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Introduction
Cantu syndrome (CS) is a complex disorder with multiple cardio-
vascular abnormalities, including edema, dilated and tortuous 
blood vessels with decreased systemic vascular resistance, pat-
ent ductus arteriosus (PDA), and marked cardiac hypertrophy (1). 
CS is caused by gain-of-function (GoF) mutations in KCNJ8 and 
ABCC9, which encode pore-forming Kir6.1 and regulatory SUR2 
subunits, respectively, of ATP-sensitive potassium (KATP) chan-
nels (2–12). These subunits are prominently expressed in smooth 
muscle (SM) cells, and vascular SM (VSM) KATP channel activation 
underlies the chronically dilated vasculature observed in patients 
with CS (13–17). Notably, Kir6.1 is not a major component of car-
diomyocyte KATP channels (wherein the related Kir6.2 [KCNJ11] is 
the predominant pore-forming isoform [refs. 3, 18]) and so how 
CS-associated mutations in both KCNJ8 and ABCC9 result in 
cardiac hypertrophy is therefore unclear. We recently developed 
murine CS models in which disease-causing ABCC9 or KCNJ8 
mutations were knocked-in to the equivalent mouse loci using  
CRISPR/Cas9. These animals exhibit increased VSM KATP channel 
activity and consequent chronic vasodilation, which we propose 
triggers systemic feedback mechanisms aimed at maintaining per-
fusion — including increased cardiac output and cardiomyocyte 
hypertrophy — in CS (19).

There are currently no targeted therapies for CS and it is not 
known if, or to what extent, cardiovascular abnormalities can be 
reversed once manifest. KATP channel inhibitors, including the sul-
fonylurea glibenclamide (glyburide), are used clinically to treat 
diabetes due to their inhibitory action on pancreatic KATP channels 
(formed of Kir6.2/SUR1). These drugs also inhibit cardiovascu-
lar KATP channels and thus may potentially be repurposed for the 
treatment of CS (20). In this study we thus sought to directly test 
the hypothesis that cardiac hypertrophy occurs secondary to KATP 
GoF in VSM, to investigate whether cardiac remodeling in CS is 
reversible, and to test the potential for glibenclamide treatment of 
cardiovascular abnormalities in Cantu mice.

Results and Discussion
Cardiovascular abnormalities in CS result from KATP channel GoF in 
VSM cells. To directly test whether cardiac remodeling occurs as 
a secondary response to VSM KATP channel GoF, we crossed CS 
(SUR2wt/AV) mice with animals expressing smooth muscle myosin 
heavy chain promoter-driven Cre-recombinase (SM-Cre) and 
dominant-negative KCNJ8 (Kir6.1-AAA) transgenes, allowing 
inducible suppression of KATP in smooth muscle of WT and CS 
mice (Figure 1A). Induction of expression at 8 weeks resulted in 
complete loss of KATP function, determined by whole-cell patch 
clamp recordings from isolated aortic myocytes (Figure 1, B and 
C). As previously reported (19), SUR2wt/AV mice exhibit lower 
mean arterial pressure (MAP) than WT, and dominant-negative 
suppression of smooth muscle KATP on this CS background (in 
SM-DNwt/AV mice) resulted in significant MAP elevation (Figure 
1, D and E). Most strikingly, cardiac hypertrophy was essentially 
completely reversed in SM-DNwt/AV mice 4 weeks after transgene 
induction (Figure 1F). These findings confirm a principal role for 
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(SVR) in SUR2wt/AV mice (Figure 2, B and C). Glibenclamide also 
induced a partial reversal of the elevated cardiac index observed 
in SUR2wt/AV mice (Figure 2D). Hypertrophy in SUR2wt/AV mice is not 
associated with significant fibrosis, and fibrosis was not induced by 
glibenclamide (Figure 2E). Glibenclamide induced no impairment 
of cardiac function as determined by echocardiographic measure-
ments of ejection fraction (Figure 2F).

Notably, high-dose glibenclamide did not reverse the marked 
carotid diameter enlargement observed in SUR2wt/AV mice (Figure 
2G and ref. 19), and a similar resistance to reversal was observed 
in SMDNwt/AV mice (Figure 2H). This suggests that vascular struc-
tural abnormalities may be relatively refractory to KATP inhibition, 
but that reversal of conduit vessel structural remodeling is not 
required to reverse cardiac remodeling.

High-dose glibenclamide induces only transient hypoglycemia in 
mice. Glibenclamide is used clinically to treat diabetes, due to its 
inhibitory action on pancreatic Kir6.2/SUR1-dependent KATP chan-
nels (which exhibit markedly higher sensitivity than cardiovascular 
Kir6.1/SUR2 channels) (20). High doses, as required to reverse CS 

VSM KATP overactivity in the generation of cardiac hypertrophy. 
Importantly, they also show that cardiac hypertrophy can be 
reversed once manifest, and hence establish VSM KATP channels 
as appropriate molecular targets for pharmacological treatment 
of CS cardiovascular abnormalities.

Pharmacological reversal of CS-associated cardiovascular abnor-
malities in Cantu mice. We next hypothesized that reversal might 
also be achieved by pharmacological inhibition of overactive VSM 
KATP channels. Mice were implanted with subcutaneous, slow- 
release pellets formulated to release a moderate or high dose 
(approximately 1 or approximately 19 mg/kg/day) of glibenclamide 
for 4 weeks, which resulted in measured plasma concentrations of 
30 ± 8 ng/mL (approximately 60 nM) and 147 ± 51 ng/mL (approx-
imately 300 nM), respectively. Cardiac hypertrophy was reversed 
in a dose-dependent manner (Figure 2A), almost completely at the 
highest dose, comparable to the effect of genetically induced VSM 
KATP downregulation in SM-DNwt/AV mice (Figure 1). Consistent 
with an action on VSM KATP channels, high-dose glibenclamide ele-
vated arterial pressure (MAP) and fully restored vascular resistance 

Figure 1. Downregulation of VSM KATP overactivity abolishes cardiac hypertrophy. (A) Transgenic approach to generate inducible, tissue-specific, dom-
inant-negative Cantu mice (see text). (B) Representative whole-cell recordings of KATP channel activity in aortic SM cells from WT (left) and SM-DNwt/wt 
mouse following tamoxifen induction (right). Cells were voltage-clamped at –70 mV and currents recorded in high-Na+ or -K+ as indicated. Pinacidil (Pin) and 
glibenclamide (Glib) were administrated as indicated. (C) KATP channel current density from experiments as in C. Data for VSM cells isolated from WT (black 
bar), SM-DNwt/wt without tamoxifen induction (white bar), and SM-DNwt/wt with tamoxifen administration (gray bar). (D) BP recordings from anesthetized 
WT (black), SUR2wt/AV (orange), and SM-DNwt/AV (brown) mice. (E) Mean arterial pressure (MAP) in nontransgenic (Non TG), single-transgenic (STG), and 
double-transgenic (SM-DN) WT and SUR2wt/AV mice. (F) Left: Representative images of excised hearts from WT (top), SUR2wt/AV (middle), and SM-DNwt/AV 
(bottom) mice. Right: Heart size (heart weight normalized to tibia length; HW/TL) from nontransgenic (Non TG), single-transgenic (STG), and double- 
transgenic (SM-DN), WT and SUR2wt/AV mice. For all figures, individual data points are represented as open circles, bars show mean ± SEM. Statistical signifi-
cance was determined by 1-way ANOVA and post hoc Tukey’s test for pairwise comparison. *P < 0.05; **P < 0.01 from pairwise post hoc Tukey’s test.
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regulation of insulin secretion with continued KATP-inhibition (21). 
Consistent with this, a mild glucose intolerance phenotype was 
observed in high-dose–treated WT and SUR2wt/AV mice (Figure 3, 
G and H). Notably, in a single human CS case thus far treated with 
glibenclamide, transient hypoglycemia only was also observed at 
initiation of glibenclamide treatment or dose escalation (22), and 
thus chronic hypoglycemia may not prove to be a significant com-
plication for glibenclamide therapy in patients with CS.

Glibenclamide-induced correction of low blood pressure in 
Kir6.1wt/VM mutant mice. Although the vast majority of patients 
with CS carry mutations in ABCC9 (SUR2), there are patients with 
mutations in the pore-forming Kir6.1 (KCNJ8) subunit. To examine 
the potential for glibenclamide therapy in such patients, we also 

cardiovascular remodeling, will therefore also unavoidably inhibit 
pancreatic KATP channels and are thus naively predicted to increase 
insulin secretion and lower blood glucose (BG), a potentially 
important side effect that could limit clinical utility. As expected, 
fed BG was not different between WT and SUR2wt/AV mice prior to 
pellet implantation (Figure 3A) and both low- and high-dose glib-
enclamide indeed significantly lowered BG on day 1 after implan-
tation. However, BG returned to normal by approximately day 2 
(Figure 3, B–E). Moreover, fasted BG was normal in mice that had 
received high-dose glibenclamide for over 30 days — evidence of 
long-term glycemic stability (Figure 3F). Transient, spontaneous-
ly resolving, hypoglycemic effects of chronic glibenclamide have 
been demonstrated before, and are explained by chronic down-

Figure 2. Glibenclamide reverses cardiac hypertrophy in SUR2wt/AV mice. (A) Left: Representative hearts from placebo-implanted WT (black), placebo-im-
planted SUR2wt/AV (orange), and approximately 19 mg/kg/day glibenclamide pellet implanted SUR2wt/AV (brown) mice. Right: Summary of heart size (weight 
normalized to tibia length; HW/TL) for WT and SUR2wt/AV mice implanted with either placebo pellets (Glib = 0), or pellets releasing approximately 1 mg/
kg/day and approximately 19 mg/kg/day. (B) Summary of MAP in anesthetized placebo-pellet (Glib = 0) and approximately 19 mg/kg/day glibenclamide 
pellet–implanted WT and SUR2wt/AV mice. In all experiments, pellets were implanted at 8 weeks of age, and phenotypes were assessed 4 weeks later. (C) 
Systemic vascular resistance (SVR) and (D) cardiac index in placebo-implanted WT mice and placebo- or glibenclamide pellet–implanted SUR2wt/AV mice. 
(E) Gomori-stained left ventricular free wall sections. Scale bars: 500 μm. (F) Ejection fraction of placebo-implanted WT mice and placebo- or gliben-
clamide pellet–implanted SUR2wt/AV mice. Carotid artery compliance measurements from (G) placebo-implanted or approximately 19 mg/kg/day gliben-
clamide pellet–implanted WT and SUR2wt/AV mice, or (H) WT, SUR2wt/AV, and SMDNwt/AV mice. Individual data points are represented as open circles, bars 
show mean ± SEM. Statistical significance was determined by 1-way ANOVA (A–F) and 2-way ANOVA (G and H) with subsequent post hoc Tukey’s test for 
pairwise comparison. *P < 0.05; **P < 0.01 from pairwise post hoc Tukey’s test. For G and H, color-coded statistical significance indicators are shown for 
comparison with placebo-implanted WT mice (black).
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reduced efficacy of glibenclamide in 
Kir6.1wt/VM, compared with SUR2wt/AV, 
suggests that sulfonylurea treatment 
efficacy may depend on the severity of 
the underlying mutation, and under-
lines the importance of thorough 
understanding of the molecular con-
sequences for personalized therapy.

Inhibition of VSM KATP channels as 
a strategy to treat CS. The above results 
establish that cardiac remodeling in 
CS arises secondary to KATP channel 
GoF in VSM, and provide key pre-
clinical evidence for in vivo efficacy 
of glibenclamide in treatment of CS. 
The link between VSM KATP channel 
GoF and cardiac hypertrophy is not 
yet established, but is likely to involve 
systemic feedback mechanisms that 
seek to normalize systemic perfusion 
in response to vasodilation. Directly 
inhibiting VSM KATP overactivity with 
KATP inhibitors may thus reverse both 
the primary vascular defect and these 
secondary features.

Excessive hair growth (hyper-
trichosis) is a defining CS feature (1), 
and is also mimicked by the KATP chan-
nel opener, minoxidil, which is used 
as a topical treatment for alopecia 
(24, 25). It is possible that KATP inhi-
bition might alleviate hypertrichosis 
in patients with CS, and that topical 
administration of KATP inhibitors may 
be of cosmetic use for hair removal 
in the future (26). PDA is observed 
in most patients with CS and likely 
arises from the vasodilatory effect 
of excessive KATP activity in the DA 
after birth. PDA, which can be lethal 
without correction, is also present 
in approximately 1:2000 full-term 
births but in 20%–60% of premature 
births (27). KATP inhibitors may thus 

also prove useful for correction of PDA of various etiologies, an 
application that should be the subject of future study. Increased 
VSM KATP channel expression has been reported in septic shock, 
and previous animal studies suggested that KATP inhibition may 
also prove beneficial in treating endotoxic hypotension (28, 29), 
although acute glibenclamide treatment failed to reverse hypo-
tensive shock in humans, despite inducing hypoglycemia (30, 
31). Such studies illustrate the different sensitivity of pancreatic 
and cardiovascular KATP channels, and raise the question whether 
longer term and higher dose treatment might be necessary and 
appropriate for cardiovascular applications.

Potential adverse effects of high-dose glibenclamide, includ-
ing actions in skeletal and cardiac muscle, as well as the drug 

implanted CS model Kir6.1[V65M] knockin mice (Kir6.1wt/VM) (19) 
with high-dose glibenclamide pellets. This resulted in a significant 
although incomplete (approximately 13 mmHg) improvement of 
the otherwise severe hypotensive phenotype and an incomplete 
effect on heart size (Figure 4, A and B). The Kir6.1[V65M] muta-
tion results in a drastic GoF of KATP channels and causes severe CS 
features in humans (7, 8, 19). Unlike the SUR2[A478V] mutation, 
which does not significantly affect glibenclamide sensitivity (23), 
the Kir6.1[V65M] mutation markedly decreases glibenclamide 
inhibition in recombinant channels (8), potentially explaining the 
incomplete reversal of CV abnormalities. Alternatively, incom-
plete reversal might reflect the more severe phenotype requir-
ing longer administration times for reversal. In either case, the 

Figure 3. Chronic high-dose glibenclamide induces only transient hypoglycemia. (A) Summary of blood 
glucose levels in fed WT and SUR2wt/AV mice on day 0 prior to pellet implantation. (B) Mean blood glucose 
measurements from WT mice implanted with placebo pellets (black diamonds, solid line; n = 6), approx-
imately 1 mg/kg/day glibenclamide pellets (light gray circles, dotted line; n = 4), and approximately 19 
mg/kg/day glibenclamide pellets (dark gray triangles, dashed line; n = 4). (C) Summary of blood glucose 
measurements for WT mice implanted with placebo pellets (black bars) or approximately 19 mg/kg/day 
glibenclamide pellets (gray bars) on day 0, 1, and 18. (D) Mean blood glucose measurements from SUR2wt/AV  
mice implanted with placebo pellets (dark orange circles, solid line; n = 4), approximately 1 mg/kg/day 
glibenclamide pellets (light orange diamonds, dotted line; n = 7), and approximately 19 mg/kg/day glib-
enclamide pellets (brown squares, dashed line; n = 8). (E) Summary of blood glucose measurements for 
SUR2wt/AV mice implanted with placebo pellets (orange bars) or approximately 19 mg/kg/day glibenclamide 
pellets (brown bars) on day 0, 1, and 18. (F) Fasted BG in mice which had been implanted with either placebo 
or high-dose glibenclamide more than 30 days prior. Glucose tolerance test data for WT (G) and SUR2wt/AV 
(H) mice implanted with placebo or approximately 19 mg/kg/day glibenclamide pellets. For summary fig-
ures, individual data points are represented as open circles, bars show mean ± SEM. Statistical significance 
was determined by 1-way ANOVA and subsequent post hoc Tukey’s test for pairwise comparison. *P < 0.05 
from pairwise post hoc Tukey’s test.
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pressure measurements in anesthetized mice, echocardiographic 
analysis and heart weight measurements, Gomori stain, vascular com-
pliance, and blood glucose measurements were made as described in 
Supplemental Methods. Plasma glibenclamide concentrations were 
measured by LC-MS/MS analysis using an ion trap mass spectrometer 
following the method described in detail in Supplemental Methods.

Study approval. Mouse studies were performed in compliance 
with the standards for the care and use of animal subjects defined in 
the NIH Guide for the Care and Use of Laboratory Animals and were 
reviewed and approved by the Washington University Institutional 
Animal Care and Use Committee.

Statistics. Statistical analysis was carried out with Microsoft Excel 
(Real Statistics Resource Pack software, www.real-statistics.com). Sig-
nificance values were calculated using 1-way ANOVA and subsequent 
post hoc Tukey’s test for pairwise comparison. For carotid compliance 
measurements, where groups with 2 variables were compared, 2-way 
ANOVA with post hoc Tukey’s test was performed using GraphPad 
Prism 8 for OS X. A P value of less than 0.05 was considered signifi-
cant. All values are expressed as mean ± SEM.
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sensitivity of specific CS mutations, require further study, and 
ideal therapy for CS may ultimately require an agent with much 
improved selectivity or potency for VSM Kir6.1/SUR2B channels. 
However, there is immediate need for a targeted therapy for CS, 
and the present findings clearly demonstrate the in vivo poten-
tial of glibenclamide for correcting CS cardiovascular abnor-
malities. Moreover, they suggest that the undesired glucose- 
lowering effects in nondiabetic animals are temporary, and may 
not therefore be prohibitive for the use of glibenclamide as a 
therapy in CS.

Methods
Mouse models. CRISPR/Cas9 genome-edited SUR2wt/AV and Kir6.1wt/VM  
Cantu mice were previously reported (19) (see also Supplemental 
Methods; supplemental material available online with this article; 
https://doi.org/10.1172/JCI130571DS1). Dominant-negative Kir6.1-
AAA mice were crossed with Cantu mice as illustrated in Figure 1A 
and described in detail in Supplemental Methods. Electrophysiolog-
ical recordings of acutely isolated aortic smooth muscle cells, blood 

Figure 4. Partial reversal of cardiovascular features by glibenclamide in 
Kir6.1wt/VM mice. (A) Summary of mean arterial pressure (MAP) in anesthe-
tized placebo-implanted (Glib = 0) and approximately 19 mg/kg/day glib-
enclamide pellet–implanted WT and Kir6.1wt/VM mice. (B) Summary of heart 
size (weight normalized to tibia length; HW/TL) for WT and Kir6.1wt/VM  
mice implanted with either placebo pellets (Glib = 0) or pellets releasing 
approximately 19 mg/kg/day. For all figures, individual data points are rep-
resented as open circles, bars show mean ± SEM. Statistical significance 
was determined by 1-way ANOVA and post hoc Tukey’s test for pairwise 
comparison. **P < 0.01 from pairwise post hoc Tukey’s test.
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