously with PBS (B16 -) or B16 cells (B16 +). Each dot represents an evaluation in an individual animal. The plotted values represent the mean \pm SEM of the evaluations represented by the individual dots. *p<0.05, **p<0.01 (*t*-test).

Figure S2. Gating strategy of the FACS analysis used in the evaluation of macrophages and T cells in the lung of mice after melanoma cell challenge. 8-week-old WT mice were challenged with vehicle (PBS) or B16-F10 melanoma cells, then the lungs were harvested on day 14 after melanoma cell injection and subjected to FACS evaluation. The inflammatory cells were first enriched with CD45 (+) then followed CD11b/CD68(+) for macrophages and CD3(+) T cells were subjected to the evaluation of PD-L1 expression.

Figure S3. PD-L1 expression in lung resident B cells with and without melanoma lung metastasis. 8 weeks old WT mice were challenged with vehicle (PBS) or B16-F10 melanoma cells, then the lungs were harvested on day 14 after melanoma cell injection and subjected to FACS evaluation. (A) Gating strategy of lung resident B cells (CD19+/B220+) expressing PD-L1. (B) Representative FACS evaluations (two mice/group) on the PD-L1 expressing lung resident B cells.

Figure S4. Chi3l1 plays a critical role in B16 melanoma stimulation of pulmonary PD-1, LAG3 and TIM3. 8-week-old WT (+/+) and Chi3l1 null (-/-) (Chi3l1-/-) mice were given B16 melanoma cells or vehicle control. They were then treated with an anti-Chi3l1 antibody (FRG) or isotype control antibodies and the expression of PD-1, LAG3 and TIM3 was evaluated 2 weeks later. (A-C) RT-PCR was used to quantitate the levels of mRNA encoding PD-1, LAG3 and TIM3 in the lungs from wild type (WT) (Chi3l1 +/+) and Chi3l1 null (Chi3l1 -/-) mice given PBS vehicle (B16 -) or B16 cells (B16 +). (D-F) RT-PCR evaluation of the levels of mRNA encoding PD-1, LAG-3 and TIM3 in the lungs from WT mice treated with PBS vehicle (B16 -) or B16 cells (B16 +) that were treated with FRG (FRG+) or vehicle (FRG-). Each dot represents the evaluation in an individual animal. The plotted values represent the mean \pm SEM of the noted evaluations represented by the individual dots. *P<0.05, **P<0.01, ***P<0.001 (One-way ANOVA with Turkey post hoc test).

В

С

Figure S5. Transgenic Chi3l1 stimulates PD-1, PD-L2, LAG3 and TIM3 in the normal lung. 8-week-old WT (-), CHI3L1 Tg (+) mice were used to evaluate the levels of mRNA encoding PD-1 (A), PD-L2 (B), LAG3 (C), and TIM3 (D) in the lung. RT-PCR was used to quantitate the levels of mRNA in the lungs from WT mice (CHI3L1 Tg -) and mice in which CHI3L1 was overexpressed in the lung in a transgenic manner (CHI3L1 Tg +). Each dot represents the evaluation in an individual animal. The plotted values represent the mean ± SEM of the noted evaluations represented by the individual dots. *p<0.05,**p<0.01 (*t* test).

Figure S6. Chi3l1 mediates rIFN- γ -stimulated expression of PD-L1 in lung resident macrophages. (A) Gating strategy used for the evaluation of PD-L1 in lung resident macrophages (CD45+/CD11b(+)/MHCII(+)/PD-L1(+) cells). (B) FACS evaluations on PD-L1 expression in lung resident macrophages from WT (*CHI3L1*-) and CHI3L1 Tg mice. (C) Western blot evaluation to test the ability of rIFN- γ to stimulate PD-L1 in lung resident macrophages from WT and Chi3l1-^{*i*}- mice. The values in bar graph of panel B represent the mean±SEM of the noted evaluations. *p<0.05 (*t* test).

Figure S7. IFN- γ -stimulates macrophage PD-L2 via a Chi3l1dependent mechanism. Bone marrow derived macrophages (BMDM) prepared from 6-8 weeks old male WT and Chi3l1-⁷⁻ mice and were used to evaluate the importance of Chi3l1 in rIFN₁ γ stimulation of PD-L2. (A) rIFN- γ -stimulation of PD-L2 mRNA expression in BMDM from WT and Chi3l1 mice. (B) FACS evaluations of the ability of rIFN- γ to stimulate PD-L1 in BMDM prepared from WT and Chi3l1 mice. The values in panel A represent the mean±SEM of the noted evaluations (n=5 mice/each). *p<0.05,**p<0.01 (*t* test). Panel B is a representative of a minimum of 2 separate evaluations.

Figure S8. The structure and the binding affinity of FRGxPD1 bispecific antibody and synergistic CTL-mediated tumor cell response and PTEN accumulation. (A) Schematic illustration of the structure of the bispecific antibody FRGxPD-1 in which anti-PD-1 is linked to FRG via its light chain. (B) The affinity of FRGxPD1 antibody was evaluated by competitive ELISA against recombinant human (rh) CHI3L1 and rhPD-1. (C-G) Bispecific antibodies that simultaneously target Chi3I1 and PD-1 induce synergistic CTL-mediated tumor cell death responses and tumor cell PTEN accumulation. The antitumor effects of FRGxPD-1 bispecific antibody was tested in co-culture of system of Jurkat cells and B16-F10 murine melanoma cells as described in the Materials and Methods. (C) Quantification of T cell CD8+ (D), perforin (E) and granzyme (F) accumulation. (G) quantification of tumor cell PTEN accumulation in co-cultures. These evaluations were undertaken using fluorescent microscopy (x20 of original magnification). In these quantifications, 10 randomly selected fields were evaluated. The values in in these panels are the mean \pm SEM. **p<0.01, ***<0.001 (One-way ANOVA with Turkey post hoc test).