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Th17 cells in AKI
Acute kidney injury (AKI) affects 2%–5% 
of hospitalized patients and increases the 
risk of adverse long-term effects, such as 
development of chronic kidney disease 
(CKD) and progression to end-stage renal 
disease. Additionally, AKI occurs in more 
than 50% of intensive care unit (ICU) 
patients (1). There is a complex inter-
play between multiple pathophysiologic 
mechanisms, including recruitment and 
activation of immune cells, which drives 
AKI pathogenesis (2, 3). T cells were first 
implicated in the pathophysiology of AKI 
approximately two decades ago (4), and 
follow-up studies identified CD4+ T cells 
as the major pathogenic T cell subset (5). 
Broadly, CD4+ T cells differentiate into 
proinflammatory Th1 cells (IFN-γ+ Tbet+) 
and Th17 cells (IL-17+, RORγT+), or anti
inflammatory Th2 cells (IL-4+, GATA3+) 
and Tregs (IL-10+, FOXP3+), depending on 
the type of the initial insult and the cyto-
kine microenvironment in the injured/
infected tissue. Many other Th cells such 
as Th9, Th22, and T follicular helper (Tfh) 
have also been identified (6).

Ischemia reperfusion (IR) injury, the 
most common cause of AKI, is believed to 
predominantly elicit a Th1 proinflamma-
tory response (7). However, more recent 
studies indicate involvement of a strong 
Th17 component (8, 9). When antigen pre-
senting cells (APCs) produce TGF-β, IL-6, 
and IL-1β, naive CD4+ T cells differentiate 
into Th17 cells. This further activates tran-
scription factors RORγT and STAT3 and 
production of Th17 signature cytokines 
IL-17, IL-22, and IL-21. These Th17 cyto-
kines help recruit and activate additional 
proinflammatory immune cells such as 
monocytes and neutrophils to the injured 
site. Additional studies demonstrated that 
high-salt intake following an AKI episode 
reactivates Th17 cells and aggravates tis-
sue fibrosis (10, 11). However, the under-
lying mechanism of sustained Th17 activa-
tion in AKI, especially following high-salt 
intake, is unclear. Furthermore, cellular 
and molecular mechanisms involved in 
AKI-to-CKD progression are not com-
pletely understood. These basic questions 
prompted Mehrotra and colleagues to 
explore the role of the store-operated cal-

cium (Ca2+) channel Orai1 in Th17 differ-
entiation and activation. Their data pro-
vide compelling evidence that Ca2+ influx 
by Orai1 is an important mechanism that 
sustains the Th17-driven inflammatory 
response after AKI, and drives the AKI-to-
CKD transition (12).

Store-operated Ca2+ channel 
Orai1
Ca2+ release–activated Ca2+ (CRAC) 
channels are membrane proteins that 
are important for controlling Ca2+ con-
centration in almost all eukaryotic cells. 
CRAC gets activated following depletion 
of endoplasmic reticulum (ER) Ca2+, and 
this capacitative mechanism is generally 
referred to as store-operated Ca2+ entry 
(SOCE). In T cells, SOCE is initiated when 
an antigen binds to Fc receptors and acti-
vates phospholipase C (PLC). Activation 
of PLC generates second messenger inosi-
tol trisphosphate (IP3), which causes Ca2+ 
release from ER lumen (13). This reduction 
in ER Ca2+ is sensed by stromal interaction 
molecule (STIM) proteins, which under-
go oligomerization and translocate adja-
cent to the plasma membrane. At these 
ER-plasma membrane juxtapositions, 
STIM protein multimers bind to Orai1. 
Orai1, the primary pore-forming subunit 
of CRAC, exists in two variants: the lon-
ger Orai1α form that contains extra 63 
N-terminal amino acids, upstream of the 
shorter Orai1β (14). The Orai channel pro-
teins (Orai1, 2, and 3) along with STIM pro-
teins (STIM1 and 2) are involved in recep-
tor-regulated Ca2+ signaling in immune 
cell differentiation, gene regulation, and 
effector function. For example, STIM1-
Orai1 clusters and Ca2+ flux regulate the 
intensity of nuclear signaling, thereby 
selectively recruiting different Ca2+- 
dependent transcription factors (15). Muta-
tions in ORAI1 and STIM1 genes result in 
defective Ca2+ signaling in T cells and are 
associated with impaired T cell activation 
and severe combined immunodeficiency 
in humans, reflecting their importance in 
several autoimmune and inflammatory 
diseases (16–18).
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cells 48 hours after IR, which was restrict-
ed to IL-17–expressing cells. Interestingly, 
Orai1 expression remained elevated in 
post-AKI CD4+ T cells for up to a week, 
while Th17 response returned to baseline. 
Based on these observations, the authors 
speculated that sustained Orai1 expression 
in post-AKI CD4+ T cells boosts Th17 reac-

explore the mechanistic role of Orai1 in 
Th17 differentiation, AKI pathogenesis, 
and AKI-to-CKD progression in rats. They 
then extended their findings to peripheral 
blood mononuclear cells (PBMCs) from 
critically ill ICU patients who developed 
AKI. The authors reported a significant 
expansion of Orai1-expressing CD4+ T 

Orai1, Ca2+ channeling, and Th17 
response during AKI
In this issue of the JCI, Mehrotra et al. 
(12) tested the hypothesis that Orai1 par-
ticipates in the activation of Th17 cells 
and influences the course of renal injury  
(Figure 1). They initially conducted a 
series of in vitro and in vivo studies to 

Figure 1. Major events during Orai1-mediated Th17 differentiation in AKI. (A) In resting CD4+ T cells, Orai1 is in a closed confirmation and Ca2+ is confined 
to the ER lumen. Following IR, Orai1 expression increases. With subsequent increase in intracellular Ca2+, RORγT activity and IL-17 production drives Th17 
differentiation and AKI pathogenesis. Simultaneously, antigen binding to the TCR triggers ER Ca2+ release, likely via the PLC/IP3 pathway. STIM1, sensing 
loss of ER Ca2+, translocates to the plasma membrane and activates CRAC protein, resulting in Orai1 opening. Exposure to high Ang II and Na+ following 
AKI reactivates the Th17 response in predominantly Orai1+ cells and sustains inflammation to drive AKI to CKD. (B) CRAC inhibitors, such as YM58483/
BTP2, block Ca2+ influx through Orai1 and may protect from AKI and limit the AKI-to-CKD transition.
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associated with direct Orai1 blocking (25). 
Finally, employment of novel technologies, 
such as single-cell RNA sequencing, T cell–
specific Orai1 knockout mice, and CRISPR/
Cas9 (26), will greatly enhance our under-
standing of the biological roles of Orai1 and 
assist in the development of novel inhibi-
tors to treat AKI-to-CKD progression.
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such as proliferative glomerulonephritis, 
could have beneficial effects. However, 
Orai1 blockade can lead to impairment of 
T cell receptor–mediated (TCR-mediated) 
homeostatic T cell functions, and should 
be considered while translating these find-
ing to humans. Additionally, the current 
study noted a significant increase in creat-
inine clearance in YM58483-treated rats at 
the end of the study; however, the authors 
didn’t provide a context to relate clearance 
to kidney function, or explore long-term 
consequences of the compound (12). Addi-
tionally, Orai1 has been described in CD8+ 
cells, B cells, NK cells, macrophages, and 
vascular cells. Recent studies indicate that 
regulatory Th17 (Treg Th17) cells, distinct 
from traditional proinflammatory Th17 
cells, play an important role in autoim-
mune diseases. Therefore, it is pertinent to 
decipher the role of Orai1 in non–T cells, as 
well as in regulatory T cells, and the more 
recently identified double-negative (DN) 
T cells, for developing novel inhibitors 
that can specifically inhibit Th17 Orai1. 
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PBMCs from ICU patients.

Concluding remarks
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to-CKD progression, and other Th17-driven 
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However, due to widespread occurrence of 
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homeostatic Ca2+ signaling, blocking Orai1 
will require extensive future explorations, 
especially in humans, to develop the most 
promising and safe therapeutic strategy. 
Alternatively, modulating Orai1 function 
indirectly through targeting Ca2+/cAMP sig-
naling, which inactivates Orai1 at the end of 
a signaling loop, may address specificity 
and circumvent potential adverse effects 

tivation to a subsequent insult. In fact, in 
vitro stimulation of post-AKI CD4+ T cells 
with angiotensin II (Ang II) and sodium 
(Na+) increased intracellular Ca2+, RORγT 
activity, and IL-17 (mRNA and protein) 
expression. These results were substan-
tiated by in vivo AKI-to-CKD studies in 
rats where high-salt administration after 
IR aggravated chronic renal inflamma-
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Importantly, SOCE inhibitor YM58483, 
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conditions. These responses were blocked 
by YM58483, suggesting potential ther-
apeutic applicability of ORAI1 targeting 
in AKI and AKI-to-CKD progression in 
humans.

CRAC-mediated, short-term increase 
in intracellular Ca2+ is critical for the stable 
T cell and APC interactions seen during 
the formation of an immunological syn-
apse, whereas long-term elevated Ca2+ 
levels are required to achieve T cell effec-
tor functions (19). Intracellular ER Ca2+ 
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also been implicated in apoptosis and oth-
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in mice (22). Thus, Th17 cell–specific block-
ing of Orai1 could provide a unique ther-
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