Supplemental tables

denes	logfoldchanges	score	P -value	cluster
yenes	iogiolacitaliyes	30016	1-value	GIUSICI
Ms4a2	32,17730713	4,885575771	1,03127E-06	Basophil
Mcpt8	30,8923893	3,053484917	0,002262	Basophil
Fcer1a	14,95272446	4,885575771	1,03127E-06	Basophil
Cpa3	12,7094593	4,883338928	1,04304E-06	Basophil
Cyp11a1	10,95959663	3,661199331	0,000251037	Basophil
Cd200r3	10,23174095	4,270777702	1,94792E-05	Basophil
Gata2	9,726697922	4,266676903	1,98406E-05	Basophil
116	9,017007828	3,037453175	0,002385864	Basophil
Rab44	8,831991196	3,041927099	0,002350687	Basophil
Hdc	8,333846092	4,85425806	1,20838E-06	Basophil
lfitm1	6,255457401	3,474038124	0,000512688	Basophil
Ccl3	5,630964279	3,196651936	0,001390325	Basophil
Ccl4	5,249568462	3,131033897	0,001741921	Basophil
Cd7	5,219405651	3,473292589	0,000514115	Basophil
Ccl6	4,417239666	3,572465658	0,000353636	Basophil
Cd79a	7,740267754	26,43621254	5,2566E-154	B cell
Ly6d	7,35939455	24,84671783	2,806E-136	B cell
Ms4a1	7,12919569	24,83703995	3,57E-136	B cell
Ebf1	6,799319744	25,2107811	3,0511E-140	B cell
Fcmr	6,702617168	20,79995346	4,33232E-96	B cell
Mzb1	6,31575489	18,88094521	1,63631E-79	B cell
Cd79b	6,153306961	26,15522385	8,5949E-151	B cell
Gm43603	5,92986393	20,7942276	4,88141E-96	B cell
Bank1	5,764195442	20,46655655	4,27803E-93	B cell
Fcrla	5,708143234	16,42088318	1,35579E-60	B cell
H2-DMb2	5,518703461	23,5134697	2,97E-122	B cell
Siglecg	4,954312801	16,98919868	9,87303E-65	B cell
H2-Ob	4,809836388	18,07178307	5,31671E-73	B cell
Ralgps2	4,658328533	16,62799454	4,36973E-62	B cell
H2-Oa	4,252504349	17,28592873	6,0046E-67	B cell
Tcf7	4,513453007	13,56557465	6,40755E-42	CD4 T cell
Lef1	4,489587307	12,69128132	6,60956E-37	CD4 T cell
Cd3g	4,359367371	15,48692513	4,25144E-54	CD4 T cell
Cd3d	4,275510311	15,30279732	7,32393E-53	CD4 T cell
Lat	4,019424438	13,23984528	5,16551E-40	CD4 T cell
Ms4a4b	3,832198143	14,97555923	1,06072E-50	CD4 T cell
Tmsb10	1,814377427	13,13952541	1,95449E-39	CD4 T cell
Rpl12	1,558308005	15,21677113	2,7371E-52	CD4 T cell
Rpl5	1,164606333	14,22511196	6,40016E-46	CD4 T cell
Rpl13a	1,108007312	13,73043728	6,673E-43	CD4 T cell
Rps27	1,076374292	12,76496792	2,57258E-37	CD4 T cell
Rps7	1,060416102	14,07960415	5,06932E-45	CD4 T cell
Rps15a	1,060255647	14,03175163	9,96588E-45	CD4 T cell
Gm10073	1,059884548	12,80953503	1,45002E-37	CD4 T cell

Table S I. Top ranked genes for single-cell RNA sequencing analysis cluster.

Rps24	1,041148901	14,16500854	1,50848E-45	CD4 T cell
Cd8b1	6,919670105	14,25400352	4,23304E-46	CD8 T cell
Nkg7	5,828896523	14,91225433	2,74331E-50	CD8 T cell
Cd3g	5,196243286	16,40915108	1,64488E-60	CD8 T cell
Cd3d	5,186452866	16,85204124	1,01355E-63	CD8 T cell
Thy1	4,906655312	15,2247591	2,42251E-52	CD8 T cell
Ms4a4b	4,83349371	16,36470032	3,41709E-60	CD8 T cell
Lck	4,134778976	13,33833313	1,38522E-40	CD8 T cell
Lat	4,000152111	12,48033619	9,55824E-36	CD8 T cell
AW112010	2,761917591	12,46634865	1,13927E-35	CD8 T cell
Saraf	2,309516191	13,27491283	3,23647E-40	CD8 T cell
Tmsb10	2,153654337	14,93543816	1,93795E-50	CD8 T cell
Rpl2211	1.552589536	12.63016987	1.43968E-36	CD8 T cell
Rpl12	1,524740815	14,1247673	2,67282E-45	CD8 T cell
Rol13a	1.315062165	14.8501749	6.9387E-50	CD8 T cell
Rosa	1.281026483	14.58432674	3.53393E-48	CD8 T cell
Cd209a	7.084644	9.428524	4.16E-21	Dendritic cells
Ffar2	6.474395	7.935768	2.09E-15	Dendritic cells
Flt3	5 387873	8 287161	1 16E-16	Dendritic cells
Kirb1b	5 320319	7 995071	1,29E-15	Dendritic cells
lfitm1	4 323915	7 725995	1 11F-14	Dendritic cells
Clec10a	3 970304	8 628596	6.21E-18	Dendritic cells
H2-Fh1	3 815535	12 81378	1.37E-37	Dendritic cells
H2-Aa	3 774281	13 03738	7.5E-39	Dendritic cells
Kird1	3 760131	9 432617	4F-21	Dendritic cells
H2-Ab1	3 758918	13 04911	6 43E-39	Dendritic cells
Cd74	3 682577	12 35097	4 81E-35	Dendritic cells
Cbfa2t3	3.473026	11,21492	3.45E-29	Dendritic cells
Olfm1	3.329613	10,15454	3.16E-24	Dendritic cells
Bhlhe40	3 171868	8 661235	4 67E-18	Dendritic cells
Plscr1	3 15024	8 928431	4 32E-19	Dendritic cells
l vz2	5 86966	31 52023	4 60E-218	Mono macs
C1ab	5 293979	24 27806	3 30E-130	Mono macs
Ms4a7	5 277662	23,96194	6.90E-127	Mono_macs
Anne	4 955027	30 22719	1,00E-200	Mono_macs
C5ar1	4 9096027	24 92502	4 00E-137	Mono_macs
Trem2	4,000002	24,02002	9.20E-138	Mono_macs
Adare1	4 743454	25 82356	4 80F-147	Mono_macs
C3ar1	4 596313	24 15751	6 20E-129	Mono_macs
Ecor3	4,000010	29,45475	1 10E-190	Mono_macs
Mafh	4 560227	25,40470	4 30E-147	Mono_macs
Ctsh	4,000227	31 3882	2,90E-216	Mono_macs
Ecer1a	4,40872	31 15072	2,90E-210	Mono_macs
Cd14	4,40072	25 / 1162	1,00E-213	Mono_macs
Δif1	4,203327	20,41102	1,90E-142	Mono macs
Cef1r	4,197020	28,82005	2,90E-193	Mono_macs
Nor1	T, 130200	20,02330	8 60/82E-19	NK colle
Kiraß	10 77501122	5 022161711	2 8823E 00	NK collo
Gzma	10,77331133	7 22582/1109	2,0020E-08	NK collo
Szina Kirb1a	9 677220062	1 9/7100600	7 520255 07	NK collo
IND IA	3,011323003	7,377103033	1,002000-01	

Klrb1c	9,55841732	8,900306702	5,56926E-19	NK cells
Klre1	8,628218651	8,564511299	1,08535E-17	NK cells
Ccl5	8,304552078	8,601051331	7,89894E-18	NK cells
Gzmb	7,445357323	6,201085091	5,60751E-10	NK cells
Nkg7	7,269181728	8,809672356	1,25512E-18	NK cells
Klrb1f	7,001911163	5,556236267	2,75654E-08	NK cells
Fasl	6,977669239	5,54847908	2,88165E-08	NK cells
Xcl1	6,944013596	6,153522968	7,57805E-10	NK cells
Klrk1	6,69391346	8,400798798	4,43452E-17	NK cells
Car2	6,611712933	5,838140488	5,27866E-09	NK cells
ll2rb	6,242600441	6,46196413	1,03352E-10	NK cells

Baseline characteristics	Control	STEMI	<i>P</i> -value
	(<i>n</i> = 9)	(<i>n</i> = 11)	
Female sex	2 (22.2 %)	1 (9.1 %)	<i>P</i> = 0.43
Age (mean ± SD)	70.2 (± 9.1)	65.6 (± 13.9)	<i>P</i> = 0.46
CV risk			
Diabetes mellitus	2 (22.2 %)	1 (9.1 %)	<i>P</i> = 0.43
Smoker	2 (22.2 %)	3 (27.3 %)	<i>P</i> = 0.80
Hypertension	7 (77.8 %)	8 (72.7 %)	<i>P</i> = 0.80
Hypercholesterolemia	5 (55.6 %)	7 (63.6 %)	<i>P</i> = 0.72
Family history	2 (22.2 %)	6 (54.5 %)	<i>P</i> = 0.15
Obesity	2 (22.2 %)	5 (45.5 %)	<i>P</i> = 0.29
Infarct-related artery			
Left anterior descending	n/a	4 (36.4 %)	n/a
Circumflex	n/a	3 (27.3 %)	n/a
Right coronary artery	n/a	4 (36.4 %)	n/a

 Table S II. Description of patients enrolled in leukocyte kinetics study.

Baseline characteristics	<i>n</i> = 82
Female sex	11 (13.4 %)
Age (mean, range)	59.1 (40 - 79)
CV risk	
Diabetes mellitus	23 (28.0 %)
Smoker	26 (31.7 %)
Hypertension	42 (51.2 %)
Hypercholesterolemia	36 (43.9 %)
Family history	19 (23.2 %)
Obesity	29 (35.4 %)
Infarct-related artery	
Left anterior descending	37 (45.1 %)
Circumflex	11 (13.4 %)
Right coronary artery	34 (41.5 %)
Laboratory parameters	
Basophils max – cells/nl (mean ± SD)	0.03 (± 0.02)
cTnT 24h – pg/ml (mean ± SD)	2178.1 (± 2672.9)
CRP max – mg/l (mean ± SD)	43.0 (± 55.7)
Leukocytes max – cells/nl (mean ± SD)	12.0 (± 4.0)

Table S III. Description of STEMI patients enrolled in the prospective outcome study.

Covariate	R square	P-value
Sex	0.0295	0.1231
Age	0.0025	0.6548
CV risk		
Diabetes mellitus	0.0259	0.1484
Smoker	0.0185	0.2225
Hypertension	0.0078	0.4302
Hypercholesterolemia	0.0181	0.2278
Family history	0.0014	0.9704
Obesity	0.0032	0.6137
Laboratory parameters		
Basophils max	0.1224	0.0013*
cTnT 24h (log)	0.1467	0.0004*
CRP max	0.1623	0.0002*
Leukocytes max	0.0999	0.0038*

Table S IV. Univariate regression analysis for the prospective outcome study.

Covariate	Coefficient	Confidence interval	P-value
Intercept	0.083	[-0.059; 0.226]	0.247
Basophils max	-0.017	[-0.030; -0.005]	0.007*
cTnT 24h (log)	0.065	[0.025; 0.104]	0.002*
CRP max	0.0007	[0.0003; 0.0012]	0.002*
Sex	-0.073	[-0.147; -0.0001]	0.049*

 Table S V. Multivariate regression analysis for the prospective outcome study.

Supplemental methods

TTC staining

For the detection of infarction area 24 hours after MI with TTC staining, hearts were removed and rinsed quickly in PBS. Hearts were frozen with dry ice and sliced into parallel transverse sections (thickness 1 mm). The slices were incubated in freshly prepared 2 % TTC (Sigma-Aldrich) at 37°C for 15 minutes. Each heart was recorded with a microscope and a digital camera. TTC-negative staining area (white area) was defined as infarction area.

Plasma and serum measurements

For the measurement of cardiac Troponin T (cTnT), peripheral blood was collected from facial vein puncture in a heparinized tube at indicated time points. Plasma obtained after centrifugation (4°C, 2000g, 10 minutes) was 40 times diluted in PBS and cTnT was detected using an automated Cobas Troponin T hs STAT Elecsys (Roche). For measurements of IgE, peripheral blood was collected, kept at room temperature for 30 minutes and centrifugated (2000g, 10 minutes) in order to obtain serum. Serum levels of IgE were obtained using murine IgE ELISA kits (Abcam) following the manufacturer's instructions.

Isolation, Cell Culture and Stimulation of human basophils and monocytes

For isolation of basophils and monocytes from peripheral blood of healthy donors, ethylene diamine tetra-acetic acid (EDTA)-blood was separated via density gradient centrifugation with Ficoll / Percoll (100/6, density 1.080 g/l) followed by counter flow elutriation. Basophils were further purified by magnetic cell sorting (MACS) using the basophil isolation kit II for negative selection of basophils (Miltenyi). Across the samples, ≥98% purity was achieved. After isolation, cell culture was performed in

Iscove's Modified Dulbecco's Media (IMDM; Capricorn) containing 2 mM glutamine (Capricorn), 5 µg/ml insulin (Gibco), 50 µg/ml apo-transferrin (Sigma-Aldrich), 100 µg/ml Pen/Strep (Capricorn), 10% heat-inactivated Fetal Calf Serum (GE Healthcare) and 2.5 ng/ml IL-3 (gift from Kirin Brewery, Japan) as a basophil survival factor. Basophils were stimulated overnight with a final concentration of 100 ng/ml recombinant IPSE/alpha-1, 2.5 ng/ml IL-33 (Biolegend) or both. Basophil culture supernatants were kept at -80°C until either analyzed for cytokine production by the respective cytokine-specific ELISA (IL-4 and IL-13 (Diaclone)) or further used for culture of monocytes. Therefore, 0.25 x 10⁶ monocytes were stimulated with 10 ng/ml LPS (Salmonella friedenau, kind gift of Prof. H. Brade, RCB) and cultured in 1 ml basophil culture supernatant per well in 24-well flat-bottom culture plates for 24 h. Monocytes were harvested and analyzed at the flow cytometer LSR II (BD Biosciences) for expression of CD206 and CD209 after staining with anti-human CD206-FITC (BD Biosciences, clone 19.2) and anti-human CD209-PE (BD Biosciences, clone DCN46).

Fluorescent antibodies and gating strategies

The following antibodies were used: anti-CD45-PerCP-Cy5.5 (BD Biosciences, clone 30-F11), anti-CD45-BV510 (Biolegend, clone 30-F11), anti-CD45-FITC (BD Biosciences, clone 30-F11), anti-Ter119-PE (BD Biosciences, clone TER-119), anti-CD4-PE (Biolegend, clone RM4-5), anti-CD19-PE (BD Biosciences, clone 1D3), anti-Ly6G-PE (BD Biosciences, clone 1A8), anti-CD11c-PE (BD Biosciences, clone HL3), anti-CD117-PE-Cy7 (BD Biosciences, clone 2B8), anti-CD49b-APC (Biolegend, clone DX5), anti-FccRI-FITC (Biolegend, clone MAR-1), anti-IgE-BV421 (BD Biosciences, clone R35-72), anti-CD90.2-PE (BD Biosciences, clone 53-2.1), anti-B220-PE (BD Biosciences, clone RA3-6B2), anti-CD49b-PE (BD Biosciences, clone DX5), anti-

9

NK1.1-PE (BD Biosciences, clone PK136), anti-CD11b-APC-Cy7 (BD Biosciences, clone M1/70), anti-F4/80-PE-Cy7 (Biolegend, clone BM8), anti-Ly6C-APC (BD Biosciences, clone AL-21), anti-CD64-BV421 (Biolegend, clone X54-5/7.1), anti-CD206-APC (Biolegend, clone C068C2), anti-CD11c-BV510 (Biolegend, clone N418), anti-CD3-BV421 (Biolegend, clone 17A2), anti-CD4-FITC (Biolegend, clone RM4-5), anti-CD4-PE-Cy5 (Biolegend, clone RM4-5), anti-CD8-PE (Biolegend, clone 53-6.7), anti-B220-PE-Cy7 (BD Biosciences, clone RA3-6B2), anti-Ly6G-PerCP (Biolegend, clone 1A8), anti-GFP-APC (Biolegend, clone FM264G).

Basophils were identified as CD45^{int/high}, Lin1⁻(Ter119;CD4;CD19;Ly6G;CD11c), CD117⁻, CD49b⁺, IgE⁺. Mast cells were gated as CD45⁺, Lin1⁻, CD117⁺, IgE⁺ CD45⁺. cells. Inflammatory monocytes were identified as Lin2⁻ (CD90;B220;CD49b;NK1.1;Ly6G;Ter119), CD11b⁺, F4/80⁻, Ly6C^{high}. Antiinflammatory macrophages were identified as CD45⁺, Lin2⁻, CD11b⁺, F4/80⁺, Lv6C^{low} CD64⁺. Dendritic cells were identified as CD45⁺, CD11b⁺, Ly6G⁻, CD11c⁺. CD4⁺ T cells were gated as CD45⁺, CD3⁺, CD4⁺ cells. CD8⁺ T cells were identified as CD45⁺, CD3⁺, CD8⁺ cells. B cells were gated as CD45⁺, CD3⁻, B220⁺ cells. Neutrophils were identified as CD45⁺, CD11b⁺, Ly6G⁺.

Quantitative real-time PCR

The following primers were used: 18s: GCAATTATTCCCCATGAACG (fwd), GGCCTCACTAAACCATCCAA (rev); Tnfa: CCCTCACACTCAGATCATCTTCT (fwd), GCTACGACGTGGGCTACAG (rev); IL6: GATGCTACCAAACTGGATATAATC (fwd), GGTCCTTAGCCACTCCTTCTG (rev); IL13: GACTGCAGTCCTGGCTCTTGC (fwd), TGAGTCCACAGCTGAGATGCC (rev); Ifng: AGGAACTGGCAAAAGGATGGT (fwd),

10

TCATTGAATGCTTGGCGCTG (rev); II12b: TGGGAGTACCCTGACTCCTG (fwd), GAGGAACGCACCTTTCTGGT (rev); Arg1: TTTTAGGGTTACGGCCGGTG (fwd), CCTCGAGGCTGTCCTTTTGA (rev); Hdc: GATCAGATTTCTACCTGTGG (fwd), GTGTACCATCATCCACTTGG (rev); Vcam1: TCTTACCTGTGCGCTGTGAC (fwd), ACTGGATCTTCAGGGAATGAGT (rev); Ccl5: TGCAGAGGACTCTGAGACAGC (fwd), GAGTGGTGTCCGAGCCATA (rev); IL18: CAAACCTTCCAAATCACTTCCT (fwd), TCCTTGAAGTTGACGCAAGA (rev); IL33: GGTGAACATGAGTCCCATCA (fwd), CGTCACCCCTTTGAAGCTC (rev); IL4: ATCCTGCTCTTCTTCTCGAATGT (fwd), GCCGATGATCTCTCTCAAGTGATT (rev).

Supplemental figures

0.5

0.0

pre

d2

F

Е

pre

d2

0

Supplemental figure 1. Basophil markers and potential upstream mediators for basophil activation after MI.

(**A-D**) Gene expression plot of basophil-specific markers (Mcpt8, Fcer1a, CD200r3 and IL-33-receptor II1rI1) in leukocyte subpopulations on d7 after MI in the UMAP embedding. (**E-G**) mRNA expression of basophil chemoattractants IL-33, Ccl-5 and IL-18 in either healthy hearts or infarct tissue 2 days after MI (n = 4-5). Error bars show mean \pm SD. Asterisks signify significant differences using two-tailed Student's t test. (**H** and **I**) Levels of blood basophils based on flow cytometric analysis and serum IgE levels under steady state and 2 days after MI in mice. (**J** and **K**) Representative histograms of FccRI and IgE expression on blood basophils obtained from both healthy and infarcted mice based on flow cytometry. IgE occupancy was defined as IgE mean fluorescence intensity (MFI) normalized to FccRI MFI (n = 3-5). Error bars show mean \pm SD. Asterisks significant difference using two-tailed Student's t test

Supplemental figure 2. Effect of MAR-1 administration under both steady state and post-MI conditions.

(**A-D**) Validation of basophil depletion via MAR-1 antibody treatment in blood under steady state (A), in blood 2d post-MI (B and C) and spleen 2d post-MI (D) (*n* = 4). Statistics was performed by using two-tailed Student's t test. (**E**) Gating strategy for identification of cardiac macrophages and dendritic cells under baseline conditions. after both, IgG and MAR-1 treatment. (**F** and **G**) Absolute cell numbers of cardiac

Ly6C^{low}F4/80⁺CD64⁺ macrophages and cardiac CD11b⁺CD11c⁺ dendritic cells (DCs). (**H**) Gating strategy for identification of cardiac mast cells 2 days post-MI. (**I**) Mast cell levels assessed 2 days after MI (n = 4). Statistics was performed by using two-tailed Student's t test. Error bars show mean ± SD.

Supplemental figure 3. Histopathological and echocardiographic evaluation of basophil-depleted mice after acute MI in mice.

(A) Representative TTC stainings of hearts from IgG-treated and MAR-1-treated mice 24h after LAD ligation. The dotted line indicates the infarcted area. (B) Representative M-mode echocardiographic images of IgG-treated and MAR-1-treated mice 4 weeks after MI induction or sham intervention. (C and D) Quantification of left ventricular (LV) lumen area and scar thickness 4 weeks after MI (n = 4-8). Error bars show mean ± SD. Asterisks signify significant differences using two-way ANOVA (C) or two-tailed Student's t test (D). (E) Representative histological sections stained with Masson's trichrome 4 weeks after MI. The scale bar indicates 500 µm.

Supplemental figure 4. Reconstitution of basophils in BasoKO mice by adoptive transfer of basophil-enriched CD49b⁺ splenocytes.

(A) Schematic and validation of the basophil transfer model. IL-3/IL-3-antibody-treated CD45.1 mice served as donors. Following negative selection of Nk1.1⁻ cells from splenic single cell suspensions, basophils were enriched by using CD49b⁺ magnetic beads. Basophil-enriched cells were adoptively transferred into CD45.2 BasoKO mice on day 1-3 after experimental MI. The scheme was created with BioRender. (B) Representative images of flow cytometric analysis of cell suspensions after positive selection step. Approximately 30-40% of all cells were found to be CD117⁻ CD49b⁺FccRI⁺IgE⁺ basophils. (C) Frequencies of CD45.1 + cells were assessed 4 days after MI via flow cytometric analysis of hearts from CD45.2 BasoKO mice after transfer of basophil-enriched cells or MI only.

Supplemental figure 5. Basophils can be localized in close proximity to macrophages and influence macrophage polarization after MI.

(**A-D**) mRNA expression of Vcam-1, M1 markers IL-12 β and Interferon- γ , and M2 marker/mediator Arginase I, in infarct tissue homogenates of WT and BasoKO mice 3 days after LAD ligation (n = 8-9). Error bars show mean ± SD. Asterisks signify significant differences using two-tailed Student's t test. (**E**) mRNA expression of Histidin-Decarboxylase (Hdc) in infarct tissue homogenates of WT and BasoKO mice 3 days after LAD ligation. (**F**) Gene expression dot plot of Hdc gene based on single-cell RNA sequencing analysis. Mean expression is depicted as color intensity, while

dot size represents fraction of cells expressing Hdc. **(G)** Multiplex immunohistochemistry of murine infarct tissue with staining of Mcpt8 (green), IL-4 (blue), IgE (orange), CD163 (violet), and DAPI (white). Arrowheads mark Mcpt8⁺ cells. Scale bar indicates 20 µm.

Supplemental figure 6. Generation and characterization of mice with basophilspecific IL-4/IL-13 deficiency.

(**A**) Schematic of the generation of mixed bone marrow chimeras. Mcpt8Cre-4get BM was mixed at a 4:1 ratio with BM from either WT mice (CD45.1) or 4-13KO mice and injected intravenously into lethally irradiated recipient mice. (**B-D**) Number of basophils

in blood from Baso^{WT} or Baso^{4-13KO} mice and percentage of CD45.1+ GFP- cells within basophils. (**E-J**) Number of neutrophils, monocytes, DCs, CD4⁺ T cells, CD8⁺ T cells, and B cells in blood from Baso^{WT} or Baso^{4-13KO} mice under steady state (n = 5). Error bars show mean ± SD. For statistics, two-tailed Student's t test was performed. (**K** and **L**) Quantification of total cell numbers per mg heart tissue of CD45⁺ cells or CD45⁺CD11b⁺ cells 4 days post-MI in Baso^{WT} and Baso^{4-13Ko} mice (n = 8-9). (**M**) Representative images of flow cytometric analysis of heart tissue of indicated groups 4 days post-MI.

Supplemental figure 7. Effect of IPSE/ α -1 on monocyte/macrophage polarization and cardiac remodeling.

(**A** and **B**) Release of IL-4 (A) and IL-13 (B) of basophils after in vitro stimulation with IL-33, IPSE/alpha-1 and IL-33+IPSE/alpha-1 (n = 8). Error bars show mean ± SD. Asterisks signify significant differences using repeated-measures one-way ANOVA with Sidak's multiple comparisons test. (**C** and **D**) Expression of CD206 and CD209 on LPS-activated monocytes cultured with supernatant obtained from either control basophils (cultured with medium only) or basophils stimulated with IPSE/alpha-1. Quantification was based on flow cytometric analysis. Error bars show mean ± SD. Asterisks indicate significant differences using two-tailed Student's t test. (**E**) Representative histological sections depicting scar area 4 weeks after MI. The scale

bar indicates 500 μ m. (**F**) Quantification of scar thickness 4 weeks after MI (*n* = 4-6). Error bars show mean ± SD. Asterisks signify significant differences using one-way ANOVA with Tukey's multiple comparisons test.