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The increasing availability of DNA 
sequence data and access to sophisticated 
bioinformatic algorithms mean that an 
unbiased bioinformatics-based assess-
ment of the predicted impact of a genomic 
variant is rapidly available. The key point 
of this Viewpoint article is that such bioin-
formatic assessments are not equivalent 
to an expert diagnostic interpretation and 
may be misleading in both research and 
clinical care.

Prediction algorithms in 
genomic medicine
Recently published examples involving 
monogenic diabetes demonstrate how 
pathogenicity prediction algorithms can be 
very inaccurate for predicting which genet-
ic variants are likely causal of dominant 
monogenic disease (1–4). Here, we high-
light the potential pitfalls of variant classi-
fication and how they can be avoided.

A recent study used a bioinformatic 
algorithm to identify 88 “likely pathogen-
ic” monogenic diabetes variants in 80 indi-
viduals (8.6%) from a cohort of 1019 indi-
viduals with type 1 diabetes for 50 or more 
years (4). Application of the widely used 
American College of Medical Genetics and 
Genomics and the Association for Molecu-
lar Pathology (ACMG/AMP) standards and 
guidelines (5) classifies only nine of these 
88 variants as likely pathogenic or patho-
genic variants that would be reported by 
our clinical diagnostic laboratory as likely 
causative of the patients’ diabetes. This is 
not an isolated occurrence; other published 
research studies with an overreliance on 
in silico prediction tools have reported 
high levels (~90%) of false positive “likely 
pathogenic” monogenic diabetes variants 
(1–3). We have seen clinical diagnostic 
reports from laboratories in eight coun-

tries across Europe, Asia, the Middle East, 
and the United States that have similarly 
reported such variants as incorrectly likely 
causative of a patient’s diabetes.

Such great discrepancies occur not 
because the bioinformatic algorithm is 
wrong, or even based on incorrect scientif-
ic principles, but because variant interpre-
tation in the clinical setting requires other 
information in addition to the predicted 
effect upon protein function. This addi-
tional information includes knowledge 
regarding the gene-disease validity, mode 
of inheritance, appropriate allele fre-
quency cutoff thresholds, most clinically 
relevant transcript, and specificity of dis-
ease-causing variant type for each gene. 
Each of these is discussed in turn below 
and illustrated in Figure 1.

How should expert disease-
related knowledge guide the 
interpretation and reporting 
of genetic variants that might 
cause autosomal dominant 
monogenic disease?
Do not analyze genes without robust evi-
dence to support the gene-disease association 
(6), for example the BLK, KLF11, and PAX4 
genes, where current evidence is limited (7). 
Reputable clinical diagnostic laboratories 
do not include these genes in their mono-
genic diabetes testing.

Do not report a heterozygous variant 
in autosomal recessive disorders caused 
by biallelic variants (homozygous or com-
pound heterozygous). For example, biallelic 
pathogenic WFS1 variants cause Wolfram 
syndrome (8), a very rare disorder with 
an estimated prevalence of 1 in 500,000 
(heterozygous carrier frequency ~0.3%). 
WFS1 is an extremely polymorphic gene 
with rare (allele frequency < 0.1%) mis-

sense variants present in more than 2% of 
the population. Although there are reports 
of autosomal dominant diabetes caused 
by heterozygous WFS1 variants, these are 
extremely rare: one family with dominant-
ly inherited nonsyndromic diabetes (9) 
and five patients with neonatal- or infancy- 
onset diabetes, deafness, and cataracts 
(10). The finding of a rare heterozygous 
variant is therefore highly unlikely to be 
causative of monogenic diabetes and 
should not be reported.

Use appropriate gene-specific allele fre-
quency cutoffs in control population data to 
exclude variants that are too common to be 
highly penetrant disease-causing variants. 
For example, Ming-Qiang et al. found 
that PAX4 variants were the second most 
common cause of monogenic diabetes 
in their Chinese cohort (3), but the mis-
sense variants they reported are present in 
more than 1% of the East Asian population 
cohort (approximately 15,000 individuals) 
in the publicly available gnomAD database 
(https://gnomad.broadinstitute.org) (11). 
A tool is available (http://cardiodb.org/
alleleFrequencyApp) that allows the user 
to input inheritance mode, disease prev-
alence, penetrance, genetic heterogene-
ity (how many cases can be attributed to 
the gene), and allelic heterogeneity (how 
many cases can be attributed to a single 
variant) and calculate a maximum credible 
allele frequency (12). Using HNF1A mono-
genic diabetes as an example with monoal-
lelic inheritance, disease prevalence of 1 in 
10,000, allelic heterogeneity 0.16, genetic 
heterogeneity 0.35, and penetrance 0.95, 
the maximum tolerated pathogenic allele 
count is 2 in the gnomAD database (n = 
141,456). In a study of diabetic subjects 
from South India, Mohan et al. report-
ed HNF1A variants as the most common 
subtype of monogenic diabetes in their 
study (1). However, six of the 11 patients 
had variants that are too common in the 
European ancestry population in gnomAD 
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insulinism but does not cause monogenic 
diabetes. Other examples include the CEL 
gene, where only variants within the first 
or fourth repeats of the VNTR region are 
pathogenic (15); RFX6, where there is only 
evidence to implicate protein truncating 
variants (16); and the sole heterozygous 
PDX1 pathogenic variant, p.P63fs, known 
to cause monogenic diabetes through a 
dominant negative effect (17).

Exclude variants of uncertain signifi-
cance. These are variants lacking evidence 
for classification as pathogenic or likely 
pathogenic (5). Examples include novel 
missense variants in constrained genes 
where the amino acid substitution is pre-
dicted to have a deleterious effect upon pro-
tein function. Any individual has about 100 
variants of this type and should be treated 
as “uncertain until proven guilty” (18).

Why are errors in the 
interpretation of genetic 
variants common in both 
academic and diagnostic 
reports?
Misinterpretation of genetic variants is 
common, both in the published literature 
(19) and in reports from diagnostic lab-
oratories. Next-generation sequencing 
technology has facilitated both the ease 
and scale of genetic testing, but obtaining 
genotype data is far more straightforward 
than interpreting it correctly.

Academic studies often use bespoke 
criteria for defining pathogenicity rath-
er than applying guidelines developed to 
improve the quality and consistency of 
variant interpretation (5). Studies may 
base their variant classifications solely on 
in silico prediction of pathogenicity using 
tools such as REVEL or SIFT, PolyPhen, 
and MutationTaster that provide only sup-
porting evidence within the ACMG/AMP 
guidelines framework recommended for 
diagnostic reporting (5).

The availability of large variant data 
sets such as the gnomAD (11) has shown 
that many previously reported pathogenic 
variants are too common to be highly pene-
trant disease-causing variants (20). In some 
cases the evidence supporting gene-disease 
associations is no longer valid, but publica-
tions refuting these genes are rare and may 
consider only a single putative mutation 
(21, 22). The utility of population variant 
databases will increase as more exome and 

genic disease. Heterozygous pathogenic 
variants in the GCK, HNF1A, HNF1B, and 
HNF4A genes cause diabetes by reducing 
the level of functional protein, described 
as haploinsufficiency (7). For other mono-
genic diabetes subtypes there is a different 
disease mechanism, and heterozygous 
predicted loss-of-function (frameshift, 
nonsense, or essential splice site) vari-
ants are not causative. The KCNJ11 and 
ABCC8 genes encode the subunits of the 
β cell potassium channel. Activating vari-
ants prevent the channel from closing in 
response to raised blood glucose, and this 
prevents insulin release in patients with 
diabetes (13). Recessive loss-of-function 
KCNJ11 and ABCC8 variants cause the 
opposite phenotype of hyperinsulinism 
(14). This means that a heterozygous loss 
of function variant in one of these genes 
confers carrier status for congenital hyper-

(allele counts of 4 or more in approximate-
ly 60,000 Europeans) to be highly pen-
etrant variants causative of monogenic 
diabetes. It is essential to check the vari-
ant frequency in large variant data sets to 
avoid this type of misclassification.

Check that the most clinically relevant 
transcript is used. For example, there are 
multiple isoforms of the transcription fac-
tor HNF4A. For interpretation of monogen-
ic diabetes variants, the messenger RNA 
transcript that encodes the pancreatic iso-
form, rather than the liver isoform, should 
be used because there is a pancreatic spe-
cific promoter and exon 1 (NM_175914.4). 
Using this transcript, the HNF4A variant 
p.A417T Yu et al. reported (4) is noncoding 
(c.1063+120) and likely benign.

Identify the specific subtypes of hetero-
zygous mutations that result in the specific 
change of function required to cause mono-

Figure 1. Flowchart to illustrate key steps in the interpretation of genetic variants to identify auto-
somal dominant (likely) pathogenic variants for clinical diagnostic or research reporting. gnomAD, 
Genome Aggregation Database.
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ing genetic data and how failure to use this 
information will result in errors. Misdiagno-
sis not only affects the individual patients 
for whom testing is being performed but 
also can be amplified through predictive 
testing of relatives and use of incorrect vari-
ant classifications in databases and publica-
tions for interpretation of the same variant 
in other patients. Accurate genetic diagnosis 
is needed to predict disease prognosis and 
guide clinical management.
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genome sequence data are aggregated from 
a wider range of populations (11).

An overemphasis on bioinformatic  
tools for predicting pathogenicity has 
resulted in false positive assertions. 
Although curated databases of pathogenic/
likely pathogenic variants are widely used, 
the level of curating varies, and there are 
often insufficient data available for users  
to assess the provenance of individual vari-
ant pathogenicity assertions.

The prior probability of a monogen-
ic etiology is an important consideration 
for variant classification. For monogenic 
diabetes the prior probability will be low 
because only a small proportion of patients 
with diabetes have a monogenic subtype 
(3.6% of patients diagnosed at age ≤ 30 
years; ref. 23). Sensitivity/specificity esti-
mates for pathogenicity prediction tools 
like REVEL and PolyPhen are calculated 
from a set of pathogenic and benign vari-
ants in genes with a higher likelihood of a 
monogenic etiology (24).

How can the accuracy of variant 
interpretation and reporting  
be improved?
A number of initiatives are addressing var-
ious aspects of variant interpretation. For 
example the NIH-funded ClinGen resource 
(https://clinicalgenome.org/) includes 
curating of gene-disease validity evidence, 
the ClinVar variant repository, and expert 
groups developing gene- or disease-specif-
ic criteria for variant classification. Sharing 
genetic variant data on a global scale is an 
essential requirement (25).

The ACMG/AMP variant classifica-
tion guidelines have been adopted in many 
countries, and we recommend that all aca-
demic studies use these guidelines for vari-
ant classification (5). Genetic testing for 
clinical diagnosis should be performed in 
an accredited laboratory that participates 
in external quality assessment schemes 
that include variant classification.

Conclusion
We have entered a new era in which the 
generation of massive quantities of accu-
rate genetic data from an individual is no 
longer difficult, but the new challenge 
is how to correctly interpret this data. 
This Viewpoint emphasizes how disease- 
specific expertise is required when interpret-
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