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Cardiac tissue necrosis secondary to coronary artery occlusion is one of the most common and deadly sterile injuries in
developed countries. In this issue of the JCI, Rieckmann et al. identified and characterized antigen-specific CD4+ T helper
(Th) cells that developed in the context of myocardial infarction (MI) in mice. They showed that myosin heavy chain α
(MYHCA) is a dominant cardiac autoantigen and that T cells with T cell receptor (TCR) specificity to MYHCA acquired a
Treg phenotype when adoptively transferred into infarcted mice, which mediated a cardioprotective healing response.
Thus, Rieckmann et al. showed that an acute ischemic insult to the heart, which induces sterile inflammation, promoted,
rather than limited, protective T cell autoimmunity. Notably, strategies that support an antigen-specific Treg response may
limit the immune-inflammatory response and promote cardiac repair after acute MI.
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Myocardial infarction and the 
inflammatory response
Cardiovascular diseases (CVDs) represent 
a major cause of morbidity and mortality 
worldwide. Despite important advanc-
es in the treatment of acute myocardial 
infarction (MI) (1), the occurrence of MI 
still results in left ventricular dysfunction 
in up to 50% of patients and leads to the 
development of heart failure. Left ventric-
ular dysfunction is the strongest predictor 
of adverse outcome after acute MI and is 
associated with a 3- to 4-fold increase in 
mortality risk. In developed countries, 
heart failure is responsible for 1% to 2% of 
all health expenditures, which are mostly 
driven by repeated hospital admissions. 
Thus, there is a considerable need to better 
understand the remodeling process that 
follows an ischemic insult to the heart in 
order to limit its maladaptive components 
and promote a beneficial healing process.

Ischemic injury to the heart releases 
danger signals that alert and activate the 
immune system to mount a sterile inflam-

matory response. Both innate and adaptive 
immune mechanisms become involved 
at different stages after MI, and current 
knowledge suggests that suppressing 
excessive inflammation may limit infarct 
size and promote a better reparative (and 
potentially regenerative) response (2). 
But what do we know about heart-specific 
adaptive T cell responses, and how do the 
new results compare with and extend pre-
vious knowledge?

Adaptive T cell responses to 
myocardial injury
Self-reactive CD4+ T cells are normally 
deleted in the thymus by a process called 
negative selection. Intriguingly, CD4+ 
T cells with TCRs specific for some tis-
sue-restricted self-antigens, including 
cardiac myosin heavy chain α (MYHCA), 
escape central negative selection (1, 3) 
and may therefore make the respective 
tissues vulnerable to autoimmune attack. 
However, nondeletional tolerance mecha-
nisms maintain immune homeostasis. For 

example, under steady-state conditions in 
heart-draining mediastinal lymph nodes 
(medLNs), IRF8-dependent convention-
al DCs present cardiac MYHCA, which 
drives the expansion and differentiation 
of MYHCA-specific CD4+ T cells toward 
a protective Treg phenotype (4). Follow-
ing acute MI, the release of proinflam-
matory cytokines (e.g., HMGB1, IL-1α, 
IL-1β, IL-6), along with self-antigens, 
promotes DC maturation and activation 
and licenses MYHCA-specific T cells to 
adopt an (IL-17/IFN-γ) effector phenotype 
(4). Although this sequence may establish 
the background for increased suscepti-
bility to post-MI autoimmune attack (5), 
in the absence of an autoimmune-prone 
background, tolerance generally remains 
intact, and pathologic cardiac autoimmu-
nity fails to develop (6).

Rieckmann and colleagues studied 
the post-MI immune response in greater 
detail. They recovered MYHCA-specif-
ic CD4+ T (TCR-M) cells from MYHCA- 
TCR–transgenic mice and showed that 
after MI, the transferred cells improved 
heart function and promoted myocardi-
al healing (7). The authors proposed that 
in the post-MI setting, the (preferential) 
differentiation and expansion of MYHCA- 
specific CD4+ T cells toward Tregs were 
responsible for maintaining immune tol-
erance and providing cardioprotective 
effects. This conclusion was based on 
an experiment in which the adoptively 
transferred TCR-M cells that proliferated 
and accumulated in the heart (but not in 
medLNs) displayed a higher percentage 
of Foxp3+ cells in mice with MI compared 
with sham-operated mice (7). In another 
mouse experiment, adoptively transferred 
conventional T helper (Tconv) cells con-
verted to Tregs in situ within the heart and 
gave rise to most of the Foxp3+ TCR-M car-
diac cells. However, the percentage (50%) 
of TCR-M Tconv cells that acquired Foxp3+ 
expression in the ischemic heart matched 
that of the sham-operated mice (7). Thus, 
the cardiac environment per se, whether 
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ed and maintained locally within a hos-
tile ischemic, necrotic, and inflammatory 
microenvironment. The study by Rieck-
mann et al. reassuringly suggests that such 
Treg-promoting therapies may effectively 
treat acute MI, given the apparent extraor-
dinary ability of the cardiac environment to 
preserve, maintain, or even promote Treg 
differentiation, even in the presence of ster-
ile injury and danger signals. Nevertheless, 
combination therapies that limit effector 
immune mechanisms (16, 18) may be nec-
essary to ensure optimal results.

Finally, future studies should inves-
tigate why the cardiac environment is so 
unique in promoting Treg differentiation. 
In this regard, it is interesting to note that 
fibroadipogenic progenitors in skeletal 
muscle produce IL-33 to regulate muscle 
Treg homeostasis (19) and promote mus-
cle repair (20). Cardiac fibroblasts are 
major sources of IL-33, whose production 
and release are further promoted by bio-
mechanical stimuli and cell death (21). 
The hypothesis that IL-33 could, therefore, 
at least in part, favor local differentiation, 
activation, or maintenance of cardiac 
Tregs merits further exploration.
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