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Epigenetic landscape of Treg 
development and function
Immunomodulatory Tregs, a CD4+ T 
cell subset, are essential for maintain-
ing organ homeostasis and suppressing 
immunopathology (1, 2). The FOXP3 tran-
scription factor specifies the identity and 
suppressive function of Tregs. Notably, 
mice harboring a mutation in the Foxp3 
gene exhibit the scurfy phenotype, suc-
cumbing to multiorgan lymphoprolifera-
tive inflammation approximately 4 weeks 
after birth (3). Loss-of-function mutations 
in the human FOXP3 gene result in the 
autoimmune syndrome immune dysreg-
ulation, polyendocrinopathy, enteropathy 
X-linked (IPEX) (4). Treg dysfunction also 
contributes to the pathogenesis of organ 
allograft rejection and common auto-
immune syndromes, including systemic 
lupus erythematosus and systemic sclero-
sis (5, 6). Conversely, cancer immunother-
apy seeks to inhibit Treg suppressive func-
tion to uncheck effector T cell–mediated 
killing of malignant cells (7).

A permissive epigenetic landscape 
tightly regulates lymphoid cell specifica-

tion programs to allow the recruitment 
of cell type–specific transcription factors. 
The reversibility and cue-sensing nature 
of epigenetic phenomena, such as DNA 
methylation and histone modifications, 
shape chromatin topology to regulate gene 
expression and allow context-dependent 
functional adaptability while maintaining 
lineage stability. Indeed, genome-wide 
studies have shown differing DNA meth-
ylation and histone modification patterns 
that distinguish Treg from conventional T 
cell development (8). Along with FOXP3 
expression, Tregs independently require 
a specific DNA hypomethylation pat-
tern at regulatory elements of key genes 
involved with their suppressive function 
(8, 9). DNA hypomethylation of enhancers 
at the Foxp3 locus plays a critical role in 
supporting Treg differentiation, expan-
sion, and stability. Moreover, the global 
chromatin organizer Satb1 binds genomic 
regions known as super-enhancers, which 
are enriched for active enhancer elements 
that control Treg signature genes, includ-
ing Foxp3 (10). Upon Satb1 binding, chro-
matin loop formation ensues, allowing 

distal regulatory elements to interact and 
recruit transcription factors and epigen-
etic modifiers that activate and stabilize 
the Treg-specific gene regulatory network. 
In addition, similarly to conventional 
CD4+ T cells, Tregs can acquire effector 
phenotypes (e.g., Th1, Th2, and Th17) in 
response to environmental cues. Accord-
ingly, both permissive and repressive epi-
genetic marks in Tregs associate with the 
expression of effector subset-specific tran-
scription factors, cytokines, and chemok-
ines tailored to mitigate distinct types of 
inflammation.

Collectively, Tregs require a highly 
specific epigenome that specifies their 
identity, yet remains adaptable to Th- 
polarizing stimuli, in order to promote 
the myriad functions Tregs are capable 
of exerting. Therefore, it is not surprising 
that deregulation of different epigenomic  
writers, readers, and erasers results in 
loss of Treg identity and function to cause 
human disease.

Chromatin repressive 
complexes and Treg biology
In the current issue of the JCI, Xiong 
and colleagues explored the role of the 
epigenome-modifying complex REST 
corepressor 1 (CoREST) in Treg develop-
ment and function (11). This large mul-
timeric complex serves as a scaffold for 
the binding of transcription factors and 
epigenome-modifying enzymes, includ-
ing histone deacetylases (HDAC1 and 
HDAC2) that remove acetyl groups from 
histone tails as well as lysine-specific 
histone demethylase 1A (LSD1), which 
catalyzes histone 3 lysine 4 mono- and 
di-methyl (H3K4me1/2) demethylation. 
Histone deacetylases have been previous-
ly implicated in Treg development and 
function. In a mouse model, Treg-specific 
deletion of HDAC3 resulted in impaired 
Treg suppressive capacity and lethal auto-
immunity. Gene expression profiling of 
these HDAC3-deficient Tregs revealed 
enrichment of proinflammatory cytokines, 
chemokines, and adhesion-related recep-
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Tregs require specific epigenetic signatures to induce and maintain their 
suppressive function in the context of inflammation and cancer surveillance. 
In this issue of the JCI, Xiong and colleagues identify a critical role for 
the epigenetic repressor REST corepressor 1 (CoREST) in promoting Treg 
suppressive transcriptional and functional programs. Pharmacologic 
inhibition and genetic loss of CoREST in Tregs impaired organ allograft 
tolerance and unleashed antitumor immunity via epigenetic activation 
of effector T cell programs. We propose that exploiting epigenetic control 
mechanisms will further the translation of Treg-based therapeutics to target 
inflammatory and malignant disorders.
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tors (12). Conversely, Treg-specific dele-
tion of HDAC9 or HDAC6 enhances Treg 
suppressive function (13). These findings 
demonstrate the complexity of epigene-
tic networks and underscore the need for 
detailed data sets describing the func-
tion of key epigenetic regulators such as  
CoREST in a Treg-specific context.

Although the CoREST complex has 
a well-established role in regulating the 
hematopoietic system during embry-
onic development, its role in modulat-
ing Treg identity and function remains 
largely unexplored. To that end, Xiong 
and colleagues found that under stimu-
lating conditions, Treg-specific deletion 
of CoREST (also known as Rcor1) led to 
phenotypic and functional reprogram-
ming, with upregulation of proinflam-
matory transcription factors, cytokines, 
and chemokine receptors, such as T-bet, 
STAT1, IL-2, IFN-γ, and CXCR3. Their 
findings revealed that loss of CoREST 
decreased recruitment of repressive his-
tone-modifying enzymes to the promot-
ers of genes encoding these molecules, 
resulting in increased deposition of per-
missive histone marks (e.g., H3K9Ac and 
H3K4me2) and enhanced proinflam-
matory gene expression. Using adoptive 
transfer of Rcor1-deficient Tregs, they 
went on to determine that disruption 
of the CoREST complex results in sub-
stantial loss of Treg-mediated suppres-
sion of effector responses in murine 
models of tumor immunity and cardiac 
allograft tolerance. Indeed, Rcor1-defi-
cient Tregs promoted antitumor activity 
and failed to induce long-term survival 
of cardiac allografts. Moreover, pharma-
cologic inhibition of the CoREST com-

Figure 1. Pharmacologic and epigenome 
editing approaches to Treg immunotherapy. 
(A) Epigenetic writers and erasers define the 
epigenetic landscape and control transcription. 
(B) Ex vivo modification using pharmacologic 
or epigenome editing to alter the epigenetic 
landscape could generate Tregs that are fitted 
to a particular clinical context. Th1 Tregs could 
be infused to treat malignant disorders, and 
highly suppressive Tregs could be infused to 
treat inflammatory disorders such as systemic 
lupus erythematosus, organ allograft rejection, 
or graft-versus-host disease. HAT, histone acet-
yltransferase; TET, ten-eleven translocase (DNA 
demethylase); KMT, lysine methyltransferase; 
KDM, lysine demethylase.
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We envision that the next frontier in 
Treg-based immunotherapy will involve 
pharmacologic epigenetic reprogram-
ming or epigenetic editing of specific 
loci to create Treg transcriptional and 
functional programs fitted to a clinical 
context. CRISPR-mediated epigenetic 
reprogramming of Treg-associated sup-
pressive molecules and expansion of Th1 
Tregs could be leveraged to treat malig-
nant diseases. Conversely, manipulation 
of epigenetic regulatory networks con-
trolling the expression of suppressive Treg 
effector molecules such as CTLA-4, PD-1, 
and OX40 could permit a more robust 
suppressive response during autoim-
mune diseases, organ allograft rejection, 
and graft-versus-host disease (Figure 1). 
Going forward, we believe that a detailed 
understanding of the molecular networks 
that underlie and stabilize Treg function 
will further the translation of epigenome- 
targeted therapies to the bedside.
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