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ABSTRACT 

Cancer immune evasion is achieved through multiple layers of immune tolerance mechanisms 

including immune editing, recruitment of tolerogenic immune cells, and secretion of immune 

suppressive cytokines. Recent success with immune checkpoint inhibitors in cancer 

immunotherapy suggests a dysfunctional immune synapse as a pivotal tolerogenic mechanism. 

Tumor cells express immune synapse proteins to suppress the immune system, which is often 

modulated by epigenetic mechanisms. When the methylation status of key immune synapse 

genes was interrogated, we observed disproportionately hyper-methylated co-stimulatory genes 

and hypo-methylation of immune checkpoint genes, which were negatively associated with 

functional T-cell recruitment to the tumor microenvironment. Therefore, the methylation status of 

immune synapse genes reflects tumor immunogenicity and correlates with survival.   

 

 

 



3 

 

INTRODUCTION 

Unprecedented clinical success with immune checkpoint inhibitors alludes to the pivotal 

importance of the immune synapse that forms between the antigen presenting cells and the 

effector T-cells (1). Professional antigen presenting cells such as dendritic cells present tumor-

associated antigens via human leukocyte antigen complex (HLA) to the cognate T-cells to elicit 

tumor-specific immune responses (2). This high-fidelity recognition of tumor antigen by effector 

T-cells is either augmented by concomitant interaction of co-stimulatory molecules leading to a 

functional immune response, or interrupted by engagement of immune checkpoint molecules 

mediating T-cell anergy or exhaustion (2).  

While professional antigen presenting cells are deemed critical for elicitation of a 

competent immune response, the immune synapse also forms between the tumor and the 

effector T-cells; thus, the tumor cells may evade the effector T-cells by neutralizing this 

interaction. In fact, the interaction between tumor cells and immune cells may shape the 

immune-suppressive landscape within the tumor microenvironment via mechanisms involved in 

downregulation of expression of both HLA and a wide array of immune checkpoint and co-

stimulatory ligands to modulate T-cell responses (3). Indeed, the role of tumor in the immune 

synapse is best illustrated by a tendency of superior efficacy of PD1 blocking antibodies against 

tumors expressing high levels of PDL1 (4). 

Expression of HLA and co-stimulatory/immune checkpoint molecules is intricately 

modulated at transcription, translation and post-translational levels (5). In particular, DNA 

methylation is a crucial epigenetic mechanism of immune regulation with critical roles in T-cell 

development and differentiation, antigen presentation, effector function and immunologic memory 

(6). Because cancer cells frequently utilize epigenetic dysregulation to silence tumor suppressors 

or activate oncogenes (7), we hypothesized that tumor progression requires epigenetic 

reprogramming of immune synapse genes to evade immune killing.  
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RESULTS AND DISCUSSIONS 

Tumor evolution to evade immune-surveillance is a hallmark of carcinogenesis, and 

modulation of the immune synapse between antigen presenting cells and effector T-cells directly 

impacts tumor-specific immunity. As APCs and tumor modulate effector T-cells via ligands for co-

stimulatory and immune checkpoint pathways, we focused on the methylation status of these 

ligands in tumor (Figure 1A). The TCGA Level 1 methylation data from 30 solid tumor types were 

studied (Table S1). Twenty selected genes were divided into two groups, immune checkpoint 

genes (ICG) and co-stimulatory genes (CSG), (Table S2). Of note, CD80 and CD86 have dual 

roles as both stimulatory when interacting with CD28 or inhibitory as a ligand for CTLA-4. Prior 

studies suggest that their affinity is stronger for CTLA-4 and thus likely to mediate inhibitory 

signals when expressed in low levels, as is generally the case in tumors (8). Therefore, these two 

genes were categorized as inhibitory genes in the tumor-immune synapse.    

We first investigated whether distinct tumor types were identifiable based on the 

methylation status of the immune synapse genes using two dimensional t-distributed stochastic 

neighbor embedding (t-SNE) (9) and unbiased hierarchical clustering analysis. Strikingly, patients 

with the same tumor type clustered together regardless of other clinical characteristics including 

age, sex or stage (Figure 1B-D). This finding suggests the methylation status of immune synapse 

genes is heavily imprinted by the tissue of origin. By contrast, normal adjacent tissue of the same 

histology differentially segregated within the cluster highlighting the epigenetic evolution of tumors 

during carcinogenesis (Figure 1B-D). For instance, breast cancer (inverted pink triangle) is clearly 

separated from its counterpart normal adjacent tissue.  

Unbiased t-SNE and hierarchical clustering analysis demonstrated that the methylation 

status of immune synapse genes alone can distinguish tumor vs. normal tissue and histologic 

subtypes opening up an intriguing possibility that the methylation status of immune synapse 

genes may be utilized for early detection of cancer.  
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Next, we endeavored to understand the biologic basis of separation between the tumor 

and the normal adjacent tissue by the methylation status of ICG and CSG by analyzing the 

methylation pattern of individual genes and their CpG-probes on the 450K chip. A full list of the 

genes and their probes is given in Table S3. Recent studies have demonstrated that DNA 

methylation of gene bodies may also contribute to transcriptional regulation (10), however, the 

probes targeting the putative promoter region of the genes within TSS1500, TSS200, and 5’UTR 

were evaluated. Interestingly, ICGs and CSGs demonstrated inverse methylation patterns 

reflecting their opposite immunomodulatory functions (Figure 2, S1-S16). For instance, the -

values of probes within the CD40 gene locus, a prominent CSG, have demonstrated profound 

hypermethylation in the tumor while the HHLA2 gene locus, an ICG, demonstrated 

hypomethylation in the tumor in comparison to the normal adjacent tissue (Figure 2A). By 

contrast, the opposite phenomenon was observed for the CSG genes with an increased 

methylation in tumor vs. normal adjacent tissue (Figure 2B). The correlation between probes 

within the same gene is high, indicating the consistence of the methylation level measurements 

(Figure S1). Because the known epigenetic mechanism of gene methylation is transcriptional 

suppression, we interrogated the relationship between the methylation status and its gene 

expression. As anticipated, an inverse correlation between methylation and gene expression was 

manifest among tumor and normal adjacent tissue (Figure 2C-D). Such inverse relationship 

however was confined to tumor samples with detectable gene expression (i.e. log2 expression > 

4) (Figure 2D). The average methylation level was calculated using probes located in the 

TSS1500, TSS200 or 5’UTR region of the gene and with a r<-0.2 (Table S3). Importantly, the 

average -value of the selected probes within the HHLA2 and CD40 gene loci demonstrated 

consistent methylation patterns across disease sites (Figure 2E): hypermethylation of CD40 and 

hypomethylation of HHLA2 in comparison to the normal adjacent tissue. Additionally, for both 
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HHLA2 and CD40, the tumor samples demonstrated a larger variance in the methylation levels in 

tumor vs. normal tissue across disease sites (Figure 2E).  

These results suggest that the tumor-immune synapse is regulated at least in part by 

methylation in cancer. Sporadic evidence for regulation of HLA (11, 12), CD40 (11), or CD80 (13) 

by methylation in select tumor types now appears a more generalized phenomenon in the majority 

of co-stimulatory and immune checkpoint genes across tumor types. Interestingly, consistent with 

previous reports of PD-L1 promoter regulation by methylation (14), two probes within the promoter 

region were negatively correlated with the gene expression. However, a clear trend for 

hypomethylation of PD-L1 locus in comparison to normal adjacent tissue was not observed, 

suggesting competing mechanisms governing PD-L1 expression (Figure S4).   

Next, we conducted a principal component analysis (PCA) to summarize the methylation 

pattern across all genes and their CpG-probes. To minimize noise and enrich for biologically 

relevant signal, only the CSGs and ICGs CpG-probes that demonstrated negative correlation (r<-

0.2) between the methylation status and their corresponding gene expression and located in the 

TSS1500, TSS200, 5’UTR regions were selected for further analysis; in total 75 probes. (Figure 

2, S1-S16, Table S3-S4). PCA revealed two major principal components, explaining 22.6% and 

16.6% of the variation, respectively. A two-dimensional representation of PC1 and PC2 for 8,186 

solid tumors and 745 normal adjacent tissues clearly showed that many tumors have an abnormal 

methylation pattern (Figure 3A). Strikingly, the dominant components of PC1 were CSGs, in 

particular CD40 and HLA-A. By contrast, PC2 was mainly driven by ICGs including VTCN1, 

HHLA2, PDL1, CEACAM1, CD80, and CD86 (Figure 3B, S17). Consequently, PC1 and PC2 

were highly correlated with average -values of CSG probes and ICG probes respectively (Figure 

S17A-B). Probes from the same gene generally clustered together further confirming robustness 

of this analysis (Figure 3B). It should be noted that all CpG-probes contribute to both PCA 

components with variable contributions, some with a negative weight for a specific PCA 

component. The total score for a sample will thus be a weighted average of all variables. 
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Consistent with the methylation patterns observed with individual CSG and ICG, primary tumor 

exhibited higher PC1 and lower PC2 scores in comparison to the normal adjacent tissue score 

across disease sites (Figure 3C), which was also replicated in the average -values of CSG and 

ICG probes (Figure S17D-E). Importantly, we observed reversal of hypermethylation of CSGs by 

5-azacytidine in the dataset of 26 epithelial cancer cell lines (15) with a significant decrease in 

PC1 scores (Figure 3D). At an individual gene level, demethylation of CD40 by azacytidine was 

also evident (Figure 3E) underscoring that the methylation status of CSGs is therapeutically 

actionable.   

Two-dimensional evaluation of CSG and ICG methylation status revealed that normal 

tissues generally exhibit relative hyper-methylation of ICGs and hypomethylation of CSGs, 

demonstrating absence of epigenetic brake to suppress immune response. Indeed, highly efficient 

central tolerance mechanisms governing clonal deletion of self-reactive T-cells allows normal 

tissues to remain highly immunogenic to any abnormal presence of foreign antigens, which 

usually represent infection. By contrast, tumor tissues manifest either hypermethylation of CSGs 

and/or hypomethylation of ICGs, effectively employing epigenetic mechanisms to deliberately 

suppress the immune system. Because of neo-antigens, oncogenic viral antigens, or cancer testis 

antigens, tumor specific immune responses ensue. Therefore, altered methylation status may 

reflect tumor adaptation to evolutionary pressure exerted by immune-surveillance. Relatively 

consistent methylation phenotype between early stage and late stage melanoma suggests such 

epigenetic adaptation occurs early during carcinogenesis, which explains in part the markedly 

consistent methylation phenotype of immune synapse genes across tumor types. While 

expression of HLA and co-stimulatory/immune checkpoint molecules is frequently dysregulated 

in cancer via multiple mechanisms (11), heritable changes to impact the entire tumor tissue as a 

whole require the initial cascade of tolerogenic signal to involve genetic or epigenetic changes. 

Because germline or somatic mutations of these immune synapse genes are rare events (12), 

the immune status of tumor manifest on the epigenetic footprints of immune synapse genes. 
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Because immune evasion is critical for cancer progression and survival, we hypothesized 

that the differential methylation status of the immune synapse genes may determine clinical 

outcome. Therefore, we investigated the clinical relevance of our PCA model in melanoma, a 

prototypic immunogenic cancer. PC1 was a determinant of disease specific survival (DSS) in 

melanoma with significant survival advantage in PC1low patients characterized by 

hypomethylation of CSGs (Figure 4A). An alternate approach with partial least squares (PLS) 

modeling using the outcome as response variable also confirmed differences in survival outcome 

based on CSGs (Figure S18). Interestingly, the PC1 score was relatively consistent among early 

and late stage melanoma patients, and thus, the survival difference was independent of patient 

staging (Figure 4B).  

The methylation status of immune synapse genes was prognostic only in immunogenic 

tumors suggesting that modulation of tumor-immune synapse by methylation may become 

clinically relevant only in the presence of active anti-tumor immune responses. For instance, PC1 

was prognostic for DSS in uterine corpus endometrial carcinoma (UCEC) with microsatellite 

instability (MSI-H) (Figure 4C). By contrast, no differences in survival was noted based on PC1 

in UCEC without MSI (WT) (Figure 4D). Consistently, the methylation status correlated with 

overall survival (OS) and DSS also in other relatively immunogenic cancers, including non-small 

cell lung cancer (NSCLC), renal cell carcinoma (RCC) and head and neck cancer (HNSC). Similar 

to our findings with melanoma, NSCLC patients with lower PC1 score demonstrated improved 

survival (Figure S19). By contrast, prognosis for head and neck squamous cell carcinoma and 

renal cell carcinoma correlated with PC2 (Figure S20).  

Increased tumor infiltration by CD4+ and CD8+ T-cells was evident in PC1low patients 

(Figure 4E). Further, increased levels of CD3 (CD247), Granzyme B (GZMB), Perforin (PRF1), 

and IFN in PC1low patients suggest superior effector functions by these T-cells (Figure 4F). 

Interestingly, key chemokines that drive T-cell recruitment and trafficking in melanoma (16), 
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CCL2, CCL3, CCL4, CCL5, CXCL9, and CXCL10, were elevated in PC1low patients (Figure 4G). 

More recently, STING/cGAS pathway has been critically implicated in tumor immunogenicity. A 

significant increase in cGAS expression was also manifest in PC1low patients (Figure 4H). 

Therefore, hypomethylation of CSGs in melanoma was associated with improved survival as well 

as enhanced tumor immunogenicity and recruitment of effector T-cells. 

In summary, we report methylation of immune synapse genes as a crucial driver of 

tolerogenic immune landscapes in cancer. Notably, preclinical studies have demonstrated the 

efficacy of demethylating agents to augment immunotherapy (17, 18). Based on our study, we 

predict the subset of patients with hypermethylated CSGs (PC1high) may benefit from combination 

therapy of PD1 blockade with 5-azacitidine, while conversely, patients with hypermethylated ICGs 

(PC2high) may be adversely impacted. Given negative preliminary findings from the phase II 

randomized clinical trial of oral 5-azacitidine plus pembrolizumab vs pembrolizumab plus placebo 

(19), patient selection may be crucial to overcome resistance to PD1 blockade. Alternatively, 

targeted editing of tumor methylation of immune synapse genes by TET1 or DNMT3a via CRISPR 

may allow personalized approach to augment immunotherapy (20). Notably, the methylation 

status of immune synapse genes may be utilized to predict response to immunotherapy. The 

major advantage to the use of the methylation status is that DNA is stable and degradation is less 

likely in Formalin-Fixed Paraffin-Embedded tissues, and thus anticipated to be more robust than 

RNA based or histology based approaches.  
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METHODS 

Analysis of TCGA methylation database 

TCGA Level 1 IDAT files for the selected tumor types was downloaded between April and May 

of 2016 using the former (now defunct) Data Matrix accessed through http://tcga-

data.nci.nih.gov/tcga/dataAccessMatrix.htm. Preprocessing the data included normalization via 

internal controls probe followed by background subtraction using the methylumi R package from 

Bioconductor (21). The calculated -values were then extracted from the MethyLumiSet object 

following preprocessing.  

Analysis of TCGA RNAseq database 

The TCGA RNAseq samples was extracted from the 

“EBPlusPlusAdjustPANCAN_IlluminaHiSeq_RNASeqV2.geneExp.tsv” file available from: 

https://gdc.cancer.gov/about-data/publications/pancanatlas and log2 transformed, log2(x+1).  

GSE57342 5-azacitidine treated cancer cell lines 

The GSE57342 processed dataset was downloaded and cell lines with more than three Mock- 

and three 5-azacitidine-treated samples was selected for analysis.  

T-SNE analysis 

T-SNE was calculated using all 247 probes for the selected 20 genes across all TCGA samples. 

The 50 first PCA-components was used as input with perplexity=50 and Euclidian distance as 

implemented in MATLAB. 

Correlation coefficient heatmap  

The Pearson’s correlation coefficients between all the probes within a gene were calculated and 

displayed as a heatmap.  

Principal component analysis 

We used the first and second principal component (a weighted average -values among the 

CSG and ICG probes), as they account for the largest variability in the data, to represent the 

http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm
https://gdc.cancer.gov/about-data/publications/pancanatlas
https://gdc.cancer.gov/about-data/publications/pancanatlas


11 

 

overall methylation status for 8,931 tumor and normal samples in the TCGA database. That is, 

PC = Σwixi, a weighted average -values among the selected CSG and ICG probes, where xi 

represents gene i -value, wi is the corresponding weight (loading coefficient) with Σwi
2 = 1, and 

the wi values maximize the variance of Σwixi. For each gene, a set of probes were selected 

using the following criteria to minimize noise, r<-0.2 (methylation vs gene expression) located in 

the TSS1500, TSS200 or the 5’UTR (Table S4). Each probe was centered but not scaled before 

PCA calculations.  

Survival analysis 

OS and DSS, was retrieved from the prior publication (5). Tertiles were used to define high, 

intermediate (Int) and low PC1 or PC2 for melanoma, NSCLC, HNSC, RCC, UCEC MSIhi and 

wild type patients. Kaplan-Meier curves were then plotted based on tertile scores.   

Partial Least Squares (PLS) modelling 

A PLS model was derived using melanoma poor survivors (DSS Dead<12 months, 0) and long 

survivors (DSS Alive>120 months, 1) as a binary response using the CSG-probes. Cross 

validation indicated two significant PLS components. The PLS model was then applied to the 

melanoma samples not used in training. Samples with a predicted response>0.5 was compared 

to samples with a predicted response<0.5 using a log rank test.   

MSI status 

The MSI status was extracted from Bonneville et al (22). Samples with a MANTIS score larger 

than 0.4 was considered MSI positive as described in the publication.  

Statistics 

T-SNE, PCA, PLS, Pearson and Spearman correlation statistics, and two-sided Student’s t-tests 

were done in MATLAB R2018B. Survival analysis was done using MatSurv.  

Study approval 
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Only publicly available, deidentified data are presented; thus, institutional study approval was 

not required. 
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FIGURES AND FIGURE LEGENDS 

 

Figure 1. The distinct pattern of immune synapse gene methylation depends on tumor histology. 
(A) The schematic of immune synapse between the antigen presenting cells/tumor and T-cells is 
demonstrated. (B) T-SNE analysis was performed on 8,186 solid tumors and 745 normal adjacent tissues 

based on the -values for methylation levels on all probes for CSGs and ICGs from (A) contrasting tumor 
(blue) vs. normal adjacent tissue (red). (C) The spatial relationship between distinct tumor types is 
depicted with breast tumors in blue- and normal adjacent tissue samples black-dotted boxes. (D) 
Unbiased hierarchical clustering analysis is shown. 
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Figure 2. The polarity of methylation patterns for co-stimulatory and immune checkpoint ligands. 

(A, B) -values of methylation probes for TSS1500, TSS200, 5’UTR, body, and 3’UTR of HHLA2 gene 
(A), an example of ICG, or CD40 (B), an example of CSG, derived from all tumor samples (blue) and 
normal adjacent tissues (red) are depicted. The methylation level for each probe is represented by a box-
plot. The left most column indicates the presence of CpG-island, while the second column colors indicate 

where on the gene the probe is located. The average -values for selected probes within TSS1500, 
TSS200, and 5’UTR are plotted against gene expression for HHLA2 (C) or CD40 (D). Each circle 

represents an individual tissue sample. (E) A box plot of average -values for selected probes HHLA2 
and CD40 from tumor (blue) and normal adjacent tissue (red) are shown. RP and RS are Pearson and 
Spearman correlation coefficient respectively. 
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Figure 3. Principal component analysis (PCA) segregates co-stimulatory and immune checkpoint 
ligands. (A) Two-dimensional plot of PC1 and PC2 scores for all tumor types (blue) and normal adjacent 
tissues (red) is shown. (B) The importance of each variable, CpG-probes, for PC1 and PC2 are depicted. 
(C) A box plot of PC1 and PC2 scores for tumor (blue) and normal adjacent tissue (red) compared across 
histologic types. (D) PC1 scores of mock- or 5-azacitidine-treated epithelial cancer cell lines. (E) The 
methylation status of CD40 gene in mock- or azacytidine-treated CAMA1 cell line. * p<0.05, ** p<0.01, *** 
p<0.001, **** p<0.0001 by t-test.  
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Figure 4. The methylation status of co-stimulatory ligands is prognostic in melanoma. (A) Kaplan-
Meier curves for DSS of melanoma patients with high, intermediate, and low tertials of PC1 score are 
shown. Higher PC1 score represents hypermethylation of CSGs. (B) Box-plot of PC1 score distribution 
based on melanoma patient staging. (C, D) Kaplan-Meier curves for DSS of UCEC patients with MSI (C) 
or without MSI (D) with high, intermediate, and low tertiles of PC1 score are shown. (E) T-cell recruitment 
in PC1high and PC1low melanoma patients is approximated by gene expression of CD3E, CD4 and CD8B. 
(F) T effector functions in PC1high and PC1low melanoma patients is approximated by gene expression of 

CD3 (CD247), Granzyme B (GZMB), Perforin (PRF1), and IFN. (G) Chemokines for immune cell 
trafficking in PC1high and PC1low melanoma patients is approximated by gene expression of CCL2, CCL3, 
CCL4, CCL5, CXCL9 and CXCL10. (H) Immunogenicity of PC1high and PC1low melanoma patients is 
approximated by gene expression of cGAS. p-value in panel A, C and D is a log rank test between High 
and Low group. ****, p<0.0001 by t-test. 
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