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ABSTRACT 
 

Background: Ceramides are sphingolipids that play causative roles in diabetes and heart 
disease, with their serum levels measured clinically as biomarkers of cardiovascular disease 
(CVD).  
 

Methods: We performed targeted lipidomics on serum samples of individuals with familial 
coronary artery disease (CAD) (n=462) and population-based controls (n=212) to explore the 
relationship between serum sphingolipids and CAD, employing unbiased machine learning to 
identify sphingolipid species positively associated with CAD. 
 

Results: Nearly every sphingolipid measured (n=30 of 32) was significantly elevated in subjects 
with CAD compared with population controls. We generated a novel Sphingolipid Inclusive CAD 
risk score, termed SIC, that demarcates CAD patients independently and more effectively than 
conventional clinical CVD biomarkers including LDL-cholesterol and serum triglycerides. This 
new metric comprises several minor lipids which likely serve as measures of flux through the 
ceramide biosynthesis pathway, rather than the abundant deleterious ceramide species that are 
incorporated in other ceramide-based scores. 
 

Conclusion: This study validates serum ceramides as candidate biomarkers of cardiovascular 
disease and suggests that comprehensive sphingolipid panels be considered as measures of 
CVD.  
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INTRODUCTION 
 
 Coronary artery disease (CAD) is the most common type of cardiovascular disease 

(CVD) worldwide and the leading cause of death in the western hemisphere (1). The condition 

gives rise to atherosclerosis and ischemia which contribute to arrhythmia, myocardial infarction 

(MI), heart failure, and sudden death (2). Family history of CAD is an independent risk factor for 

MI, and once a patient has undergone an MI they are at greatly increased risk for subsequent 

adverse cardiac events. In addition to incurring a substantial individual health burden, CVD is 

the United States’ costliest disease, producing an economic toll that is projected to grow 

substantially over the coming decades (3).  The combination of personal and financial costs 

necessitates development of improved means for identifying at-risk individuals in order to 

enhance patient care and optimize resource management. 

 CAD is multifactorial by nature, with obesity, diet, hypertension, type 2 diabetes mellitus, 

and family history of CVD established as risk factors (3). Traditional serum lipid biomarkers of 

cardiovascular health include triglycerides and cholesterol, two abundant and easily quantifiable 

circulating factors. Recent technological advances now allow for detection of less plentiful lipids, 

such as sphingolipids, enabling substantially more diverse lipidomic screenings at relatively high 

throughput. Leveraging these technological developments, researchers have identified a small 

subset of serum ceramides as biomarkers of CVD risk (4).  Moreover, a substantial body of 

literature in rodent models of cardiovascular disease indicates that these sphingolipids play 

causative roles in diabetes and cardiometabolic disorders (5).  

 Sphingolipids constitute a class of lipids that have diverse structural and signaling 

functions and discrete biological roles and tissue distributions. Their excessive accumulation 

occurs when the delivery of fatty acids exceeds the storage capacity or energy needs of a cell 

(5)(Figure 1), with the primary steps of de novo synthesis occurring in the endoplasmic 

reticulum (6). Tissue inflammation further increases ceramide biosynthesis rates (7). In the third 



step of the sphingolipid biosynthesis pathway, a family of (dihydro)ceramide synthases add 

variable acyl-chains to a sphingoid scaffold to produce the dihydroceramides and subsequently 

ceramides, which are the key foundational unit of predominant sphingolipids (8). The 

dihydroceramides and ceramides can be further modified in the Golgi apparatus by the addition 

of various head groups, generating complex sphingolipids such as sphingomyelins and 

glucosylceramides. Ceramides, but not dihydroceramides, containing either C16:0 or C18:0 

acyl-chains drive insulin resistance and hepatic steatosis (7, 9-14). Other deleterious effects of 

ceramides that are relevant to CVD include retention of lipoproteins in the vascular wall, 

impaired vasodilation, and induction of cardiomyocyte apoptosis (15).  

Prior profiling studies have identified three ceramide species [i.e. cer(d18:1/16:0), 

cer(d18:1/18:0), and cer(d18:1/24:0)] that positively associate with CVD incidence (16), 

secondary CVD events (17) and mortality (18-20). Cer(d18:1/24:0) has been reported to 

negatively associate with CV death (18-20), but its relationship with CVD incidence is less clear. 

We reasoned that less abundant sphingolipids may serve as strong markers of flux through the 

biosynthetic pathway. Therefore, we performed an inclusive sphingolipid screen (32 

sphingolipids) in individuals with CAD and population-based control subjects (Table 1). By 

applying variable selection techniques, we used these data to develop a superior sphingolipid-

based score that demarcated individuals with coronary artery disease.  

RESULTS 

Individual ceramides and CAD 

We quantified 32 sphingolipids including the major ceramides (cer(d18:1), dihydroceramides 

(dihydro-cer(d18:0), glucosylceramides (glucosyl-cer(d18:1), dihydrosphingomyelins (dihydro-

SM(d18:0), sphingomyelins (SM(d18:1), sphinganine, and sphingosine (Figure 2). All 

sphingolipids measured, excepting two glucosylceramides, were elevated in CAD cases 

compared with controls (Table 2). Sphingosine (p-value < 2E-16), dihydro-cer(d18:0/ 16:0) (p-



value < 2E-16), dihydro-cer(d18:0/ 18:0) (p-value < 2E-16), and cer(d18:1/ 24:1) (p-value < 2E-

16) were most strongly associated with CAD (ORperSD 3.47, 95% CI 2.63-4.69; ORperSD 2.54, 

95% CI 2.06-3.18; ORperSD  2.82, 95% CI 2.24-3.60; ORperSD 2.30, 95% CI 2.24-3.60; ORperSD 

2.29, 95% CI 1.86, 2.85, respectively). Figure 3 depicts the odds ratios (ORs) for CAD for all 

sphingolipid species measured, including the unadjusted model, a parsimonious model (i.e. a 

minimally-adjusted model that includes the covariates age, sex, BMI), and a fully-adjusted 

model (i.e. a model that includes the covariates age, sex, body mass index (BMI), total 

cholesterol, LDL cholesterol, HDL cholesterol, VLDL cholesterol, triglycerides, hypertension, 

diabetes, and smoking).  

Ceramide risk score and CAD 

For each subject, we calculated the ceramide risk score (i.e. Cardiac Event Risk Test 1,CERT1) 

that was developed by Zora Biosciences and is in operation at the Mayo Clinic as a means of 

predicting 5-year risk of cardiovascular mortality (4, 21, 22). CERT1 performed well in this 

cohort, as subjects with CAD had a significantly higher CERT1 risk scores compared with 

control participants (ORperSD 2.18, 95%CI 1.77-2.71) (Figure 3). Interestingly, the CERT1 score, 

which comprises the individual ceramide species cer(d18:1/16:0), cer(d18:1/18:0) and 

cer(d18:1/24:1) as well as the ratio of these lipids to cer(d18:1/24:0), did not provide better 

predictive power than the individual ceramide species included in the score [cer(d18:1/16:0); 

ORperSD 2.30, 95% CI 1.87-2.=]6; cer(d18:1/18:0); ORperSD 2.30, 95% CI 1.87-2.85; 

cer(d18:1/24:1); ORperSD 2.29, 95% CI 1.86-2.85] (Figure3). Since cer(d18:1/24:0) was also 

elevated in individuals with CAD (ORperSD 2.12 95% CI 1.73-2.61), its inclusion in the 

denominator of CERT1 diminished the score’s predictive power in our sample (Figure 4).  

Probing the role of specific ceramide species in CAD 

To discern how the chemical composition of sphingolipids influenced their association with CAD, 

we grouped them into two different categories. In one category, we summed all species within a 



sphingolipid class (e.g. ceramides, dihydroceramides, sphingomyelins, etc.), independent of 

acyl-chain length. In a second category, we summed all sphingolipids that had certain acyl-

chains attached to the sphingoid base (e.g. all species with C16:0, C18:0, C20:0, C24.1:0 or 

C24:0 acyl-chains), independent of sphingolipid class. We found that total C24:1-containing 

sphingolipids (ORperSD 2.66, CI 2.12-3.38) and/or total dihydroceramides, independent of chain 

length (ORperSD 2.46, 95% CI 1.99-3.10), were most strongly associated with CAD (Figure 5).  

Ceramide correlations with cholesterol and other conventional biomarkers 

In order to explore the relationship between ceramides and other common biomarkers of CVD 

risk, we generated a gaussian graphical model (GGM) between ceramides, triglycerides, LDL-C, 

HDL-C and VLDL-C (Figure 6). The GGM measured the correlation of sphingolipids with each 

other and with traditional lipid biomarkers. All correlations were conditioned on the presence of 

the other analytes (r ≥ 0.20), thus representing direct relationships that are uninfluenced by 

other components. The GGM demonstrated that ceramide species correlated with each other in 

a single inter-connected network, but that their associations with classic CVD risk biomarkers 

were weak (i.e. r<0.20). In Figure 6, the strength of the correlations is depicted by the thickness 

of the lines connecting lipid nodes. The strongest positive correlations (red lines) were between: 

Cer(d18:1/20:0) and Cer(d18:1/18:0); dihydro-Cer(d18:0/24:0) and dihydro-Cer(d18:0/22:0); and 

dihydro-SM(d18:0/24:0) and dihydro-SM(d18.0.22.0 (Figure 6). As expected, VLDL-C positively 

correlated with triglycerides (23). Ceramides did not correlate with VLDL-C, triglycerides, or 

other lipid markers of CVD risk. These findings indicate that sphingolipids are largely 

independent of traditional CVD lipid biomarkers and therefore provide new information about 

disease status, a critical consideration when developing novel biomarkers.  

Generating novel CAD predictive ceramide risk scores using machine learning 

We employed machine learning, a branch of artificial intelligence, to reduce our large set of 

sphingolipids to a small set of predictive biomarkers. Machine learning incorporates pattern 



recognition within complex datasets and has been used previously to develop CVD risk 

prediction models. In comparison with classical statistical methods, machine learning 

techniques can identify algorithms that predict health outcomes, even when relationships are 

complex and non-linear (24, 25). Moreover, machine learning generated models tend to me 

more generalizable (24, 25).  

We created these new sphingolipid-based risk scores using Random Forest (RF) and 

Least Absolute Shrinkage and Selection Operator (LASSO) regression approaches for variable 

reduction and selection (Table 3). RF develops algorithms that can precisely classify 

observations into groups (i.e. CAD cases versus controls). With this method, the number of 

variables incorporated has a strong impact on model accuracy: if variables improve model fit, 

RF accuracy improves; if not, accuracy is diluted by meaningless variables.  We therefore ran 

two RF models. For the first, our input included sphingolipid variables only. For the second, our 

input included sphingolipid variables in concert with classical CVD risk markers (LDL-C, HDL-C, 

VLDL-C, triglycerides). For our LASSO approach, the input included all sphingolipids and the 

aforementioned conventional CVD lipid markers. Biomarker score classification was evaluated 

using both ORs and receiver operator characteristic-area under the curve (ROC-AUC) analysis 

(Figure 7, Table  4). For both RF and LASSO approaches, the five lipids most positively 

associated with CAD were used to generate a score.  

An RF-generated Sphingolipid Inclusive CAD Risk Score (RF-SIC) (AUC = 0.75) 

outperformed CERT1 (AUC = 0.67) and conventional CVD risk biomarkers including LDL-C 

(AUC = 0.69) and total cholesterol (AUC = 0.63) (Figure 7, Supplemental Figure 1). An RF 

model generated from the sphingolipids plus CVD risk markers (denoted with an asterisk, RF-

SIC+, AUC = 0.78) included LDL-C and displayed more precise classification of CAD cases 

versus controls, as compared to the RF-SIC score that excluded LDL-C (Figure 7). When 



evaluated by OR, RF-SIC+ (OR 5.03, 95% CI 3.69-7.07) outperformed RF-SIC (OR 3.49, 95% 

CI 2.71-4.58) (Figure 7).  

The LASSO-generated SIC (LASSO-SIC) performed similarly to the RF generated score 

(AUC for LASSO-SIC = 0.74; OR 2.86 95% CI 2.67, 3.66). We conducted an exploratory 

analysis, adding a term that was the ratio of the lipid with the highest positive CAD association 

vs. the lipid that had the most negative association. This resulted in a slight increase in 

predictability (LASSO-SIC2, AUC = 0.75; OR 3.06 95% CI 2.42, 3.94) (Figure 7, Table 4, 

Supplemental Figure 2). Adding in another ratio (i.e. the second highest, positively-associated 

lipid vs. the second highest, negatively-associated lipid variables) enhanced performance 

further (LASSO-SIC3, AUC = 0.77; OR 3.91 95% CI 2.98, 5.24) (Figure 7, Table 4, 

Supplemental Figure 2).   

Based on this information, we generated a final SIC score that included the highest 

performing sphingolipid RF and LASSO generated components and yielded increased 

discriminatory ability (AUC = 0.79; OR 4.67 95% CI 3.47, 6.43) (Figure 7, Table 4). Only 

sphingolipids, and not LDL-C, were included in the final SIC score so comparisons of an 

inclusive sphingolipid measure to conventional CVD lipid markers could be performed. A list of 

the lipid components in each novel score can be found in Table 3.  

Comparing Machine Learning-Generated Scores to Conventional Markers of CAD 

We next compared the ability of SIC, CERT1, and standard clinical biomarkers 

(triglycerides, LDL-C, etc.) to classify CAD cases compared with controls (Figures 8A, Table 4).  

We provide the following ROC curves (with the area under the curve, AUC) for comparison 

(Figures 8B to 8G): clinical factors alone (age, sex, BMI, diabetes, hypertension, smoking; AUC 

= 0.63); clinical factors plus CERT1 (AUC = 0.66); clinical factors plus SIC (AUC = 0.72); clinical 

factors plus standard clinical lipids (AUC = 0.64); CERT1 plus clinical factors and clinical lipids 

(AUC = 0.64); and SIC plus clinical factors and clinical lipids (AUC = 0.65). Since AUC can be 



an insensitive measure of model performance, particularly when the initial model (i.e. the 

American Heart Association (AHA)/American College of Cardiology (ACC) risk factors) performs 

strongly, we also calculated a continuous Net Reclassification Index (NRI) and an Integrated 

Discrimination Index (IDI)(26). These scores provide a more comprehensive picture of model 

performance and a means to assess the value of including SIC or CERT1 in addition to 

standard clinical biomarkers. For SIC, the NRI was 0.67 (95% CI: 0.52-0.81, p-value <0.0001) 

and IDI was 0.10 (95% CI: 0.08-0.11, p-value <0.0001) (Supplemental Table 1). For frame of 

reference, an NRI exceeding 0.6 is considered strong and 0.4 is considered intermediate (27). 

SIC was superior to CERT1, which had an NRI of 0.48 (95% CI: 0.32-0.64, p-value <0.0001) 

and IDI of 0.04 (95% CI: 0.03-0.06, p-value <0.0001) (Supplemental Table 1). SIC improved the 

ROC C-statistic, NRI, and IDI compared with AHA/ACC guideline risk factors alone, 

underscoring the power of including sphingolipids as biomarkers of CAD.  

Many of the lipids extracted by our variable reduction techniques (i.e. SM(d18:0/24:1), 

SM(d18:0/22:0), SM(d18:0/18:0), sphingosine, cer(d18:0/18:0), cer(d18:0/16:0)) are transient 

intermediate lipid species and therefore reflect pathway activity and flux (for a full list of selected 

lipids, see Table 3). This finding suggests that while abundant ceramide species are implicated 

in driving disease states, these causal lipid species may not be the most sensitive clinical 

markers. 

Stratification by CAD presentation 

To further probe the clinical utility of the SIC score, we evaluated it in CAD patients that were 

stratified into three subgroups: (a) patients having had a myocardial infarction (MI) alone; (b) 

patients that had a surgical intervention alone (coronary artery bypass grafting (CABG) or 

percutaneous transluminal angioplasty (PCTA)); or, (c) patients that had an MI in combination 

with a surgical intervention. Patients undergoing a surgical intervention alone are considered to 

have a more tightly controlled disease state, while those with both surgical interventions and 



MIs are likely to be in a more severe or uncontrolled disease state (28). Patients with an MI 

alone are considered intermediate. As compared to the control population (i.e. all non-cases), 

the CERT1 and SIC scores were highest in the individuals with the more severe disease 

presentation (ORperSD > 1.80, p<5 x10-11; p-heterogeneity<2E-16, Figure 9a). By comparison, 

standard clinical markers including LDL-C, total-C, and triglyceride didn’t show a preferential 

increase for individuals in this, as opposed to any other, category (Table 5). These findings 

suggest that ceramide-based scores may have utility for risk stratification, which is in line with 

previous studies that demonstrated the capacity of ceramides, but not LDL-C, to predict 

secondary cardiac events (17).  

DISCUSSION  

We applied a highly quantitative, targeted mass spectroscopy platform to measure 32 

sphingolipids in serum samples from subjects with CAD compared with healthy controls. Thirty 

of the thirty-two sphingolipids assayed were elevated among the diseased subjects, displaying a 

robust positive association with CAD after controlling for multiple comparisons. We applied 

unbiased machine learning variable reduction techniques to generate a novel sphingolipid score 

which we have termed SIC (i.e. sphingolipid inclusive CAD risk score) that includes the following 

components: dihydro-cer(d18:0/18:0), cer(d18:1/18:0), cer(d18:1/22:0), cer(d18:1/24:0), 

dihydro-SM(d18:0/24:1), SM(d18:1/24:0), SM(d18:1/18:0), and sphingosine. Novel scores were 

calculated by summing raw lipid values multiplied by their beta coefficients from the regression 

output, then log transformed. This score approached a strong C-statistic of 0.79 and an ORperSD 

of 4.67 (95% CI: 3.46-6.43) for risk of CAD, outperforming other serum indices of cardiovascular 

risk including LDL-C alone and the CERT1 ceramide risk score. Serum ceramides also 

associated with disease severity, as they were highest among individuals with the most severe 

CAD manifestations. These findings support the idea that serum sphingolipids are strong 

biomarkers of CAD that could have clinical utility for improving risk stratification.  



These data are consistent with several other studies using untargeted lipidomic 

platforms, which frequently identified sphingolipids as candidate biomarkers of CVD (17, 18, 20, 

22, 29-31). Ceramide concentrations and scores were shown to be elevated among individuals 

with acute MI (16), CAD (22, 29, 32), acute coronary syndrome (22), and recurrent major 

adverse cardiac events (20). They were also increased in individuals with insulin resistance or 

type 2 diabetes (33-35), two underlying drivers of cardiovascular morbidity (33, 34). These 

studies implicate ceramide as a marker of disease pathology, disease risk, mortality, and a tool 

for improved risk stratification. The best-characterized ceramide score is CERT1, originally 

developed by Zora Biosciences and validated in multiple prospective clinical studies (17, 18, 20, 

22, 29-31). Though most of the ceramide species contained within CERT1 were individually 

predictive of CAD, they were not identified as the most strongly CAD-associated lipids using our 

unbiased variable selection methods. Furthermore, CERT1’s inclusion of cer(18:1/24:0) in the 

denominator  was counterproductive; cer(18:1/24:0) was itself a good marker of CAD. 

Nonetheless, CERT1 still performed similarly in this dataset as compared to previous 

prospective cohort studies, endorsing its validity as a robust index of CVD risk. 

The most widely used biomarker of CV pathophysiology, LDL-C, also performed well in 

this dataset. However, SIC and CERT1 showed stronger discriminatory power than LDL-C as 

assessed by ROC-AUC. Interestingly, ceramides were not strongly correlated with LDL-C 

(<0.20), though LDL-C was strongly correlated with other conventional lipid markers such as 

serum triglycerides. . The independence of these biomarkers is consistent with the idea that 

they lie in different biosynthetic pathways, both of which contribute to disease progression.  

National screening and therapeutic guidelines focus on cholesterol as the primary 

biomarker of cardiovascular health, even though it shows only modest predictive utility for risk 

assessment and lacks the sensitivity to discriminate between patients at risk for secondary 

cardiac events (17). Current guidelines dictate that patients diagnosed with CAD belong to a 

high-risk population, even though this classification may be inaccurate for most individuals (17).  



By combining LDL-C with novel sphingolipid risk scores, a more complete risk assessment may 

be performed. Such a tool will enhance patient classification accuracy and help the clinician to 

coordinate disease surveillance or prescribe clinical interventions.  

Ceramides are not only biomarkers of CV health but are likely causative agents in 

disease progression (15). Studies in rodent models reveal that pharmacological inhibition of 

ceramide synthesis prevents ischemic cardiomyopathy-related heart failure while 

simultaneously diminishing ventricular remodeling, fibrosis and macrophage infiltration following 

MI (36-39). Moreover, such ceramide-lowering interventions resolve dyslipidemia, insulin 

resistance, hypertension, atherosclerosis, and hepatic steatosis (7, 40-49), conditions which 

underlie CVD. Manipulations of the de novo ceramide synthesis pathway further suggest that 

certain ceramide species are deleterious while others are benign or beneficial (11-14); those 

containing the C16 or C18 acyl-chain (11-13) and include the double bond (i.e. ceramides, not 

dihydroceramides)(7) in the sphingolipid backbone are particularly harmful. Lastly, studies in 

rodents reveal that ceramide degradation is a primary means by which adiponectin receptors, 

which are ligand-activated ceramidases (50), exert their anti-diabetic, cardioprotective, and 

insulin-sensitizing actions (50-52). Cumulatively, these data identify ceramides as some of the 

more toxic metabolites accumulating in states of metabolic distress.  

Our machine learning variable reduction approaches (RF, LASSO) for score generation 

extracted sphingosine, dihydro-cer(d18:0/16:0), dihydro-cer(d18:0/18:1), dihydro-

SM(d18:0/24:1), dihydro-SM(d18:0/22:0), SM(d18:1/18:0), cer(d18:1/18:0), and cer(d18:1/24:0) 

as the lipid species most positively associated with CAD. This finding suggests that the more 

abundant ceramides, including those that have been established as drivers of tissue and 

metabolic dysfunction, may not be the most sensitive biomarkers for CAD. Rather, less 

abundant lipids that serve as markers of increased ceramide biosynthetic flux may provide a 

more accurate and comprehensive readout of disease status.  



Though some prior studies have described associations between a subset of ceramides 

and CVD and related comorbidities, several aspects of this study are novel. First, we conducted 

a comprehensive ceramide assessment using a well-validated, targeted lipidomic platform that 

included less abundant lipid species, leading to the production of a more robust sphingolipid 

score (i.e. SIC). We note that such targeted platforms are more quantitatively sound than 

shotgun lipidomic assessments. Second, we focused on early-onset CAD patients (average age 

of onset = 47.8), thus enhancing the power of our study and limiting the influence of factors 

associated with aging. Third, we applied machine learning to develop new ceramide-based 

scores that outperformed prior measures, including LDL-C and CERT1. Machine learning 

allowed us to enhance accuracy of models and reduce dimensionality of datasets (53).  

Despite these advances, our study has some limitations. First, it is limited by its case-

control design and by the racial homogeneity of our sample population, limiting generalizability. 

Second, our target lipid class, sphingolipids, includes highly diverse and lowly abundant lipid 

species; this diversity can lead to increased variability, as seen by our high coefficients of 

variation (median: 11.76, IQR: 6.85-20.53). While these are not ideal, they are comparable to 

previous sphingolipidomic studies. Third, this study lacks a validation cohort for the novel SIC 

score. We note, however, that this cohort recapitulated the findings relating to the CERT1 score, 

which was generated using alternative patient datasets. And fourth, some biospecimens were 

collected as far back as the 1990s; diet and lifestyle have changed since this study was initiated 

and prolonged storage could negatively impact sample quality. Nonetheless, cases and controls 

were collected and handled in the same manner, so relative differences (and calculated odds 

ratios for CAD) should be sustained. Moreover, prior studies have shown that sphingolipids 

remain stable over storage periods as long as 16 years-post sample collection and through 

multiple freeze-thaw cycles (54, 55). We emphasize the exciting fact that sphingolipids appear 

to serve as strong biomarkers across generations, as any robust clinical index should (56).   



In conclusion, sphingolipids have emerged as robust, cholesterol-independent markers 

of CVD risk. Their inclusion in a clinician’s armamentarium has the potential to greatly improve 

the ability to identify at-risk patients. Moreover, they support the development of therapeutics 

targeting sphingolipids as a means of ameliorating cardiovascular risk. Nonetheless, our data 

suggest that further refinement of sphingolipid-based scores may be necessary. Expanding the 

diversity of sphingolipid entities included in prospective patient studies will provide a more 

complete picture of the sphingolipidome in predicting risk of cardiovascular disease.  

 

METHODS 

Study Design 

We evaluated the association of serum sphingolipids with CAD using existing samples and 

clinical and demographic information obtained from a case-control study in Utah, USA (n=462 

cases and n=212 controls)(57).  

Study Population 

Cases were recruited between 1990 and 2000 from Intermountain Healthcare discharge records 

or the Family Health Tree Program in Utah (58). Cases were aged 30-75 years with a diagnosis 

of CAD, defined by the original study recruitment criteria as myocardial infarction (MI), 

percutaneous transluminal coronary angioplasty (PCTA), or coronary artery bypass grafting 

(CABG). A large proportion of cases were male (77%), likely because premature CAD incidence 

rates are higher for men than women (59). Cases had similar age of onset to at least one first 

degree relative (parent, sibling, or child) (Table 1). To limit artifactual effects of the acute cardiac 

event on lipid levels, samples were collected at least six months following their event.  

Controls representative of the Utah population (57, 60, 61) were randomly sampled from 

1980-1986 from (i) the parents of students participating in the Family Health Tree Program (58), 



a study of family health among Utah high schools; and (ii) spouse pairs participating in a study 

on psychological factors concerning CAD (61). Control participants were aged 30-75 years and 

had no clinical diagnosis of CAD, but they could have a family history of CAD. Controls taking 

vasoconstrictive drugs (i.e. beta blockers, calcium channel blockers, and other anti-anginal 

medications) were excluded.  

Both case and control populations were selected from the same source population of 

Salt Lake City, Utah. The number of cases (462) is larger than controls (212) due to the nature 

of the available biospecimens, though no significant differences between this subset of 

specimens available for analysis and the original study sample were noted (Supplemental Table 

2).  

Clinical and Demographic Characteristics 

Demographic information (including age and sex) and medical and family history data were 

obtained by trained interviewers. Covariates considered in analyses included age (years), sex 

(male or female), body mass index (BMI, Kg/m2), smoking (“ever” or “never” to smoking daily for 

a year or more), total cholesterol (mg/dL), LDL-cholesterol (mg/dL), VLDL-cholesterol (mg/dL), 

HDL-cholesterol (mg/dL), triglycerides (mg/dL), lipid medication (statins, fibrates, and other 

hyperlipidemia managing drugs taken at time of blood draw, yes/no), diabetes (prior physician 

diagnosis or fasting glucose ≥126 mg/dL), and hypertension (prior physician diagnosis or blood 

pressure ≥140/90 mm Hg).   

Blood Sample Collection, Processing and Storage 

Blood samples were collected in the morning following a 12-16 hour overnight fast and prepared 

according to guidelines of the Lipid Research Clinic’s program Manual of Laboratory Operations 

(62). Lipoprotein concentrations were measured using a microscale ultracentrifugation method 

(63, 64). Serum samples were aliquoted and stored at -80 °C. The collection laboratory 



participates in the Centers for Disease Control Lipid Standardization Program (65). Of note, 

blood sphingolipids have been shown to be highly stable over relevant preanalytical conditions 

including multiple freeze-thaw cycles, temperature, long-term storage, and centrifugation 

time/speed (54, 55).  

Lipid Extraction 

The method for conducting high-throughput, lipid extraction from serum samples was modified 

from a method described previously (20). The internal standard (IS) stock solution containing 

sphingomyelin (d18:1/17:0) (2502 pmol/sample), dihydroceramide (d18:0/18:1) (5 pmol/sample), 

d7-ceramide (d18:1-d7/16:0) (6 pmol/sample), d7-ceramide (d18:1-d7/18:0) (2 pmol/sample), 

d7-ceramide (d18:1/24:0) (152 pmol/sample), d7-ceramide (d18:1/24:1) (20 pmol/sample), and 

glucosylceramide (d18:1/17:0) (50 pmol/sample) was prepared in methanol. Serum samples 

were thawed at 4 °C for 12 hours before proceeding with lipid extraction. Samples were 

extracted in a 96-well format with three columns of controls: a 600 µl isopropanol double blank 

(DB), a process blank (PB) with 50 µl phosphate buffered saline (PBS), and a pooled control 

human serum sample (QC) (Millipore Sigma). 50 µl of serum was transferred to the remaining 

72 wells of the 96-deepwell plate (USA Scientific). 550 µl IS mix and protein precipitation (PPT) 

solven (ethyl acetate: isopropanol (2:8, v/v)) was added to each sample (with the exception of 

the DB) for a final volume of 600 µl per well. The plate was sealed using a silicone cap mat 

(Analytical Sales and Products). Samples were placed on a shaker at room temperature for 10-

minutes followed by a 10-minute centrifugation at 3000xg. The supernatant was then transferred 

to a 96-well plate (USA Scientific) and sealed with heat-sealing foil (Beckman Coulter) and 

plates were stored at 4 °C preceding LC-MS/MS analysis.   

Lipid Standards and Other Chemicals and Reagents 



Sphingomyelin (d18:1/17:0), dihydroceramide (d18:0/18:1), d7-ceramide (d18:1-d7/16:0), d7-

ceramide (d18:1-d7/18:0), d7-ceramide (d18:1-d7/24:0), d7-ceramide (d18:1-d7/24:1), and 

glucosylceramide (d18:1/17:0) were obtained from Avanti Polar Lipids, Inc. (Alabaster, AL). 

Acquity CSH C18, 1.7 μm VanGuard Pre-Column, and Acquity CSH C18, 2.1 x 50 mm 1.7 µm 

were obtained from Waters (Milford, MA). 2-propanol, acetonitrile, and formic acid (all LC-MS 

grade) were attained from Honeywell – Burdick & Jackson (Muskegon, MI). HPLC grade ethyl 

acetate was from EMD Millipore (Billerica, MA). Ammonium acetate was acquired from MPBio 

(Santa Ana, CA).  

LC-MS/MS analysis 

Lipid extracts were separated on an Acquity CSH C18 1.7 µm 2.1 x 50 mm column with a 1.7 

µM VanGuard Pre-Column (Waters Corp, Milford, MA) maintained at 60 °C connected to an 

Agilent HiP 1290 Sampler, Agilent 1290 Infinity pump, equipped with an Agilent 1290 Flex Cube 

and Agilent 6490 triple quadrupole (QqQ) mass spectrometer. Sphingolipids were detected 

using dynamic multiple reaction monitoring (dMRM) in positive ion mode. Source gas 

temperature was set to 210°C, with a gas (N2) flow of 11 L/min and a nebulizer pressure of 30 

psi. Sheath gas temperature was 400°C, sheath gas (N2) flow was 12 L/min, capillary voltage 

was 4000 V, nozzle voltage 500 V, high pressure RF 190 V and low-pressure RF was 120 V.  

Injection volume was 2 µL and the samples were analyzed in a randomized order with the 

pooled QC sample injected eight times throughout the sample queue. With 8 controls per plate, 

there were 80 QC injections in totality. Mobile phase A consisted of ACN: H2O (60:40 v/v) and 

mobile phase B consisted of IPA: ACN: H2O (90:9:1 v/v) both containing 10 mM ammonium 

formate and 0.1% formic acid. The chromatography gradient started at 15% mobile phase B, 

increased to 30% B over 1 min, increased to 70% B from 1.0-1.1 min, held at 70% B to 4.5 min, 

and increased to 99% B from 4.5-4.51 min where it was held until 5 min then returned to starting 

conditions at 5.1 min. Post-time was 1.5 min and the flowrate was 0.5 mL/min throughout. 



Collision energies and cell accelerator voltages were optimized using sphingolipid standards 

with dMRM transitions as [M+H]+→[m/z = 266.3 or 284.4] for dihydroceramides, [M-

H2O+H]+→[m/z = 264.2] for ceramides, [M-H2O+H]+→[m/z = 271.3] for isotope labeled 

ceramides. Sphingomyelins were monitored with dMRM transitions as [M+H]+→[m/z = 184.4]. 

Sphingolipids without available standards were identified based on HR-LC/MS, quasi-molecular 

ion and characteristic product ions. Results from LC-MS experiments were collected using 

Agilent Mass Hunter Workstation and analyzed using the software package Agilent Mass Hunter 

Quant B.07.00. Sphingolipids were quantitated based on peak area ratios to the internal 

standards. 

Lipid Species 

A total of 32 lipids were quantified including dihydroceramides (dihydro-cer(d18:0), ceramides 

(cer(d18:1), glucosyl ceramides (glucosyl-cer(d18:1), dihydrosphingomyelins (dihydro-

SM(d18:0), sphingomyelins (SM(d18:1), sphinganine, and sphingosine. For each of these, 

except for sphinganine and sphingosine, acyl chain lengths of 16, 18, 20, 22, 24, and 24:1 

carbon length were reported. Median (interquartile range) coefficient of variation (11.76, 6.85-

20.53) are comparable with previously published sphingolipid data (66).  

To calculate the Ceramide Risk Score (CERT1) that is in clinical use (50), we calculated 

C16:0, C18:0 and C24:1 concentration and their ratio to C24:0, assigning 2 points to those with 

levels in the 4th quartile, 1 point to the 3rd quartile, and 0 points to the bottom two quartiles, with 

total CERT1 scores ranging from 0-12. (22).   

Statistics 

Participant characteristics were summarized as mean ± standard deviation for 

continuous variables or N (%) for categorical variables (Table 1). Differences between cases 

and controls were compared using the Student t-test (two tailed) for continuous variables and 

chi-square test for categorical variables. P-values > 0.05 were considered significant. Lipid 



species were summarized as medians and interquartile ranges (IQR) using the original scale 

(Table 2) and were log10 transformed for analysis owing to non-normal distribution.  When 

assessing the effect of summed molecular lipid species or acyl chains on CAD, variables were 

summed preceding log transformation. 

Multivariable-adjusted and unadjusted odds ratios (ORs) and 95% confidence intervals 

(CI) were estimated using logistic regression and reported per standard deviation (of lipid 

species). A priori-defined covariates based on current American College of Cardiology (ACC) 

and American Heart Association (AHA) guidelines were considered in stepwise variable 

selection modeling (Supplemental Table 3). These covariates included the following: age, sex, 

BMI, total cholesterol (total-C), low density lipoprotein cholesterol (LDL-C), high density 

lipoprotein cholesterol (HDL-C), very low-density lipoprotein cholesterol (VLDL cholesterol), 

triglycerides, hypertension, diabetes, and smoking. We calculated the percent change in odds 

ratio from the parsimonious age, sex, and BMI-adjusted model with the addition of each 

covariate, though no covariate affected all sphingolipids. Our final parsimonious model included 

age, sex and BMI but we also show results for a fully adjusted model including all AHA/ACC 

guideline-based risk factors in the main figures for comparison. In addition to testing whether 

AHA/ACC based risk factors were confounders of the sphingolipid-CAD relationship,  we 

evaluated some of these variables for potential effect modification through the inclusion of a 

variable by lipid interaction term in the logistic regression models and evaluating significance of 

the interaction term using a likelihood ratio test  (Supplemental Table 4)(67). Where effect 

modification was present (p-value for the interaction term<0.05, Supplemental Table 4A), we 

ran the analyses separately according to levels of the effect modifier (e.g., hypertensive or 

normotensive) to determine whether the relationships between sphingolipids and CAD differed 

according subgroups of the effect modifier variable (Supplemental Table 4B, 4C).  



We applied machine learning (24, 25) to identify the most predictive biomarkers. To 

compare classical variable reduction techniques to our machine learning approaches, we 

performed a stepwise (forwards and backwards) regression (Supplemental Table 5). We then 

performed Least Absolute Shrinkage and Selection Operator (LASSO) regression (68) 

(Supplemental Table 6) and Random Forest analysis (Supplemental Table 7) (69). AHA/ACC 

lipid risk factor variables (LDL-cholesterol, etc.) were included along with the sphingolipids as 

input variables to allow the machine learning algorithm to determine the most predictive lipid 

biomarkers. Data were split into training (80%) and testing (20%) datasets. For LASSO, the 

optimal value for the tuning parameter lambda was selected to maximize the percentage of 

correctly identified cases/controls with 10-fold cross validation on the training set before using 

the remaining 20% of the data to test the predictability of the model. We determined the quality 

of prediction via percentage of correctly identified cases/controls, averaging the percentage 

across ten training and testing splits. There were two data input approaches for Random Forest 

analysis. For a sphingolipid-only input, 32 sphingolipid variables were utilized, with a default of 

500 decision trees to generate an optimal number of variables per tree determined for each of 5 

cross-validation training sets. Variable importance scores were assigned through permutation 

testing and the top 5 variables averaged across validation sets were placed into a single model. 

A second input included the 32 sphingolipid variables and classical CAD markers (i.e., 

cholesterol, triglycerides, etc.). To examine conditional correlations (r ≥ 0.20) between 

ceramides and conventional biomarkers in CAD cases, we generated a gaussian graphical 

model (GGM) with visualization in Cytoscape (70-75). GGMs model conditional dependencies 

among continuous variables with multivariate Gaussian distributions. Recent studies have 

demonstrated how GGMs, which are data-driven, can reconstruct biological pathway reactions 

(76). We performed GGM in order to see whether our sphingolipid panel was redundant in the 

presence of traditional clinical lipid biomarkers (i.e. whether they are highly correlated, 

conditioned on the presence of all other lipids). 



 To compare the ability of different clinical markers and scores to distinguish between 

true cases and controls, we employed Receiver Operating Characteristic (ROC) – Area under 

the Curve (AUC) analysis and calculated the Net Reclassification Index (NRI), and Integrated 

Discrimination Index (IDI) (Supplemental Table 1) (77). The ROC curves and C-statistics are 

presented in Supplemental Figure 1.   

All analyses were performed in R 3.5.1 (78). Associations were considered statistically 

significant at a false discovery rate (FDR) <0.05 to control for multiple statistical tests 

(Supplemental Table 8). 

Study Approval 

Lipid quantification and secondary data analysis on these patient samples were approved by the 

Institutional Review Board at the University of Utah and all patients provided written informed 

consent. 
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Figure 1. Schematic depicting the sphingolipid biosynthesis pathway. Fatty acyl-coAs have 3 

primary fates: entering the mitochondria to be used for energy via oxidation, to form 

glycerolipids for use in storage or membrane formation, or to be coupled to an amino acid and 

enter the sphingolipid biosynthesis pathway. Sphingolipids are a diverse class of lipid that 

represent a minor subset of the lipidome but play critical roles in signaling events. 

  





Figure 2. Schematic of Utah coronary artery disease (CAD) study design and the subset of 

available biospecimens used for liquid chromatography tandem mass spectrometry sphingolipid 

analysis. Machine learning was applied to the sphingolipidomic data to develop novel scores 

that associated with CAD beyond conventional lipid markers, such as cholesterol (Created with 

Biorender). 

  





Figure 3. Forest plot of OR (95% CI) for coronary artery disease (CAD) per standard deviation 

of sphingolipid species in the Utah CAD study (A) unadjusted; (B) fully-adjusted (age, sex, BMI, 

total-C, LDL-C, VLDL-C, triglycerides, hypertension, diabetes, smoking); (C) minimally-adjusted 

(age, sex, BMI) model. OR (95% CI) numerically presented represent the minimally-adjusted 

age, sex, BMI model. Dihydro cer, dihydro ceramide; cer, ceramide 

  





Figure 4. OR (95% CI) of CAD per standard deviation of previously reported lipid markers of 

cardiovascular risk in the Utah CAD study (A) unadjusted; (B) fully-adjusted (age, sex, BMI, 

hypertension, diabetes, smoking); and (C) minimally-adjusted (age, sex, BMI). OR(95% CI) 

numerically presented represent the minimally-adjusted age, sex, BMI model. Since we 

compared clinical lipid markers (LDL, VLDL, HDL, triglycerides) to ceramide ratios and scores 

they were not included in the fully-adjusted model. CERT1, cardiac event risk test (12-point 

scale); HDL cholesterol, high density lipoprotein cholesterol (mg/dL); LDL cholesterol, low 

density lipoprotein cholesterol (mg/dL); VLDL cholesterol, very low density lipoprotein 

cholesterol (mg/dL), triglycerides (mg/dL) 

  





Figure 5. OR (95% CI) of CAD per standard deviation of summed sphingolipid variables in the 

Utah CAD study (A) unadjust-ed; (B) fully-adjusted (age, sex, BMI, total-C, LDL-C, VLDL-C, 

triglycerides, hypertension, diabetes, smoking); (C) minimally-adjusted (age, sex, BMI). OR(95% 

CI) numerically presented represent the minimally-adjusted age, sex, BMI model. Total SM, total 

sphingomyelin; Total C16, sum of all C16 acyl chains; Total C18, sum of all C18 acyl chains; 

Total C20, sum of all C20 acyl chains; Total C22, sum of all C22 acyl chains; Total C24, sum of 

all C24 acyl chains; Total C24:1, sum of all C24:1 acyl chains. 

  





Figure 6. Gaussian graphical model (GGM) of correlations between ceramide species and 

conventional lipid markers in Coronary Artery Disease (CAD) cases, conditioned on the 

presence of all other analytes (r≥ 0.20). Analytes are represent-ed by nodes (grey circles) and 

conditional correlations by edges (lines). Pink lines indicate positive correlations, blue inverse. 

Line width represents the strength of conditional correlation and the lack of a line indicates no 

detectable relationship above the threshold. 

  





Figure 7. OR (95% CI) of coronary artery disease (CAD) per standard deviation of novel scores 

generated through the application of machine learning approaches in the Utah CAD study (A) 

unadjusted; (B) multivariable-adjusted (age, sex, BMI, diabetes, hypertension, smoking); (C) 

minimally-adjusted (age, sex, BMI). The multivariable models for this analysis do not include 

HDL-C, LDL-C, VLDL-C, total-C, or triglycerides as they were included as input variables. 

  





Figure 8. Comparing conventional coronary artery disease (CAD) risk markers to novel 

sphingolipid scores in the Utah CAD study. (A) Receiver operator characteristic (ROC) curve for 

novel sphingolipid inclusive CAD (SIC) score and conventional risk markers. (B) C-statis-tics for 

both conventional and novel risk markers for CAD. (C) ROC curve for American Heart 

Association (AHA)/American College of Cardiology (ACC) based clinical risk factors (age, sex, 

BMI, diabetes, hypertension, smoking) and (D) these same guidelines in addition to the cardiac 

event risk test (CERT1) score, and (E) the Sphingolipid Inclusive CAD (SIC) score. ROC curves 

for (F) the aforementioned AHA/ACC clinical markers in addition to lipid markers (total-C, HDL-

C, LDL-C, VLDL-C, triglycerides), (G) the clinical and lipid markers in addition to CERT1, and 

(H) SIC. For (C)-(G) c-statistics are indicated on the respective graphs by area under the curve 

(AUC). 

  





Figure 9. Association of sphingolipid scores with coronary artery disease (CAD), stratified by 

disease presentation (MI alone, surgery alone, MI plus surgery). (A) OR (95% CI) for (CAD) per 

standard deviation of sphingolipid species in the Utah CAD study adjusted for age, sex, BMI). 

MI, myocardial infarction; CERT1, ceramide risk score; SIC, sphingolipid inclusive CAD risk 

score. 

 

 

 

 

 

  



Table 1. Baseline characteristics of case and control participants in the Utah coronary artery disease (CAD) study. 
 

 Control Case P-Value 
No. of Subjects 212 462  
Gender    
     Male, n (%) 91 (43%) 356 (77%)  
Age (years) A 53.5 ± 6.9 55.6 ± 7.5 0.004 
BMI A 28.3 ± 5.7 29.1 ± 5.2 0.040 
     NA, n (%)  16 (3.5%)  
Smoking   <0.001 
     Yes, n (%) 43 (20%) 208 (45%)  
     No, n (%) 169 (80%) 254 (55%)  
Diabetes   <0.001 
     Yes, n (%) 11 (5%) 108 (23%)  
     No, n (%) 201 (95%) 354 (77%)  
Hypertension   <0.001 
     Yes, n (%) 54 (26%) 262 (57%)  
     No, n (%) 158 (74%) 200 (43%)  
Lipid Lowering Medication   0.187 
     Yes, n (%) 13 (6%) 44 (10%)  
     No, n (%) 199 (94%) 418 (90%)  
Total Cholesterol A 189.5 ± 3.3 209.2 ± 4.6 <0.001 
     HDL 46.7 ± 12.8 40.9 ± 1.2 <0.001 
     LDL 103.1 ± 2.8 128.7 ± 4.2 <0.001 
     VLDL 37.3 ± 22.5 39.3 ± 3 0.326 
Serum Triglycerides A 178 ± 9.5 202.7 ± 1.4 0.008 

 
Clinical characteristics of Utah CAD study cases (n = 212) and controls (n = 462). Variables were compared between cases and 
controls using a two-tailed t-test for continuous variables and chi-square test for categorical variables with a p-value of <0.05 
considered significant. 
A mean  ± standard deviation. 
Age, years; BMI, body mass index; HDL high density lipoprotein (mg/dL); LDL, low density lipoprotein (md/dL); VLDL, very low-
density lipoprotein (mg/dL); total cholesterol (mg/dL); serum triglycerides (mg/dL); NA, data not available  
 
  



Table 2. Means and interquartile ranges for LC-MS/MS measured sphingolipids in and control groups of the Utah coronary artery 
disease (CAD) study.  
 

Lipid Control Case P-value 
Dihydro Cer d18:0,16:0 0.1 (0.8-0.2) 0.2 (0.2-0.3) <2E-16 
Dihydro Cer d18:0,18:0 0.09 (0.06-0.1) 0.1 (0.09-0.2) <2E-16 
Dihydro Cer d18:0,20:0 0.05 (0.03-0.07) 0.07 (0.05-0.1) 2.36E-10 
Dihydro Cer d18:0,22:0 0.2 (0.1-0.3) 0.3 (0.2-0.5) 1.39E-12 
Dihydro Cer d18:0,24:0 0.4 (0.3-0.7) 0.7 (0.4-1.2) 1.29E-14 
Dihydro Cer d18:0,24:1 0.2 (0.1-0.4) 0.4 (0.2-0.7) 4.26E-15 

Cer d18:1,16:0 131.3 (87.8-201.3) 217.2 (150.3-324.9) 5.83E-16 
Cer d18:1,18:0 48 (29.9-76.7) 86 (53.9-138.3) 5.40E-16 
Cer d18:1,20:0 44.1 (30.6-65.6) 68.1 (43.8-102.3) 6.12E-13 
Cer d18:1,22:0 264.4 (185.9-436.7) 399.1 (278.8-631.3) 3.63E-11 
Cer d18:1,24:0 98 (64.5-148.3) 157.6 (106.8-245.1) 1.61E-15 
Cer d18:1,24:1 264.7 (173.5-411.8) 437.6 (306.2-669.2) <2E-16 

GC Cer d18:1,16:0 364.7 (293.8-466.3) 366.3 (295-454.3) 0.98 
GC Cer d18:1,18:0 64.4 (45.4-89) 70.7 (52.8-94.7) 0.30 
GC Cer d18:1,20:0 66.3 (45.1-95.6) 94 (65.1-138.2) 3.34E-08 
GC Cer d18:1,22:0 494.7 (367.7-705) 713.5 (446.5-1022.2) 2.87E-08 
GC Cer d18:1,24:0 456.9 (321.1-591.1) 585.5 (408.2-879.4) 8.14E-08 
GC Cer d18:1 24:1 397.5 (287.4-547.1) 575.7 (399.9-866.1) 5.11E-10 

Dihydro SM d18:0,16:0 45 (30.9-64.1) 61.1 (45.9-88.9) 1.22E-09 
Dihydro SM d18:0,18:0 14 (7.5-25.2) 26.37 (14.3-49.6) 2.72E-09 
Dihydro SM d18:0,20:0 28.3 (12.9-48.2) 48.4 (25-91.2) 1.25E-07 
Dihydro SM d18:0,22:0 4.8 (2.2-10.2) 10.2 (5.9-21.4) 9.08E-10 
Dihydro SM d18:0,24:0 0.9 (0.4-1.5) 1.5 (0.9-2.8) 1.57E-10 
Dihydro SM d18:0,24:1 21.7 (10.7-42.1) 47.6 (26.3-92.2) 1.40E-10 

SM d18:1,16:0 592 (437.7-818.5) 779.3 (595-1066.3) 3.77E-10 
SM d18:1,18:0 155.1 (108.3-217.6) 186.7 (136.4-268.6) 2.54E-06 
SM d18:1,20:0 183 (78.7-354.3) 354.7 (183.3-698.6) 1.03E-07 
SM d18:1,22:0 359.4 (150.9-740) 718.7 (365.1-1462.2) 4.28E-09 
SM d18:1,24:0 154.2 (70.4-283.4) 293.8 (174.2-640.8) 1.44E-09 
SM d18:1,24:1 432.8 (200.5-879.1) 913.1 (478.2-1907.4) 1.85E-09 
Sphinganine 0.03 (0.02-0.04) 0.04 (0.03-0.06) 4.92E-06 
Sphingosine 0.08 (0.05-0.1) 0.15 (0.1-0.3) <2E-16 

 
Two tailed t-test was used to compare case (n = 212) and control (n = 462) concentrations of LC-MS/MS measured sphingolipids. P-
values are for the parsimonious age, sex, BMI adjusted model and are considered significant at a false discovery rate (FDR) <0.05. 
Lipid concentrations are represented here as mean (interquartile range). The fully adjusted model (i.e. age, sex, BMI, total-C, LDL-
C, VLDL-C, triglycerides, hypertension, diabetes, smoking) were also run, but results were not materially different than the 
parsimonious model, so here we present only the minimally adjusted model.  
BMI, body mass index; total-C, total cholesterol; LDL-C, low-density lipoprotein cholesterol; VLDL-C, very low-density lipoprotein 
cholesterol; Dihydro Cer, dihydro ceramide; Cer, ceramide; GC Cer, glucosyl ceramide; Dihydro SM, dihydro sphingomyelin; SM, 
sphingomyelin; units are pmol lipd/ml serum 
 
 
  



Table 3. Novel Sphingolipid scores for coronary artery disease (CAD) generated through the application of machine learning 
techniques 
 

Score Components 
RF-SIC Sphingosine, cer(d18:0/18:0), cer(d18:0/16:0), SM(d18:0/24:1), SM(d18:0/22:0) 
RF-SIC+ LDL-C, sphingosine, cer(d18:0/18:0), cer(d18:0/16:0), SM(d18:1/24:0) 

LASSO-SIC SM(d18:0/24:1), cer(d18:1/18:0), cer(d18:1/24:0), cer(d18:1/18:0), SM(d18:1/24:0) 
LASSO-SIC2 SM(d18:0/24:1) / SM(d18:1/18:0), cer(d18:1/18:0), cer(d18:1/24:0), cer(d18:1/18:0), SM(d18:1/24:0) 
LASSO-SIC3 SM(d18:0/24:1) / SM(d18:1/18:0), cer(d18:1/18:0) / cer(d18:1/22:0), cer(d18:1/24:0), cer(d18:1/18:0), SM(d18:1/24:0) 

SIC SM(d18:0/24:1) / SM(d18:1/18:0), cer(d18:1/18:0) / cer(d18:1/22:0), cer(d18:1/24:0), cer(d18:1/18:0), SM(d18:1/24:0), sphingosine 
 
Random forest (RF) and least absolute shrinkage and selection operator (LASSO) regression were applied for variable reduction.  
 
  



Table 4. Area under the curve of receiver operator characteristic plots for lipid-based clinical indices.  
 

Clinical Index C-Statistic 
Triglycerides 0.54 

LDL-C 0.69 
CERT1 0.67 
RF-SIC 0.75 
RF-SIC+ 0.78 

LASSO-SIC 0.74 
LASSO-SIC2 0.75 
LASSO-SIC3 0.76 

SIC 0.79 
 
ROC curves were generated and C-statistics were calculated for each clinical index.  
SIC, sphingolipid inclusive CAD score 
 
 
  



Table 5. Stratification of Utah coronary artery disease (CAD) participants by disease severity.  
 

 Controls Surgery Alone MI Alone MI + Surgery 
n (%) 212 (100%) 75 (16%) 82 (18%) 305 (66%) 

CERT1 3.24 ± 2.7 3.9 ± 2.5 5 ± 3.3 5.4 ± 3.2 
SIC 5.5 ± .24 10.7 ± 9.3 10.8 ± 7.5 12.2 ± 12.5 

LDL-C 103.1 ± 2.8 112 ± 37.4 142.9 ± 47.6 128.9 ± 402 
Total-C 189.9 ± 3.3 192 ± 43.4 220.6 ± 49.1 210.2 ± 44.4 

Triglycerides 178 ± 9.5 193 ± 133.2 175.8 ± 89.3 212.2 ± 152.3 
 
Clinical lipid marker serum concentrations stratified by disease severity and presented as concentration ± standard deviation.  
MI, myocardial infarction; Surgery, percutaneous transluminal coronary artery bypass grafting (PCTA) or coronary artery bypass 
grafting (CABG)  

 

 

  


