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Introduction
Eight herpesviruses infect humans (Table 1). With the exception 
of varicella-zoster virus (VZV), all human herpesviruses spread 
through saliva, mucosal or skin lesions, or genital secretions and 
infect oropharyngeal or genital tract mucosal epithelial cells or 
skin. VZV is spread by the respiratory route or by contact with vesic-
ular lesions and infects epithelial cells in the oropharynx, upper 
respiratory tract, or conjunctiva. Three human alphaherpesvirus-
es, herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) and VZV, 
establish latency in sensory neurons and reactivate from neurons 
to infect epithelial cells in the mucosa or skin, resulting in a vesicu-
lar rash. Three human betaherpesviruses, human cytomegalovirus 
(HCMV), human herpesvirus-6 (HHV-6), and HHV-7, establish 
latency in mononuclear cells and can reactivate to cause visceral  
disease. Two human gammaherpesviruses, EBV and Kaposi’s  
sarcoma–associated herpesvirus (KSHV), establish latency in B 
cells. These two viruses are associated with several B cell and epi-
thelial cell malignancies in which tumor cells are latently infected 
with EBV (Hodgkin lymphoma, Burkitt lymphoma, gastric carci-
noma, nasopharyngeal carcinoma) or KSHV (primary effusion 
lymphoma, multicentric Castleman disease, Kaposi sarcoma). 
Many herpesviruses (e.g., HSV, EBV, HCMV, HHV-6, HHV-7) are 
shed in the saliva or genital secretions almost daily, usually in the 
absence of symptoms, indicating that latency is a dynamic process 
and that reactivation occurs very frequently. Unlike the other her-
pesviruses, VZV usually reactivates only once in a lifetime. Mathe-
matical models for HSV (1) and EBV (2) reactivation from chronic 
carriers estimate that reactivation is a frequent event, but only a 
very small percentage of latently infected cells reactivate at any 
one time. The frequent shedding of most herpesviruses in salivary 
or genital secretions indicates that despite neutralizing antibody 
and potent cellular immunity, most of the herpesviruses have 
evolved mechanisms to evade these immune responses.

Principles of herpesvirus latency
The success of the herpesviruses is largely due to their ability to 
establish latency and reactivate. Herpesvirus latency requires the 
virus to establish a persistent infection in cells without destruc-
tion by the immune system. Viral DNA is stably maintained in the  
nucleus of the cell as multiple copies of circular episomes (Figure 
1A). Herpesviruses that maintain latency in dividing cells (e.g., 
HCMV, EBV, KSHV) express viral proteins when the cells divide 
that tether the viral genome to chromosomes so that episomes 
are partitioned to daughter cells (ref. 3 and Figure 1B). In latently 
infected cells, the virus must limit expression of viral proteins so 
as to avoid detection by the immune system. Many herpesviruses 
express long noncoding viral RNAs that contribute to establish-
ment of latency (4). For example, alphaherpesviruses express long 
noncoding RNAs that are transcribed antisense to other viral RNAs 
expressed during lytic infection (Figure 1C). Herpesvirus genomes 
associate with histones in a complex termed chromatin both to 
regulate gene expression and to avoid damage by host proteins (5). 
Genes normally expressed during virus lytic replication are silenced 
by heterochromatic histone modifications (e.g., histone H3 lysine 
9 [H3K9] and H3K27 trimethylation) during latency, while other 
genes are activated by euchromatic marks (e.g., H3K4 methylation 
and H3K9 acetylation) (Figure 1D). Polycomb repressive complex 
2, which methylates histone H3K27, is important for latency of 
HSV, HCMV, EBV, and KSHV. KAP1 (also known as TRIM28) binds 
to viral chromatin and recruits a histone H3K9-methyltransferase 
to silence HCMV, EBV, and KSHV lytic genes to maintain latency. 
The epigenetic organization of the viral genome is also modulated  
by chromatin insulators, consisting of DNA sequences and the 
corresponding DNA-binding proteins and chromatin-modifying 
proteins, which function as boundaries to separate active (euchro-
matic) and inactive (heterochromatic) regions of the genome and 
thus help to regulate latency and reactivation (ref. 5 and Figure 
1E). Herpesvirus microRNAs (miRNAs) that are expressed during 
latency inhibit expression of lytic genes (6–8) and regulate expres-
sion of host cell genes to evade recognition of latently infected cells 
by the host immune system (Figure 1F). Finally, viruses must be 
able to reactivate from latency to infect other hosts. This is usu-
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LAT results in HSV-2 with a reactivation frequency similar to that 
of HSV-1 (12). Thus, HSV-2 with an HSV-1 LAT reactivates nearly 
as frequently as wild-type HSV-1 in the rabbit eye model and with 
a frequency similar to that of wild-type HSV-1 in the genital tract 
of guinea pigs. LAT has also been implicated in protecting latently  
infected neurons from apoptosis (13) and in contributing to  
modification of histones to regulate expression of latent and lytic 
genes (see below).

VZV expresses two viral transcripts in neurons during latency: 
the VZV latency-associated transcript (VLT) and ORF63 RNA (14). 
The VLT is a positional homolog of the HSV LAT introns in that it 
is antisense to VZV ORF61, the ortholog of HSV ICP0. Thus, the 
alphaherpesviruses have likely evolved a similar mechanism to 
regulate latency. While one isoform of VLT is expressed in latently 
infected ganglia, multiple different spliced forms of VLT (but not 
the isoform in latency) are expressed during lytic infection. Trans-
fection of cells with plasmids expressing VLT and VZV ORF61 
shows that VLT RNA represses transcription of ORF61. VLT pro-
teins are detected during lytic infection, but not during latency. 
VZV ORF63 RNA is also expressed during latency, although at 
lower levels than VLT. While prior studies suggested that ORF63 
protein may be expressed during latency, more recent studies 
indicate that the protein may only be expressed during lytic infec-

ally initiated by host cell signaling in response to external signals 
(e.g., UV irradiation triggering the DNA damage response or allo-
geneic stimulation) or internal signals (e.g., apoptosis, hypoxia, or 
metabolic stress) that activate expression of immediate-early virus 
genes to initiate lytic replication.

Features of latency of  human herpesviruses
Alphaherpesviruses. HSV-1, HSV-2, and VZV establish latency in 
nonreplicating cells (neurons), where the viral genome circularizes  
to form an episome. These viruses express only a few RNA tran-
scripts, none of which are translated during latency. Since neurons 
do not divide, it is not necessary to express a viral protein to tether 
the viral genome to chromosomes during cell division of latently 
infected cells.

The primary HSV-1 latency-associated transcript (LAT) is an 
approximately 8.3-kb long noncoding RNA that is spliced to form 
stable 2.0 and 1.5 introns with lariat structures (9). The LAT has 
a neuron-specific enhancer that promotes its expression in the 
nucleus of latently infected cells. Multiple functions have been 
attributed to LAT in regulation of viral latency. The two LAT 
introns are expressed antisense to the HSV ICP0 immediate- 
early gene. Deleting the LAT from HSV reduces the frequency of 
reactivation (10, 11), and replacing the HSV-2 LAT with the HSV-1 

Table 1. Features of latency and replication of human herpesviruses

Subfamily Virus Site of latency Primary sites of 
replication

Proteins expressed 
during latency

RNAs expressed during 
latency

Disease in primary 
infection

Disease in 
immunocompromised 

host
Alphaherpesvirus HSV-1 Neuron Epithelial cells in and 

around mouth and 
genital area

None LATs, miRNAs Cold sores,  
genital herpes

Visceral infections 
(esophagitis,  

retinitis, hepatitis, 
encephalitis, etc.)

HSV-2 Neuron Epithelial cells in and 
around genital area

None LATs, miRNAs Genital herpes,  
neonatal herpes

Visceral infection 
(esophagitis, retinitis, 

hepatitis,  
encephalitis, etc.)

VZV Neuron Epithelial cells in skin None VLT, IE63, miRNAs Chickenpox Visceral infection 
(disseminated rash, 

pneumonitis, hepatitis, 
encephalitis, etc.)

Betaherpesvirus HCMV CD34+ myeloid 
progenitors, CD14+ 

monocytes

Epithelial cells of  
salivary glands,  

kidneys, genital tract

None; IE1x4?A Multiple RNAs of all 
classes at low level, 

miRNAs

Infectious 
mononucleosis, 

congenital HCMV in 
neonates 

Visceral infection 
(pneumonitis,  

hepatitis, retinitis,  
colitis, etc.)

HHV-6 CD34+ stem cells, 
monocytes

Epithelial cells of  
salivary glands, 

lymphocytes

None reported Not reported Roseola; infantile  
fever and seizures

Encephalitis

HHV-7 CD4+ cells Epithelial cells of  
salivary glands

None reported Not reported Roseola; infantile fever 
and seizures

Encephalitis

Gammaherpesvirus EBV B cells Epithelial cells in 
oropharynx

EBNA1A, others in tumorsB EBERs, miRNAs,  
others in tumorsB

Infectious  
mononucleosis

B cell lymphoma

KSHV B cells Epithelial cells  
in oropharynx,  

genital tract

LANAA, others in  
tumorsC

miRNAs, others in  
tumorsC

Fever and rash Primary effusion 
lymphoma, Kaposi 

sarcoma, multicentric 
Castleman disease

AEBV EBNA1 and KSHV LANA are expressed in latently infected cells that divide; IE1x4 has been postulated to have a similar role. BDifferent combinations 
of EBV EBNA1, EBNA2, EBNA3, EBNA-LP, LMP1, and LMP2 are expressed in latently infected EBV-associated tumor cells (see text). CDifferent combinations 
of KSHV v-cyclin, v-FLIP, LANA1, K12, v-GPCR, vIL-6, and vIRFs are expressed in latently infected KSHV-associated tumor cells (see text).
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decreased, correlating with a reduction in histone 
acetylation at the LAT promoter, while the lytic 
genes are expressed with a corresponding increase 
in acetylated histones (21, 22). During reactivation, 
an activator complex containing the cellular coacti-
vator HCF1 coupled with histone demethylases and 
methyltransferases is recruited to HSV immediate- 
early gene promoters and functions to remove 
repressive H3K9 methylation and install activat-
ing H3K4 trimethylation marks (23). HCF1, which 
resides in the nucleus of most cells and activates 
HSV immediate-early gene transcription during  
lytic infection, is sequestered in the cytoplasm of 
sensory neurons (the site of HSV latency) but is rap-
idly transported to the nucleus during the initiation 
of HSV reactivation (24). Expression of the viral 
immediate-early transcriptional activator VP16, 
which interacts with HCF1, may be involved in pro-
moting complete reactivation (25).

During VZV latency, the viral immediate- 
early ORF63 promoter, which is expressed during 
latency, is maintained in a euchromatic state with 
acetylated H3K9, while the promoters for two  
lytic genes (ORF36 and ORF14) are in a heteroch-
romatic state without acetylation at H3K9 (26). 
In contrast, during lytic infection, the ORF14, 
ORF36, ORF62, and ORF63 lytic gene promot-
ers have euchromatic chromatin with acetylated 
H3K9 (26) and trimethylated H3K4 (27). Similar-
ly, transfection experiments indicate that, in the 
presence of the immediate-early ORF62 activa-
tor protein, the immediate-early promoter has 
increased H3K4me3 and decreased H3K9me, 
while in the absence of ORF62 protein there is 
increased methylation of H3K9 (23). Thus, the 
same histone modifications of latent and lytic 
genes in HSV are used in VZV.

Chromatin insulators, which function as a 
boundary to separate regions of active and inactive 

chromatin, help to modulate HSV latency. A regulatory element 
(CTRL2) within HSV LAT that binds to CCCTC-binding factor 
(CTCF) as part of a chromatin insulator is important for establish-
ment and maintenance of HSV latency (28), and/or reactivation of 
virus from latency (29). Furthermore, depletion of CTCF increases  
reactivation from latency (30). Additional CTCF binding sites are 
located at the boundary of the unique long and the internal long 
repeat regions of the HSV genome and are occupied by CTCF on 
latent viral genomes (31). CTCF binding sites have not been ana-
lyzed during VZV latency.

Viral and host cell miRNAs may also be important in modu-
lating latency (32, 33). HSV expresses at least 29 miRNAs (34, 35). 
miRNAs expressed during latency are located within the LATs 
and in a region that crosses the junction of the HSV long and short 
repeat regions. HSV miR-H3 and miR-H4 target ICP34.5 (31, 32), 
which regulates HSV neurovirulence, and miR-H2 reduces expres-
sion of the ICP0 immediate-early transactivating gene (7, 36). 
miR-H6 inhibits ICP4, the major immediate-early transcriptional 

tion (15). Thus, like HSV, no proteins are thought to be expressed 
during VZV latent infection.

Changes in the epigenetic character of viral genomes are 
important for modulating latency and reactivation. During HSV 
latency, the LAT region has marks of transcriptionally active 
euchromatin, including acetylated histone H3 lysine 9 and 14 
(H3K9ac, H3K14ac) (16). In contrast, immediate-early lytic genes 
(ICP0, ICP4, ICP27) have marks of transcriptionally repressed 
heterochromatin with H3K9 and H3K27 trimethylation, H3K9 
dimethylation (17), and histone hypoacetylation (18). LAT enhances  
H3K27 trimethylation (17) and H3K9 dimethylation (18) to silence 
lytic gene expression and maintain lytic gene chromatin in a heter-
ochromatic state. LAT also reduces the amount of H3K4 dimethyl-
ation to reduce expression of lytic genes (18).

The CoREST transcriptional corepressor complex, contain-
ing histone deacetylases (19), and Polycomb repressive complex 
2, which methylates H3K27 (20), both inhibit expression of HSV 
lytic replication genes. When HSV reactivates, LAT expression is 

Figure 1. Features of herpesvirus latency. (A and B) Latent herpesvirus genomes are main-
tained in the nuclei of cells as circular episomes (A) and in dividing cells the viruses express 
proteins during cell division that partition the episomes to daughter cells (B). (C) Alphaher-
pesviruses encode long noncoding viral RNAs during latency that are transcribed antisense 
to viral genes expressed during lytic infection. (D) Latent herpesvirus DNA genomes are 
associated with histone proteins; genes normally expressed during virus lytic replication 
are silenced by methylation or other modifications of their histone tails during latency. 
(E) Chromatin insulators containing DNA sequences and the corresponding DNA-binding 
proteins and chromatin-modifying proteins act to separate regions of active euchromatin 
and repressed heterochromatin to regulate latency. (F) Herpesvirus microRNAs (miRNAs) 
produced during latency degrade or inhibit expression of virus lytic genes or host cell genes.
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viral genes. Thus, with more sensitive assays and using naturally 
infected cells, HCMV latency appears to involve low-level expres-
sion of a large number of viral genes. Long noncoding RNAs, 
including RNAs 4.9 and 2.7, have also been detected in naturally 
and experimentally infected cells with latent HCMV (46). RNA4.9 
interacts with the HCMV major immediate-early promoter and 
the Polycomb repressive complex, resulting in increased levels of 
H3K27me3, which represses lytic gene expression (46). RNA2.7 
inhibits apoptosis (47).

Macrophages latently infected with HHV-6 in vitro were 
reported to express four HHV-6 latency-associated transcripts 
both within and in the same orientation as the coding region of the 
HHV-6 immediate-early 1 and 2 genes; however, the latency RNA 
transcriptional start sites and the 5′ noncoding regions differed 
from that of the immediate-early genes (48). HHV-6 U94 RNA 
was detected in peripheral blood mononuclear cells from healthy 
donors, suggesting that the gene might be expressed during laten-
cy (49). Analysis of a cell line containing integrated HHV-6A DNA 
showed no expression of viral genes (50).

As with other herpesviruses, the HCMV genome becomes 
associated with histones shortly after infection of cells. Using a cell 
line that becomes persistently infected with HCMV as a    model 
for latency, lytic genes (e.g., UL32, UL54, UL83) were associated 
with repressive H3K9 methylation during latency (51). In con-
trast, during lytic replication, HCMV lytic genes are associated 
with H3K9ac, indicative of euchromatic chromatin. Similarly, the 
HCMV major immediate-early promoter is not associated with 
acetylated histones in naturally infected CD34+ cells, but becomes 
associated with acetylated histone H4 upon HCMV reactivation 
(52). The promoter for LUNA, which is expressed during latency in 
naturally infected cells, is associated with acetylated histones (53), 
while the HCMV major immediate-early promoter is associated 
with repressive H3K9me3, heterochromatin protein 1, and Daxx, 
which recruits histone deacetylases to repress the promoter (54). 
Polycomb repressive complex 2 methylates histone H3K27, result-
ing in H3K27me3, which suppresses expression of HCMV lytic rep-
lication genes (55). KAP1 (TRIM28) is also involved in repression of 
lytic gene expression by enhancing levels of repressive H3K9me3; 
phosphorylation of the KAP1 protein by mTOR or knockdown of 
KAP1 interrupts latency (56). In HHV-6, the chromosomal inte-
grated genome is enriched in heterochromatin with H3K9me3 and 
H3K27me3, consistent with silencing of gene expression (50).

Other mechanisms contributing to HCMV latency include 
cytoplasmic sequestering of the HCMV pp71 immediate-early 
gene transcriptional activator (57) and the formation of a CTCF 
insulator in the first intron of the HCMV major immediate-early 
gene that functions to repress immediate-early gene expression 
(58). Reactivation of HCMV from latency involves expression of 
major immediate-early genes from an intronic promoter rather 
than the canonical immediate-early promoter (59). A sequence in 
the first intron of the HCMV major immediate-early gene binds 
to CTCF, and this binding inhibits expression of HCMV immedi-
ate-early gene expression and lytic replication (58).

HCMV encodes at least 26 miRNAs, and at least 12 are 
expressed in latently infected cells (60). These miRNAs regulate 
viral and cellular gene expression and likely promote maintenance 
of latency. HCMV miR-112-1 targets HCMV immediate-early 

activator (7, 8). Cellular miRNAs also may play a role in maintain-
ing latency. miR-138, a neuron-specific miRNA, represses expres-
sion of HSV ICP0 to promote latency (33). Expression of viral  
miRNAs decreases with HSV reactivation.

At least 24 miRNAs have been identified in VZV by next- 
generation sequencing; many of these miRNAs map to a region of 
the genome (between ORF56 and ORF63) that includes the VLT 
and ORF63 latency genes (37). Some miRNAs are antisense to 
ORF62, the major immediate-early gene, and one is antisense to 
the ORF63 latency gene. Seven have been confirmed by reverse 
transcriptase PCR in VZV-infected cells. One miRNA upstream of 
the VZV ORF63 latency gene regulates expression of ORF63 RNA.

Betaherpesviruses. HCMV replicates in fibroblasts and epithelial 
cells and establishes latency primarily in CD34+ myeloid progenitor 
cells and CD14+ monocytes. The virus persists in and is shed from 
epithelial cells in the salivary glands. HHV-6 infects CD4+ T cells 
as well as B cells, T cells, NK cells, monocytes, and neural cells; the 
virus establishes a latent infection in CD34+ stem cells and mono-
cytes, and a persistent infection in salivary glands. HHV-7 infects 
CD4+ T cells, where it establishes a latent infection; the virus also 
infects epithelial cells in the lungs and salivary glands.

While HCMV, HHV-6, and HHV-7 are maintained as episomes 
in the nucleus of latently infected cells, about 1%–2% of healthy 
people have HHV-6 integrated into their chromosomes near the 
subtelomeric/telomeric junction and the virus is transmitted 
through the germline (38, 39). At present, the clinical significance 
of integrated HHV-6 DNA is unknown.

HCMV, HHV-6, and HHV-7 establish latency in replicating 
cells; therefore, viral episomes require a protein for tethering to 
the host chromosome during cell division. An HCMV protein, 
IE1x4, is expressed in HCMV latently infected CD34+ hematopoi-
etic progenitor cells, interacts with the terminal repeat element of 
the viral DNA, and is required for maintenance of the viral genome 
(40). This protein is postulated to be involved in tethering the 
HCMV genome to host cell chromosomes during viral replication, 
similar to the function of EBNA1 and LANA1 in EBV and KSHV, 
respectively. The crystal structure of the dimeric form of the  
carboxyl-terminal domain of the HHV-6A IE2 protein is similar to 
the structure of the EBV EBNA1 and KHSV LANA DNA-binding 
domains (41); however, it is unknown whether HHV-6A IE2 has 
a function similar to that of EBNA1 or LANA during replication of 
latent viral DNA.

Studies to determine latent gene expression in betaherpesvi-
ruses have been hampered by the very low frequency (1:10,000 to 
1:100,000) of latently infected cells. The use of targeted probes to 
sequence RNA from human peripheral blood mononuclear cells 
or CD34+ hematopoietic stem cells showed low-level expression 
of a large number of HCMV transcripts of all kinetic classes (42). 
A separate study using RNA-Seq of naturally infected human tis-
sues as well as single-cell RNA-Seq from in vitro latently infected 
CD14+ monocytes also found low levels of multiple RNA lytic tran-
scripts with an increase in transcripts that are typically expressed 
late in infection (43). While earlier studies using experimental 
models for latent HCMV infection reported that only a few genes, 
predominantly US28, UL81-82 antisense transcript (LUNA), 
UL111A (viral IL-10), and UL138, were expressed during latency 
(44, 45), more recent studies have reported expression of many 
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v-cyclin are expressed (67). In Kaposi sarcoma, LANA1, kaposin A, 
v-cyclin, v-FLIP, and viral G protein-coupled receptor (v-GPCR) 
are expressed. In multicentric Castleman disease, LANA1, v-FLIP, 
vIRF3, vIRF1, and vIL-6 are expressed. In addition to tethering the 
viral genome to host chromosomes during cell division, LANA1 
inhibits Rb and p53, and upregulates survivin, c-myc, and β-catenin  
(73). Kaposin A is important for B cell transformation (74).  
The viral IRFs inhibit virus activation of IFN-α. vIRF1 inhibits 
MHC class I surface expression, while both vIRF1 and vIRF3 
inhibit apoptosis (75). v-FLIP inhibits apoptosis and autophagy 
and activates NF-κB. v-Cyclin stimulates cell cycle progression 
from the G1 to the S phase and is not inhibited by cellular pro-
teins, resulting in constitutive cell proliferation (74). v-GPCR 
activates Akt, NF-κB, and JNK. vIL-6 is a B cell growth factor, 
upregulates VEGF, and inhibits apoptosis (76). Thus, these pro-
teins are important for cell proliferation, cell cycle transition, 
and preventing apoptosis.

As with other herpesviruses, the Polycomb repressive complex 
2 plays a role in maintaining EBV latency by enhancing levels of 
repressive H3K27 trimethylation associated with lytic genes (77). 
In KSHV, LANA1 promotes silencing of lytic genes by recruiting 
Polycomb repressive complex 2 to viral genomes during latency 
(78). The complex dissociates from immediate-early and early 
genes during reactivation (79). KAP1/TRIM28 also contributes to 
both EBV and KSHV latency. In EBV, SUMOylated KAP1/TRIM28 
binds to EBV OriLyt (the origin for lytic replication) and to  
immediate-early gene promoters, which suppresses immedi-
ate-early gene expression and promotes latency (80). EBV LMP1 
promotes the binding of KAP1 to these sites, while KSHV LANA1–
mediated SUMOylation of KAP1/TRIM28 enhances its binding to 
KSHV lytic promoters to facilitate latency (81, 82).

Binding of CTCF to EBV and KSHV genomes modulates virus 
latency. CTCF binds to EBV DNA in the region of the first intron 
of LMP2A and to EBV DNA in the 3′-untranslated region of LMP1 
that is important for expression of latency genes. Deletion of 
the CTCF binding site results in reduction of LMP1 and LMP2A 
mRNAs, with a corresponding increase in LMP2B mRNA and loss 
of a stable DNA loop interaction between the EBV origin for virus 
replication (oriP) and LMP control regions (83). CTCF also binds 
to EBV DNA at the site of the EBNA1 Qp promoter, allowing it to 
function during latency (84). EBV DNA also has a CTCF binding 
site between oriP and the EBNA1 Cp promoter; binding of CTCF 
suppresses expression from the Cp promoter (85). In KSHV, CTCF 
binds to about 25 sites on the viral genome, and the protein acti-
vates KSHV lytic gene expression (86). The CTCF binding site 
at the 3′ end of the latency region of KSHV DNA is important for  
formation of a stable DNA loop between the latency region and the 
ORF50 immediate-early gene of KSHV (87).

EBV encodes at least 44 miRNAs (88). The EBV BHRF1 miRNAs  
are expressed during infection and in type 3 latency when all the 
latent proteins are expressed. The EBV BART (Bam H1 A fragment 
rightward transcript) miRNAs are expressed in all forms of virus 
latency. miR-BART20-5p interacts with the 3′-untranslated region 
of the two immediate-early genes of EBV, BZLF1 and BRLF1, to 
inhibit their expression (89). BART miRNAs target multiple viral 
genes, including EBV LMP1 and LMP2, as well as several lytic 
genes. BART miRNAs also target at least 36 cellular genes, which 

mRNA to inhibit expression of the immediate-early protein (61). 
Host cell miRNA hsa-miR-200 regulates the HCMV immedi-
ate-early promoter and promotes latency (62).

While miRNAs that are antisense to the immediate-early 
genes of the virus have been detected in HHV-6B–infected cells 
undergoing lytic replication (63), and a miRNA has been identified 
in HHV-6A that targets the HHV-6A immediate-early U86 gene 
(64), the role of these miRNAs in latency has not been determined.

Gammaherpesviruses. EBV establishes latent infection as an 
episome primarily in memory B cells in healthy people. The virus 
also establishes latent infections in B cells in Hodgkin or Burkitt 
lymphoma, in T cells or NK cells in patients with certain lympho-
mas or chronic active EBV, and in epithelial cells in nasopharyn-
geal and gastric carcinomas. Full-length EBV integrates into the 
genome in some lymphomas and nasopharyngeal carcinomas (38). 
KSHV establishes latency as an episome in B cells in healthy people 
and is latent in endothelial cells in Kaposi sarcoma and in B cells in 
primary effusion lymphoma and multicentric Castleman disease.

EBV EBNA1 tethers latent viral episomes to host chromosomes 
so that the viral genome is transmitted to daughter cells when  
latently infected B cells divide. KSHV LANA1 has a similar role in 
tethering the viral genome to host chromosomes during cell division.

Four primary patterns of latency have been reported for 
EBV, based on viral gene expression. Type 0 latency is observed 
in healthy carriers in whom only EBV-encoded RNAs (EBERs) 
and EBV miRNAs are expressed in circulating virus-infected 
B cells. EBERs are noncoding, nonpolyadenylated RNAs that 
interact with RNA-binding proteins, regulate PKR (which may 
be important for transformation) (65), and interact with PAX5 
to bind to the terminal repeat of latent viral genomes (66). The 
other patterns of EBV latency are observed in virus-associated 
malignancies and include expression of the viral RNAs described 
above along with selected EBV proteins. Type 1 latency is seen in 
Burkitt lymphoma tissue with expression of EBNA1, while type 2 
latency is observed in nasopharyngeal carcinoma and Hodgkin 
lymphoma with expression of EBNA1, LMP1, and LMP2. Type 
3 latency is observed in EBV-transformed cells in culture and 
in patients with infectious mononucleosis and posttransplant 
lymphoproliferative disease with expression of all eight viral 
latency proteins (EBNA1, EBNA2, EBNA3A, EBNA3B, EBNA3C, 
EBNA-LP, LMP1, and LMP2) (67). In addition to its role in main-
taining EBV episomes during cell division, EBNA1 upregulates its 
own expression and inhibits apoptosis (68). EBNA2 is a function-
al homolog of the Notch receptor and upregulates several viral 
(LMP1 and LMP2) and cellular proteins (CD21, CD23, c-myc) 
to increase B cell proliferation and inhibit apoptosis (69). The 
EBNA3s regulate EBNA2 and transactivate cellular genes (70). 
LMP1 is a functional homolog of CD40 and upregulates multi-
ple proteins (NF-κB, JNK, STATs, BCL-2, A20, LFA-1, LFA-3) to 
promote B cell survival and inhibit apoptosis (71). LMP2 inhibits 
virus reactivation and activates β-catenin and Akt signaling path-
ways, contributing to epithelial cell transformation (72).

Studies of latency in KSHV have focused on tumor cells, 
including those from primary effusion lymphoma, Kaposi sar-
coma, and multicentric Castleman disease. In KHSV latently 
infected primary effusion lymphoma cells, LANA1, kaposin 
A, viral interferon regulatory factor 3 (vIRF3), v-FLIP, and  
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are involved in histone demethylation, MAP kinase signaling, 
immune responses, miRNA production, apoptosis, tumor suppres-
sion, NF-κB signaling, and Wnt signaling. Recent studies indicate 
that the EBV BART miRNAs inhibit the activity of antiviral CD4+ 
and CD8+ cells (90, 91). Several cellular miRNAs are induced by 

EBV in latently infected B cells, including miR-
155, which is critical for viral latency (92).

KSHV expresses 25 mature miRNAs that 
originate from the latency region of the genome 
within or between kaposin and v-FLIP. These 
miRNAs inhibit apoptosis, NK cell activity, 
p21 (which normally arrests the cell cycle), 
and interferon signaling; the miRNAs increase 
NF-κB signaling and regulate B cell differenti-
ation (93). In addition, miRNA-K12-9-5p (94) 
and miRNA-K12-7-5p (95) inhibit translation of 
the immediate-early Rta protein and therefore 
block viral lytic replication.

EBV also encodes circular RNAs that orig-
inate from spliced transcripts in the BART 
region (96). These circular RNAs are expressed 
in Burkitt lymphoma, nasopharyngeal carcino-
ma, and other EBV lymphomas, indicating that 
they are expressed in different forms of EBV 
latency. Circular RNAs have also been detected  
from the LMP2 genes that are expressed in 
Burkitt and other EBV lymphoma cell lines. 
KSHV encodes a circular RNA expressed in 
latently infected primary effusion lymphoma 
and Kaposi sarcoma cells that originates from 
the vIRF4 gene, and encodes a circular RNA in 
multicentric Castleman disease and Kaposi sar-
coma cells from the KSHV PAN/K7.3 locus (96). 
The function of these circular RNAs in latency 
is unknown at present.

Reactivation from latency
Reactivation allows herpesviruses to be trans-
mitted to uninfected people, ensuring survival 
of the virus over time. Many herpesviruses are 
reactivated during periods of extreme stress 
such as during septic shock (97); clinically sig-
nificant reactivation is common with immune 
suppression and loss of T cell immune surveil-
lance. Reactivation of HSV is associated with 
UV radiation, stress, fever, and trauma to the 
nerves. HCMV reactivation can be induced by 
stimulation with allogeneic cells (98), which 
partially explains the strong association of 
HCMV reactivation with transplantation, espe-
cially with graft-versus-host disease. Differ-
entiation of HCMV-infected monocytes into 
macrophages or dendritic cells, induced by 
proinflammatory cytokines, is also associated 
with HCMV reactivation. Similarly, differentia-
tion of B cells to plasma cells, with expression of 
the transcriptional repressor BLIMP1 and tran-

scription factor XBP-1, reactivates EBV from B cell latency (99).

Implications for therapy
Antiviral drugs inhibit virus replication, but they have no effect on 
latent viral DNA. Identification of viral proteins expressed during 

Figure 2. New approaches to killing latently infected cells or inhibiting reactivation from 
latency. (A) Herpesvirus-specific endonucleases cleave viral DNA, and DNA repair enzymes rejoin 
the DNA that can result in inability to maintain latency or reactivate from latency. (B) Treatment 
of EBV latently infected cells with bortezomib or histone deacetylase (HDAC) inhibitors activates 
virus replication and production of the viral protein kinase, which phosphorylates ganciclovir, 
resulting in cell death (panel adapted with permission from ref. 115. © the American Society of 
Hematology). (C) Supplemental glutamine increases IFN-γ–producing HSV-specific T cells that 
reduce virus reactivation from ganglia. (D) Inhibition of histone methyltransferase or histone 
demethylase converts euchromatin to repressed heterochromatin and reduces immediate-early 
gene expression to inhibit reactivation. Glanciclovir, GCV; glanciclovir monophosphate, GCV-P; 
glanciclovir triphosphate, GCV-PPP; protein kinase, PK.
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latency has been exploited to treat malignancies associated with 
latent herpesviruses. Virus-specific T cells that recognize EBV 
latency proteins have been used to kill lymphoma cells in patients 
(100). A small-molecule inhibitor of EBV EBNA1 inhibited growth 
of EBV-positive B cell and epithelial cell tumor xenografts in mice 
(101). A heat shock protein 90 inhibitor, which reduced the levels 
of EBNA1 and LMP1 in EBV-infected cells in vitro, lowered the per-
centage of virus-infected cells in the blood of a patient with chronic 
active EBV disease (102). Downregulation of a multidrug-resistant 
transporter protein during HCMV latency allowed a chemothera-
peutic drug, vincristine, to effectively kill latently infected cells (103).

Engineered HSV-specific endonucleases (Figure 2A and ref. 104) 
or CRISPR/Cas (105) can cleave viral episomes in latently infected 
cells, and when DNA repair enzymes join the DNA ends, mutations 
in the viral genome may prevent latency or replication. One strategy 
to kill EBV lymphomas used induction of virus reactivation with a his-
tone deacetylase inhibitor, arginine butyrate, which results in expres-
sion of the viral protein kinase; this was followed by treatment with 
ganciclovir, which the kinase phosphorylated to form a toxic molecule 
(ref. 106 and Figure 2B). Other drugs such as the proteasome inhibi-
tor bortezomib can also induce virus reactivation; a study combining 
bortezomib with ganciclovir was performed in patients with EBV 
lymphomas (107). Compounds that inhibit reactivation from latency 
may also be useful. Mice given supplemental glutamine had higher 
numbers of HSV-specific IFN-γ–producing CD8+ T cells in their gan-
glia; glutamine was shown to reduce reactivation of HSV-1 and HSV-2 
in mice and guinea pigs, respectively (Figure 2C and ref. 108). Inhib-
itors of histone methyltransferases (109) or histone demethylases 
(110, 111) resulted in enhanced levels of heterochromatin associated 
with viral genomes and blocked HSV and HCMV immediate-early 
gene expression (Figure 2D and ref. 111).

Future directions
Our knowledge of the mechanisms of herpesvirus latency is 
still evolving. Over 30 years after the discovery of the first RNA 
associated with herpesvirus latency (112), the mechanisms by 
which HSV LAT contributes to latency are still unclear. Further 
identification and characterization of viral RNAs and proteins 
expressed during herpesvirus latency and, in the case of KSHV 
and EBV, RNAs and proteins important for cell transformation, 
should lead to novel therapeutics to target latency and virus-as-
sociated malignancies. miRNAs expressed during latency in 
herpesviruses and circular RNAs identified in EBV and KHSV 
latency are especially promising targets for therapeutics. Func-
tional screening of miRNAs,   similar to the approach used to 
promote a specific phenotype in cells with a library of miRNA 
mimics (113), may help to identify viral and cellular miRNAs 
critical for herpesvirus latency. With the recent development of 
miRNA inhibitors, including miRNA mimics and anti-miRNAs, 
which are in clinical trials for human diseases (114), modulation 
of latent miRNAs or circular RNAs may be effective to inhibit 
herpesvirus latency.
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