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Abstract  

 

Chronic pancreatitis (CP) is considered an irreversible fibroinflammatory pancreatic disease. 

Despite numerous animal model studies, questions remain about local immune characteristics 

in human CP. We profiled pancreatic immune cell characteristics in control organ donors and 

CP patients that included hereditary and idiopathic CP undergoing total pancreatectomy with 

islet auto-transplantation. Flow cytometric analysis revealed a significant increase in the 

frequency of CD68+ macrophages in idiopathic CP. In contrast, hereditary CP showed a 

significant increase in CD3+ T cell frequency, which prompted us to investigate the T cell 

receptor b (TCRb) repertoire in CP and controls. TCRb-sequencing revealed a significant 

increase in TCRb repertoire diversity and reduced clonality in both CP groups versus controls. 

Interestingly, we observed differences in Vb-Jb gene family usage between hereditary and 

idiopathic CP and a positive correlation of TCRb rearrangements with disease severity scores. 

Immunophenotyping analyses in hereditary and idiopathic CP pancreata indicate differences in 

innate and adaptive immune responses, which highlights differences in immunopathogenic 

mechanism of disease among subtypes of CP. TCR repertoire analysis further suggests a role 

for specific T cell responses in hereditary versus idiopathic CP pathogenesis providing new 

insights into immune responses associated with human CP. 

 

Funding: This study was supported in part by NIH grant DK105263 (AH), NPF 2019 Research 

Grant (BL), and HHMI (MMD, DML). 
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Introduction 

Chronic pancreatitis (CP) is an inflammatory disease of the pancreas and remains a major 

source of morbidity in the US and Europe (1). CP is associated with an irreversible destruction 

of the pancreas parenchyma and fibrosis accompanied by severe abdominal pain, which leads 

to poor quality of life (2, 3). Alcohol and smoking are established as major etiological factors in 

adult CP. Still genetic variants and other idiopathic factors account for up to 20% of the cases, 

and especially genetic variants are a common risk factor in pediatric CP (4–7). Despite its 

prevalence, cost and societal impact, there is no active approved therapy or early diagnostic 

marker for CP. Inflammation is a known hallmark of CP and its pathogenesis, as demonstrated 

by studies of pancreas immune cell infiltrations in the human (8–10) and experimental models 

(11, 12). While many animal models have been used to study CP pathogenesis, questions 

remain regarding the translational accuracy of preclinical studies. Based on experimental model 

studies, the assumption in the field has been that the immune responses in CP are uniform or 

similar regardless of the etiology of CP, however this remains to be proven in human disease. 

Human studies are hampered by lack of tissue access, and as a result many studies rely 

on the analysis of peripheral blood mononuclear cells, which might not necessarily reflect local 

immune responses. To address this gap in the field, we collected pancreas tissues from CP 

patients undergoing total pancreatectomy with islet auto-transplantation (TPIAT) (13–15) and 

deceased organ donors without known history of pancreatic diseases undergoing islet isolation. 

Unexpectedly, we found different types of CP had distinct immune cell compositions and T cell 

receptor b (TCRb) repertoires such as, TCRb gene usages and rearrangements. Interestingly, 

TCRb rearrangement counts in CP patients had a positive correlation with disease severity 

scores. These findings implicate potential differences in immune mechanisms underlying 

hereditary versus idiopathic CP and their association with CP disease pathogenesis.  

Results and Discussion 



   
 

 4 

Pancreas tissues from CP patients (n=40) undergoing TPIAT and non-CP deceased organ 

donors (n=9) undergone similar islet extraction were collected consecutively from the University 

of Minnesota and University of California, San Francisco respectively. Subjects’ characteristics 

were comparable between the two groups except for age, weight and body mass index 

(Supplemental Table 1). Twenty-seven hereditary and thirteen idiopathic CP patients without 

known history of diabetes were included in the study. Significant differences were observed in 

age, gender, BMI, gross fibrosis severity score, and cigarette smoking history between two CP 

groups (Supplemental Table 2). Human pancreas tissues were used for different immune 

analyses including flow cytometry, Luminex assay and TCRb-seq (Supplemental Figure 1, A-B).  

As expected, deposits of CD45 (pan-leukocyte marker)-positive cells were significantly 

higher in CP compared to control pancreas tissues (Figure 1A). Given the increased leukocytes 

in CP, we sought to profile the immune subsets infiltrating the pancreas of CP compared to 

controls using flow cytometry. Innate and adaptive immune subset characterization included the 

identification of macrophage subsets, T cell subsets, mast cells, NK cells and NKT cells 

(Supplemental Figure 2). Interestingly, the frequency of CD3+ T cells was significantly 

increased in CP compared to controls. Even though the absolute count of CD68+ macrophages 

is increased in CP, their proportion within live CD45+ leukocytes was significantly reduced in CP 

compared to controls (Figure 1B) potentially due to the increased proportion of T cells. Among 

CD68+ cells, the percentage of CD68+CD11c- cells significantly increased in CP while the 

proportion of CD68+CD11c+ cells was significantly reduced in CP compared to controls 

(Supplemental Figure 3A). The CD68+CD11c+ population was enriched for cell expressing high 

levels of human leukocyte antigen-DR (HLA-DR) and CD11b, likely representing homeostatic 

functions such as antigen presentation and phagocytosis. Inversely, CP tissues appear to have 

expanded CD68+CD11c- cells that were negative or low for HLA-DR and CD11b expression 

(Supplemental Figure 3B).  
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Among the CP cases undergoing TPIAT in this study, a substantial proportion had 

hereditary/genetic mutations such as PRSS1, SPINK1, CFTR and CTRC, and the second most 

common etiology was classified as idiopathic CP without particular causes identified. When we 

compared these two cohorts, the frequency of CD68+ cells was significantly higher in idiopathic 

as compared to hereditary CP (Figure 1C, left). Among the CD68+ cell populations, the 

proportion of CD68+ CD11c- cells was significantly increased in idiopathic CP as compared to 

controls while CD68+ CD11c+ cell frequency was significantly lower in the both CP groups 

compared to controls (Figure 1C, middle and right). Our group previously reported anti-

inflammatory macrophages (M2) are predominant in mouse CP and surgically resected 

pancreas specimens from human CP (11). Consistent with previous results, M2 macrophages 

were predominant in the CD68+CD11c- population of idiopathic and hereditary CP whereas no 

significant difference was observed between frequencies of M1 and M2 in the CD68+CD11c+ 

population of both CP groups (Supplemental Figure 4, A-B). Thus, even within the two CP 

subtypes, there are notable differences in immune cell composition with an expansion of CD68+ 

cells in idiopathic CP compared to hereditary CP.  In addition to the cellular alterations, 

differential expression of cytokines and chemokines was prominent between hereditary and 

idiopathic CP by Luminex assay (Figure 1D).  Consistent with the increased portion of CD68+ 

macrophages in idiopathic CP compared to hereditary CP, CCL7 (monocyte chemotactic protein 

3), was the most significantly increased analyte in idiopathic versus hereditary CP (Figure 1E). 

Other significant differences included increased ratio of M2 (IL4,IL13) to M1 (TNFA) cytokine 

expression in idiopathic versus hereditary CP (Supplemental Figure 4C), higher innate (IL21, 

IL23) and Th2 (IL5, IL9, IL31) cytokines in idiopathic CP, whereas IL6 and LIF were higher in 

hereditary CP. Taken together with the macrophage profiles above, these cytokine profiles 

suggest idiopathic CP is locally enriched in innate immune cells, macrophages compared to 

hereditary CP.  



   
 

 6 

Next, we compared the composition of the T cell population. Among CD3+ T cells, the 

percentage of CD4+ T cells was increased in CP while that of CD8+ T cells was significantly 

diminished in CP compared to controls (Figure 2A and Supplemental Figure 5A). Unlike the 

macrophage findings above, hereditary CP had a significantly higher proportion of T cells 

compared to controls or idiopathic CP (Figure 2B, left). Upon stratifying the T cells, there was a 

trend towards increased proportions of CD4+ T cells in both CP versus controls whereas CD8+ 

T cell frequency was significantly reduced in both CP compared to controls (Figure 2B, middle 

and right and Supplemental Figure 5B). Interestingly, CD4+ T cell subpopulations including T-

BET+(Th1), GATA3+(Th2), RORgt+(Th17/22) and CD25+FOXP3+(Treg) were more expanded 

in hereditary CP than idiopathic CP as shown in average frequencies of different T cell 

subpopulations (Figure 2C) suggesting functionally active CD4+ helper T cell subsets may play 

critical roles in the pathogenesis of hereditary CP. Typically CP is characterized by a fibrotic 

condition with injury-driven inflammatory responses (16). Innate and adaptive immune cells 

contribute to pathologic fibrosis in different diseases (17, 18). We examined fibrosis of 

pancreatic tissues by trichrome staining. Both CP tissues showed a significantly higher 

proportion of fibrotic tissue area compared to controls (Supplemental Figure 6, A-B). Although 

there was a trend towards higher fibrosis in hereditary CP, this was not statistically significant 

between the two CP groups (Supplemental Figure 6C).  

As a result of flow cytometry analyses with pancreatic immune cells, the ratio of CD3+ T 

cell frequency to CD68+ macrophage frequency in the pancreas was significantly higher in 

hereditary versus idiopathic CP (Figure 3A). Hereditary CP had a distinct immune cell 

distribution with greater T cell proportion, whereas idiopathic CP had expanded CD68+ 

macrophages suggesting unique immune mechanisms underlying the different etiology of CP 

groups. TCR clonality and diversity have been found to affect a wide variety of disease 

conditions including malignancy and autoimmune disorders (19–21). Given the differences in 

immune profiling among CP pancreata, we hypothesized there might be alterations of the TCR 
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repertoire in pancreas infiltrating T cells. To investigate this, genomic DNA (gDNA) was isolated 

from pancreas tissues of control donors and CP patients. The TCRb repertoire was examined 

by sequencing the third complementarity determining region 3 (CDR3) loop of TCRb and 

adjacent regions, which is typically the contact region for engaging antigenic peptides 

(Supplemental Table 3, Figure 3B). The number of total T cells and unique rearrangements 

were significantly increased in CP groups, especially in hereditary CP compared to controls 

(Figure 3C and Supplemental Figure 7A). TCR template diversity index was also significantly 

higher in both CP groups (Figure 3D and Supplemental Figure 7B left). However, productive 

clonality of CP groups, especially in idiopathic CP, was significantly lower than controls (Figure 

3E and Supplemental Figure 7B right). These results implicate the increased number of T cells 

in CP was not due to the clonal expansion of infiltrating T cells but rather due to the increased 

variety of T cell clonotypes. Next, we compared CDR3b length distribution as an indicator of 

TCR repertoire change and T cell response to antigens (22, 23). Both CP had a tendency to be 

skewed toward shorter CDR3b length than controls although the mean length was not 

significantly different (Supplemental Figure 7C).  

Next, we looked at the pattern of TCRb V/J paired gene family usage among CP groups 

and identified shared V/J gene combinations among the groups. The pattern of V/J gene family 

usage was comparable across groups, and the dominant top 3 Vb gene families were TRBV7, 6 

and 5 in all groups (Figure 4A). The mean frequency of Vb gene paired with Jb2 showed 

differentially used Vb gene families including TRBV10, 19 and 23 between hereditary and 

idiopathic CP (Figure 4B) whereas a comparison of the Vb-Jb1 gene family showed TRBV5 as a 

differentially used gene family between two CP groups (Supplemental Figure 7D). We next 

sought to further analyze Vb/Jb gene combinations in CP compared to controls and found 9 

significantly differentially used Vb/Jb gene combinations (Figure 4C). Further, inter-repertoire 

homology between patient repertoires was examined by identifying shared CDR3bs 
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representing identical amino acid composition and length (Figure 4D). We found 20 identical 

CDR3bs shared by at least 4 subjects, with some CDR3bs shared only among hereditary CP 

patients, or only CP patients, and others shared by controls and CP. It is noteworthy that the 

number of productive, functional TCR rearrangements positively correlates with the disease 

severity score in CP (Figure 4E). As the disease severity score is measured by considering 

multiple factors such as, calcification, cysts, parenchyma color, blood content, fat content, 

fibrosis and ductal destruction, a positive correlation between the disease severity score and the 

functional TCR clonotype counts implicates the importance of relationship between the TCRb 

repertoire and CP disease progression. Overall, TCR-seq data presented an imprint of distinct 

antigenic repertoires in CP compared to controls as well as distinct mechanisms underlying 

disease-associated pancreas infiltrating T cells in different subtypes of CP.      

Here we uncovered distinct local immune characteristics in different subtypes of human 

CP, hereditary and idiopathic CP. Our study did not include alcohol etiology of CP, due to the 

insufficient number of these patients that undergo TPIAT (24). Remarkably, an increased T cell 

frequency was found in hereditary versus idiopathic CP whereas a higher proportion of 

macrophage population was observed in idiopathic CP compared to hereditary CP. This finding 

indicates distinct immune subpopulation-mediated mechanisms may exist in different etiology-

driven CP pathogenesis. Since we could only access and analyze the tissue at the time of 

TPIAT, it is possible that differences in disease duration and extent of histological changes may 

influence distinct immune responses in the different CP groups.  Although we find no significant 

difference in tissue fibrosis between the two CP groups that we utilized for our immune analysis, 

it would be worth to examine immune responses over time during CP progression if repeat 

tissue biopsies become safe and available in CP patients in the future. Our data also brings into 

light the translational aspect of animal model studies. Most if not all CP models are not 

genetically driven, and interestingly the immune profile of these models appears to resemble 
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that of idiopathic CP. It will be interesting in the future to compare the immune characteristics of 

genetically driven models with our findings in hereditary CP. Given the average disease severity 

score (pre-TPIAT clinical measurements) was significantly higher in hereditary CP compared to 

idiopathic CP and hereditary CP has a substantially increased risk of pancreatic cancer (6), our 

results further support potential roles of T cell-driven immune landscape in CP pathogenesis as 

well as its progression to malignancy. 

To our knowledge, this is the first report of high-throughput TCRb-seq with pancreatic T 

cells from CP patients. Our results unveil the TCR signatures of pancreas infiltrating T cells in 

hereditary and idiopathic CP by using gDNA isolation method, which has the least in vitro 

experimental manipulation. Our TCRb-seq data showed the increased T cell infiltrates in CP 

with increased functional TCR rearrangements and clonotype diversity suggesting multiple 

antigenic or polyclonal T cell infiltrates in CP, which might be a unique inflammatory feature of 

CP due to the exposure to a variety of insults over disease progression. We also identified 

CDR3b motifs uniquely shared among hereditary CP or both CP groups implicating locally 

infiltrating T cells respond to disease-specific antigen targets although further analyses will be 

necessary to prove this notion. A positive correlation between TCR rearrangement counts and 

the disease severity score found in this study suggests TCR repertoire might serve as a 

prognostic predictor for CP progression and severity. Since the higher severity score is 

associated with a decline in islet yield and lower insulin independence rate in CP patients who 

received TPIAT (25), the number of TCR rearrangements might be an additional predictor 

and/or pathologic indicator for poor outcome of islet transplantation.   

Overall, our studies show distinct immune characteristics in the pancreata of hereditary 

and idiopathic CP patients highlighting potential roles of identified immune subpopulations as 

key regulators of CP pathogenesis. Further in-depth single cell level analysis with 

antigen/epitope screening is likely to advance our understanding of disease pathogenesis 
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mechanisms for the different etiology-driven CP syndrome. Such information will contribute to 

developing the cellular and animal models needed to enhance our understanding of how the 

specific immune responses drive the pathogenesis of these subtypes of CP and developing CP 

subtype specific therapies. 
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Methods 

Detailed methods are provided in the Supplemental Methods. 

 

TCRb sequencing data. TCRb sequencing data have been deposited in Adaptive 

Biotechnologies’ immuneACCESS database (doi:10.21417/BL2020JCI; 

clients.adaptivebiotech.com/pub/lee-2020-jci). 

 

Study approval. For the use of human samples in research, the protocol was reviewed and 

approved by the University of Minnesota and Stanford University Institutional Review Board.  
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Figures and Figure legends 

 

Figure 1. CD68+ macrophages are predominant in idiopathic CP compared to hereditary 
CP. (A) Immunohistochemistry staining using pan-leukocyte marker, CD45 (400x). Scale 
bars:100µm. The percentage of CD45+ cell counts in total nuclei is presented as dot plot. (Mean 

±SD, Unpaired two-tailed t-test) (B) The frequency of CD3+ T cells and CD68+ cells in live CD45+ 
cells from control(n=8) and CP(n=24). (Mean ±SD, Unpaired two-tailed t-test was used) (C) Bar 
graphs show frequencies of CD68+ cells and their subsets in live CD45+ cells from control(n=8), 
hereditary(n=15) and idiopathic(n=9) CP. (Mean ±SD, One-way ANOVA with Tukey’s multiple 
comparisons test). (D) Heatmap represents expression levels of analytes with mean fluorescence 
intensity (MFI) values by the human 62 multiplex Luminex assay (T-test p<0.05, FDR<0.25). Fold 
change of the average expression in idiopathic versus hereditary CP for each analyte.  (E) 
Comparison of MFI values of most differentially regulated chemokine (CCL7) between 
hereditary(n=17) and idiopathic(n=8) CP (Mean ±SD, Unpaired two-tailed t-test was used,). 
*p<0.05, **p<0.01, ***p<0.001. 
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Figure 2. CD3+ T cells are more frequent in hereditary CP compared to idiopathic CP. (A) 
Representative plots of flow cytometry analyses of CD3+ T cells based on CD4 and CD8 
expression in control(n=8) and CP(n=24) (Mean ±SD). Bar graphs show frequency of CD4+ or 
CD8+ T cells in control and CP (Mean ±SD, Unpaired two-tailed t-test). (B) Bar graphs 
represent frequencies of total CD3+, CD4+, and CD8+ T cells among live CD45+ cells from 
control(n=8), hereditary(n=15) and idiopathic(n=9) CP. (Mean ±SD was used. One-way ANOVA 
with Tukey’s multiple comparisons test) (C) Pie charts represent the average frequencies of T-
BET+, GATA3+, RORgt+ and FOXP3/CD25+ T cell subsets in CD4, CD8 or DN (double 
negative) T cells from hereditary(n=15) and idiopathic(n=9) CP. *p<0.05, **p<0.01, ***p<0.001. 
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Figure 3. TCRb repertoire of pancreas T cells in control and CP. (A) Waterfall and dot plots 
show the ratio of CD3+ T cells to CD68+ macrophage frequency in control, hereditary and 
idiopathic CP. Identified gene mutations are indicated in individual hereditary CP patient. (Mean 

±SD was used. One-way ANOVA with Tukey’s multiple comparisons test) (B) Top 100 most 
frequent rearrangements in each sample are ranked from bottom (#1 most frequent clone) to top 
(#100 most frequent clone), and samples are listed by their clonality order from left to right. (C) 
The number of productive rearrangements, (D) TCR clonotype diversity (Mean normalized 
Shannon-Wiener diversity index), and (E) Productive clonality are shown. (C-E) Comparison 
between control(n=5) and CP(n=13). (Non-parametric Mann-Whitney U-test) *p<0.05, **p<0.01, 
***p<0.001. 
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Figure 4. Differences in TCRb repertoire of pancreas T cells between hereditary and 
idiopathic CP. (A) Circos plots indicate frequencies of Vb-Jb productive gene usage in 
controls(n=5), hereditary(n=7) and idiopathic CP(n=6). The width of the Vb-Jb pair band is 
proportional to the frequency in each group. (B) The comparison of Vb-Jb2 gene family usage 
among groups is displayed by mean frequencies. (Mean ± SEM, One-way ANOVA with Kruskal-
Wallis test, comparison between hereditary and idiopathic CP, *p<0.05) (C) Heatmap 
representing frequencies of Vb-Jb gene pairs which are significantly different (Significance 
Analysis of Microarray T-test, 90th percentile FDR=0) between control and CP. (D) Full length 
CDR3 amino acid sequences shared among at least 4 subjects. Numbers in squares represent 
the count of unique clonotypes in a subject’s repertoire with the CDR3b sequence indicated. (E) 
Correlation of the number of functional TCR rearrangements with CP disease severity score (n=13, 
Non-parametric Spearman correlation r=0.8361, p<0.001). 
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