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White adipose tissue as the principal site for 
energy storage
Proper control of nutrient homeostasis depends on safe and effi-
cient energy storage. In mammals, long-term energy storage is 
achieved through production of intracellular triglycerides, stored 
within specialized cells called white adipocytes. White adipocytes 
are capable of synthesizing triglycerides for long-term storage 
and liberating free fatty acids from triglycerides in times of ener-
gy demand. Beyond their role as an energy bank, adipocytes are 
also active endocrine cells. Adipocyte secretory products (“adi-
pokines”), such as leptin and adiponectin, regulate organismal 
energy homeostasis (1–3).

White adipocytes are found throughout the body and are gen-
erally organized into anatomically distinct “depots.” Most white 
adipose tissue (WAT) depots are broadly characterized as either 
intra-abdominal or subcutaneous (4). WAT’s precise develop-
mental origin during fetal development is still unclear; howev-
er, lineage tracing studies in mice indicate that subcutaneous 
and intra-abdominal depots emanate from distinct lineages (5). 
Human WAT expands from birth through adolescence via the 
expansion of cell size and number (6, 7). In adulthood, adipocytes 
turn over at a rate of 10% per year, and adipocyte number remains 
relatively stable regardless of BMI or weight loss (6).

WAT’s importance is quite clear from individuals or animal 
models lacking functional adipose tissue (termed lipodystrophy). 
Lipodystrophy results from impaired adipocyte development or 
inability to synthesize triglyceride (8). Congenital generalized 
lipodystrophy (CGL) is a rare autosomal-recessive disorder usu-
ally recognized in neonates. Inactivating mutations in AGPAT2, 

a key enzyme in triglyceride synthesis, are associated with the 
development of one type of CGL. Familial partial lipodystrophy 
(FPL) is a genetic disorder characterized by variable loss of body 
fat from the extremities and/or truncal region occurring in child-
hood or puberty. Acquired lipodystrophies also occur, including 
the loss of subcutaneous fat observed in individuals taking prote-
ase inhibitors for treatment of HIV (8, 9). During lipodystrophy, 
fatty acids overflow into nonadipose tissues (steatosis), including 
skeletal muscle, heart, pancreas, and liver. Ectopic lipid deposi-
tion is deleterious, as accumulated lipid species (e.g., ceramides 
and diacylglycerols) can interfere with insulin signaling and other 
tissue functions (termed lipotoxicity) (10–12). Hepatic steatosis, 
hypertriglyceridemia, and insulin resistance/diabetes all occur 
early in individuals with lipodystrophy (Figure 1). Leptin, owing to 
its ability to enhance lipid metabolism, is an effective treatment 
for managing metabolic abnormalities in lipodystrophic patients 
(13). As such, both the energy-storing capacity and endocrine 
functions of white adipocytes play a critical role in controlling 
energy homeostasis.

Studies of WAT development have largely focused on under-
standing the cellular basis of adipocyte differentiation, termed 
adipogenesis. The nuclear hormone receptor PPARγ is a bona fide 
master regulator of adipocyte differentiation. PPARG is expressed 
in committed adipocyte precursor cells (APCs), or “preadipo-
cytes,” and is further activated upon differentiation into adipo-
cytes. PPARγ is essential for the differentiation of all adipocytes: 
humans with FPL and engineered mouse strains lacking function-
al PPARG are severely lipodystrophic and insulin resistant (14, 15). 
Moreover, in vitro, PPARγ can drive adipocyte differentiation from 
fibroblasts or cells of mesenchymal origin (16). Great progress has 
been made in understanding the transcriptional mechanisms con-
trolling adipogenesis (17–19); however, the physiological mecha-
nisms regulating adipocyte number in adulthood are less clear. In 
particular, the identity of APCs and the importance of adipogene-
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visceral WAT depots are intrinsically distinct “mini-organs,” and 
that developmental, functional, and molecular differences may 
underlie their differential contributions to nutrient homeostasis 
(30). Several studies using either rodent or human adipocytes col-
lectively demonstrate that anatomically distinct adipocytes, in iso-
lation, are functionally unique, differing in their ability to undergo 
lipolysis and lipogenesis and activate thermogenic programs (23, 
31–33). Further complicating matters, adipocyte heterogeneity 
within individual WAT depots exists, with specific subpopulations 
of adipocytes exhibiting more proinflammatory phenotypes (34). 
Thus, intra-depot adipocyte heterogeneity may influence overall 
adipose tissue health and susceptibility to metabolic disease.

Understanding how anatomically distinct depots develop 
may lead to therapeutic strategies to alter body fat distribution 
or change the functional properties of depot-specific adipocytes. 
WAT distribution is sexually dimorphic (35, 36). Estrogens and 
androgens are undoubtedly key regulators of this patterning (35, 
37); however, it is likely that genetic variance also plays an import-
ant role in determining body fat distribution. GWAS studies 

sis in adulthood are still being defined. Here, we highlight recent 
studies suggesting that the ability to recruit new fat cells through 
adipogenesis is a critical determinant of both healthy adipose tis-
sue expansion and metabolic health in the setting of overnutrition. 
We summarize recent single-cell sequencing efforts that have sub-
stantially advanced our understanding of adipose tissue–resident 
progenitor identity and the potential for APC heterogeneity. A 
better understanding of adipose stem cells and adipogenesis may 
lead to novel strategies to improve metabolic health in obesity.

Healthy versus unhealthy adipose tissue 
expansion in obesity
The location of adipose tissue expansion matters. WAT has an unpar-
alleled capacity to expand under physiological conditions. WAT 
expansion in response to caloric excess is a physiologically appro-
priate adaptation; however, the condition of obesity is associated 
with increased risk for diabetes and cardiovascular disease. Inter-
estingly, many obese individuals are relatively resistant to devel-
oping features of metabolic syndrome (20, 21). This implies that 
factors outside of BMI are driving metabolic syndrome.

Emphasis has been placed on identifying better clinical cor-
relates between obesity and its associated diseases. Such efforts 
revealed that regional WAT distribution is a strong predictor of 
metabolic health in obesity (22, 23). Obese individuals who pref-
erentially expand intra-abdominal WAT (i.e., “apple-shaped obe-
sity”) are at greater risk for metabolic syndrome than those who 
accumulate subcutaneous WAT (i.e., “pear-shaped obesity”) (Fig-
ure 1). One reason for the detrimental effects of visceral adipose 
accumulation may lie in the location of the depot itself. Metabo-
lites and free fatty acids can drain directly from visceral WAT into 
the portal circulation and disrupt liver function (24). Moreover, 
the proximity to the gut makes the visceral fat more receptive to 
gut microbiota–derived products (25–27). Nevertheless, factors 
beyond visceral WAT mass per se impact the development of insu-
lin resistance (28, 29). Another possibility is that subcutaneous and 

Figure 1. Inadequate energy storage in adipose 
tissue underlies insulin resistance. Left: 
Lipodystrophy is characterized by an absolute 
or partial adipocyte deficiency, triggered by 
impaired adipocyte differentiation or triglyceride 
synthesis. This leads to ectopic lipid accumula-
tion in other tissues, including the liver, skeletal 
muscle, heart, and pancreas. Toxic accumulation 
of lipid intermediates within these tissues leads 
to the development of insulin resistance. Middle: 
Pathologic obesity is often characterized by a 
relative adipocyte deficiency: limited expandabil-
ity of the subcutaneous fat tissue, preferential 
expansion of visceral adipose tissue depots, and 
unhealthy adipose tissue remodeling (inflam-
mation, fibrosis, limited adipogenesis). This is 
associated with ectopic lipid accumulation and 
insulin resistance, similar to what is observed in 
the lipodystrophy. Right: Metabolically healthy 
obesity is characterized by adequate expansion 
of protective subcutaneous depots, healthy adi-
pose tissue remodeling (adipocyte hyperplasia), 
and limited ectopic lipid deposition.

Table 1. Importance of de novo adipocyte differentiation from 
PDGFRβ+ progenitors in the setting of caloric excess

Phenotype following high-fat  
diet feeding 

Gain of de novo 
adipogenesis

Loss of de novo 
adipogenesis

Body weight ↔ ↔
Chronic metabolic inflammation of WAT ↓ ↑
WAT fibrosis ↓ ↑
WAT insulin sensitivity ↑ ↓
Serum adiponectin ↑ ↓
Hepatic steatosis and systemic insulin resistance ↓ ↑

Results are based on studies of mouse models conferring inducible mural 
cell selective overexpression or inactivation of Pparg at the onset of high-fat 
diet feeding.
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independent of BMI (42–44). WAT from patients with metabolic 
syndrome often exhibits a striking pathologic phenotype: adipose 
depots are characterized by hypertrophic adipocytes, hypoxia, 
fibrosis, and accumulation of proinflammatory macrophages (42, 
49–52). This phenotype also correlates well with lower serum adi-
ponectin levels and ectopic lipid deposition into nonadipocytes 
(44). In contrast, WAT depots from metabolically healthy individ-
uals contain numerous and relatively smaller adipocytes, as well 
as a relatively greater blood vessel density. Such studies support a 
“limited expandability hypothesis,” whereby the inability of WAT 
depots to adequately expand to meet the energy storage demands 
results in adipose tissue dysfunction, ectopic lipid deposition, and 
insulin resistance (53, 54).

Insight into the importance of “healthy” fat tissue comes 
from the development of a growing number of animal models. 
One notable model is the Col6 (collagen VI) knockout mouse (55). 
Collagen production by adipocytes heavily influences adipose 
tissue expandability. Collagen VI deficiency leads to a weakening 
of adipocytes’ extracellular scaffold, enabling seemingly unre-
stricted WAT expansion in the setting of positive energy balance. 
Although obese, these mice exhibit an improved inflammatory 
profile and maintain insulin sensitivity. More evidence comes 
from transgenic animals expressing Slc2a4 (GLUT4), Adipoq (adi-
ponectin), mitoNEET, or Tnmd (tenomodulin). These engineered 
animals are more or equally obese compared with their control 
littermates, but metabolically healthy (56–59). WAT depots in 
these models are characterized by smaller and seemingly more 
numerous adipocytes, relatively low inflammation and ectopic 
lipid accumulation, and relatively better insulin sensitivity than 
those in control animals. In all of the models using the Adipoq pro-
moter to drive transgenesis, gene expression is induced constitu-
tively within mature adipocytes. Thus, whether the healthy local 
and systemic phenotypes are due to improved adipocyte function 
or rather due to the secondary increases in adipocyte number is 
not entirely clear in many models. Nevertheless, these animal 
models have provided compelling evidence that adipose tissue 
health, rather than abundance, is a critical determinant of meta-
bolic health in obesity.

Tracking adipocyte hyperplasia in adult mice. It has long been 
appreciated that de novo adipogenesis occurs in adulthood; 
however, genetic methods to assess new adipocyte formation 
have been lacking until only recently. Pulse-chase genetic lin-
eage tracing methods have shed considerable insight into how 

revealed a strong association between genetic variance, visceral 
versus subcutaneous WAT distribution, and insulin resistance (38, 
39). Lotta et al. identified 53 independent loci for which genet-
ic variance is associated with insulin resistance and lower levels 
of peripheral subcutaneous adiposity. Variance at these loci was 
also linked to familial lipodystrophy. The mechanisms by which 
individual SNPs influence body fat distribution remain unknown; 
however, several notable observations were collectively made 
from these types of studies. First, inability to expand subcutane-
ous WAT may be a more important determinant of insulin resis-
tance in obesity than accumulation of visceral WAT per se (40). 
Second, many genes associated with impaired subcutaneous WAT 
expansion are functionally associated with adipocytes/adipogen-
esis (38, 39, 41). The latter is meaningful, as it suggests that genet-
ic variance may impact adipogenesis/APCs in a region-specific 
manner and may underlie variance in body fat distribution and 
risk for metabolic disease.

The mechanism of adipose tissue expansion matters. WAT 
expansion triggered by caloric excess coincides with a dramatic 
shift in the cellular composition of adipose tissue; this process is 
often referred to as tissue remodeling. The manner in which WAT 
depots remodel was also implicated as a critical determinant 
of insulin sensitivity in obesity (42–47). Individual WAT depots 
expand by enlarging existing adipocytes (adipocyte hypertro-
phy) or forming new adipocytes (adipocyte hyperplasia) (48). 
Analyses of WAT from obese individuals reveal that adipocyte 
size and number correlate well with risk for metabolic syndrome, 

Figure 2. New strategies to isolate adipose tissue–resident progenitor 
subpopulations from murine gonadal adipose tissue. (A) Gonadal WAT 
depots of adult mice harbor functionally distinct PDGFRβ+ subpopulations. 
Molecular markers, including cell surface markers, are shown. The PDG-
FRβ+LY6C–CD9– fraction represents highly adipogenic adipocyte precursor 
cells (APCs) enriched in the expression of Pparg. These cells differentiate 
spontaneously upon reaching confluence in vitro when maintained in media 
containing insulin. The PDGFRβ+LY6C+ fraction represents fibro-inflam-
matory progenitors (FIPs). These cells are largely refractory to adipogenic 
stimuli and can actually be anti-adipogenic. (B) FACS strategy to isolate 
PDGFRβ+ subpopulations from perigonadal WAT of adult mice. Following 
the depletion of endothelial (CD31+) and hematopoietic cells (CD45+) from 
the stromal vascular fraction of digested adipose tissue, PDGFRβ+ cells can 
be subdivided into APCs and FIPs on the basis of LY6C and CD9 expression. 
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cytes), and treatment with PPAR-activating thiazolidinediones 
(TZDs) (inguinal and gonadal depots) (62, 65). All together, 
these data highlight the presence of depot- and sex-selective 
mechanisms for adipose tissue expansion in mice. Importantly, 
these genetic tools provide novel approaches to track adipogen-
esis and adipose tissue remodeling in vivo.

Adipogenesis supports healthy adipose tissue 
remodeling in obesity
Impaired adipogenesis in obesity: cause or consequence? Adipose 
tissue remodeling triggered by caloric excess involves dynamic 
and complex changes in cellular composition of the adipose tis-
sue. Various immune cell populations infiltrate or exit the tissue 
(66). The precise triggers of inflammation, fibrosis, hypoxia, and 
adipogenesis are unclear. Consequently, the exact cell types nat-
urally driving healthy versus unhealthy WAT expansion remain 
uncertain. Selective manipulations of mature adipocytes, immune 
cells, endothelial cells, and mesenchymal stromal cells can all 
impact adipose tissue remodeling in mice with diet-induced obe-
sity. Coordinated efforts between adipocytes and the various cell 
types of the adipose tissue microenvironment are likely required 
to maintain tissue health and systemic metabolic homeostasis.

individual adipose depots expand in mice in association with 
diet-induced obesity (60–64). Importantly, WAT expansion in 
mice with diet-induced obesity occurs in a depot-specific man-
ner (46, 60, 62–64). Epididymal WAT, representing an intra- 
abdominal depot, expands in high-fat diet–fed (HFD-fed) adult 
male mice through both adipocyte hypertrophy and hyperpla-
sia, while the inguinal (subcutaneous) depot in these same ani-
mals expands almost exclusively through cellular hypertrophy.  
Jeffery et al.’s lineage tracing studies in female mice revealed that 
adipocyte hyperplasia occurs in both perigonadal WAT and, to 
some variable extent, in inguinal WAT (61). These data support 
the notion of sex-based differences in regional adipogenesis. 
We and others have now demonstrated that visceral adipocytes 
emerging in association with HFD feeding originate, at least in 
part, from perivascular precursors expressing Pdgfrb (encod-
ing the receptor PDGFRβ) (62, 64). We have derived a doxycy-
cline-inducible pulse-chase lineage tracing system (PdgfrbrtTA; 
TRE-Cre;Rosa26RmT/mG, or MuralChaser, mice) that allows fate 
mapping of Pdgfrb-expressing cells in response to various phys-
iological stimuli (62). Pdgfrb-expressing adipocyte precursors 
undergo adipogenesis in response to HFD feeding (gonadal and 
retroperitoneal depots), cold exposure (inguinal beige adipo-

Figure 3. New strategies to isolate adipose 
tissue–resident progenitor subpopulations 
from murine inguinal adipose tissue. (A) 
Merrick et al. (80) and Schwalie et al. (81) 
identify functionally distinct subpopulations 
of adipose precursors in inguinal WAT of adult 
mice. Molecular markers, including cell surface 
markers, are shown. Using the nomenclature 
from Merrick et al., interstitial progenitor cells 
(IPCs) represent multipotent cells that can give 
rise to more committed, highly adipogenic, 
ICAM1+ preadipocytes, along with a previously 
unrecognized CD142+ adipocyte precursor popu-
lation. (B) FACS strategy to isolate functionally 
distinct adipogenic and anti-adipogenic sub-
populations from inguinal WAT of adult mice. 
CD142–DPP4+ IPCs represent a primitive stem 
cell population. CD142–ICAM1+ cells represent 
committed preadipocytes. Importantly, these 
two populations can be identified in human 
subcutaneous adipose tissue using the same 
markers, and appear similar to the SCA-1+CD55+ 
and SCA-1+VAP1+ populations identified by 
Schwalie et al. Merrick et al. identified an 
additional preadipocyte population that is 
among the CD142+ cells (termed group 3 cells). 
IPCs give rise to ICAM1+ and CD142+ preadipo-
cytes. Anti-adipogenic Aregs can be isolated 
on the basis of CD142 and ABCG1 expression 
(CD142+ABCG1+).
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Adipose tissue progenitor heterogeneity: 
insights from single-cell sequencing
Growing appreciation of the contribution of de novo adipogene-
sis to metabolic health has sparked renewed interest in the biolo-
gy of adipose tissue stem cells. Cell selection strategies based on 
expression of CD34 and SCA-1 have been used routinely for several 
years to isolate hierarchical APC populations from stromal vascu-
lar fractions (SVFs) of inguinal and gonadal WAT of mice (72). The 
CD24+ subfraction of CD34+SCA-1+ cells represents a stem cell–like 
population, whereas the CD24– fraction represents a pool of more 
committed APCs. Subsequent studies demonstrated that such cells 
express the fibroblast/mesenchymal cell marker PDGFRα (73, 
74). A selection strategy using commercially available antibodies 
is advantageous; cells can be isolated from any wild-type or engi-
neered mouse strain using validated approaches. Genetic reporter 
lines have also been used to isolate and localize APCs (62, 75–77). 
The highly adipogenic subfraction of PDGFRβ+ cells can be isolat-
ed via genetic reporters on the basis of expression of Pparg or its 
upstream regulatory factor Zfp423 (62, 75, 77). An advantage of 
such genetic reporters is that cell populations of interest can be 
localized in vivo without dependence on finding suitable antibod-
ies. These Pparg/Zfp423-expressing PDGFRβ+ cells express several 
mural cell (pericyte/smooth muscle) markers and reside directly 
adjacent to the endothelium in WAT blood vessels.

A number of APC populations have been described, each 
isolated through selection with distinct markers (78). As such, it 
has remained unclear what degree of heterogeneity exists among 
APCs. The rapid development of single-cell sequencing plat-
forms fueled a recent burst in single-cell RNA sequencing stud-
ies of the adipose SVF (79–83). Despite differences in approach-
es, there seems to be congruence among data sets derived from 
independent laboratories. Importantly, several important themes/
concepts are emerging. First and foremost, far more functional 
heterogeneity exists within the stromal compartment of adipose 
tissue than previously appreciated. Isolation of cells based on 
expression of PDGFRα, PDGFRβ, or CD34/SCA-1 yields molec-
ularly and functionally heterogeneous populations. Second, sub-
populations of cells once called APCs can actually be inhibitory to 
adipogenesis, and may directly impact other aspects of adipose tis-
sue remodeling, e.g., fibrosis and inflammation. Third, the molec-
ular and functional heterogeneity appears to be depot specific. As 
detailed below, new markers for isolating depot-specific adipose 
tissue–resident progenitor subpopulations are now emerging.

Stromal cell diversity within intra-abdominal WAT depots. Recent-
ly, Granneman and colleagues explored the cellular landscape 
of the adipose SVF using single-cell RNA sequencing (83). In this 
study, Burl et al.’s analysis generated a cellular atlas that included 
molecularly heterogeneous stromal cell populations as well an array 
of immune cell types (83). Within gonadal WAT, they identified two 
prominent PDGFRα+ populations, termed adipose stem cell (ASC) 
1 and 2. In addition, they identified two ASC subpopulations that 
were considered “differentiating” and “proliferating,” respectively, 
based on their gene expression patterns. The authors postulate that 
these subpopulations represent different states of adipocyte differ-
entiation, whereby signals emanating from the microenvironment 
dictate their progression toward an adipogenic phenotype. Two 
analogous ASC populations were also observed in inguinal depots; 

A prevailing, albeit simplistic, model proposes that a depot’s 
inability to expand through adipocyte hyperplasia, combined with 
inadequate angiogenesis, leads to overloaded and hypoxic adi-
pocytes (17, 51). As adipocytes reach their storage capacity, cell 
death occurs, leading to the activation of inflammation and fibro-
sis. The subsequent decline in WAT function leads to detrimental 
accumulation of lipid species in nonadipose organs, similar to that 
observed in the setting of lipodystrophy (10, 11). In this model, 
impaired APC differentiation underlies unhealthy adipose tissue 
expansion. Accordingly, several cross-sectional or overfeeding 
studies provided evidence of impaired preadipocyte differentia-
tion in association with hypertrophic adipose tissue (42, 67–71). 
Moreover, regional differences in preadipocyte characteristics are 
readily apparent and include depot-specific differences in preadi-
pocyte proliferation, apoptosis, and adipogenic capacity (68). The 
tremendous challenge is in determining whether such defects in 
adipocyte differentiation drive pathologic adipose tissue remod-
eling, or rather represent a consequence of fibrosis, immune cell 
activity, or any of the multitude of metabolic changes that occur 
alongside metabolic syndrome.

Promoting healthy adipose tissue expansion in obesity. Patients 
treated with the TZD class of antidiabetic drugs often experience 
weight gain, associated with the expansion of subcutaneous WAT. 
Weight gain is likely undesirable to most patients; however, subcu-
taneous adipocyte hyperplasia and healthy remodeling of adipose 
tissue appear metabolically favorable and contribute to systemic 
insulin sensitization. New mouse models conferring inducible 
gene expression in adipocyte precursors, but not in adipocytes 
themselves, introduce the opportunity to modulate adipocyte 
differentiation in adult mice, and assess its importance to healthy 
WAT expansion in different settings. We recently developed doxy-
cycline-inducible genetic models to ablate or induce Pparg expres-
sion in Pdgfrb-expressing precursors of adult mice undergoing 
HFD feeding and/or TZD treatment (65). Loss of mural cell Pparg, 
and thereby adipogenesis, led to many of the clinical features of 
pathologic WAT remodeling (inflammation, fibrosis, insulin resis-
tance) upon HFD feeding. Moreover, TZDs’ ability to promote 
healthy visceral WAT remodeling (i.e., adipocyte hyperplasia and 
reduced inflammation) requires mural cell Pparg. Driving adipo-
genesis from PDGFRβ+ precursors through Pparg overexpression 
(Mural-PpargTG mice) led to a doubling of the de novo adipogen-
esis that normally occurs in visceral WAT depots in association 
with HFD feeding, without increasing body weight or adiposity 
per se. Instead, intra-abdominal WAT depots accumulated small-
er and more numerous fat cells and few proinflammatory mac-
rophages, and maintained local insulin sensitivity. Therefore, 
stimulating adipogenesis in the setting of caloric excess can drive 
healthy WAT remodeling (Table 1). Notably, obese Mural-PpargTG 
mice also maintain the serum adiponectin levels of lean animals. 
These data suggest that healthy WAT remodeling is a driving force 
behind the maintenance of adiponectin levels in obesity. How 
healthy WAT remodeling ultimately promotes systemic insulin 
sensitization remains unclear. Is it the sequestering of glucose and 
lipids from circulation? Is the reduction in chronic proinflamma-
tory responses and fibrosis the key driver? Such mechanisms are 
not necessarily mutually exclusive, and the net metabolic benefit 
is likely mediated by multiple factors.
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however, when comparing ASC populations between depots, ASC1 
aligned more closely to ASC2 within the same depot than to ASC1 
in the opposing depot. As such, much of the molecular differences 
between depot-specific ASCs (e.g., gonadal ASC1 versus inguinal 
ASC1) reflects their anatomical origin.

Our own single-cell sequencing efforts focused specifically on 
the pool of genetically labeled PDGFRβ+ cells within gonadal WAT 
of the MuralChaser model, with the rationale that marked cells con-
tribute considerably to adipocyte hyperplasia associated with HFD 
feeding in this depot. We performed single-cell RNA sequencing 
of Pdgfrb-expressing cells from epididymal WAT and identified 
molecularly distinct cell subpopulations (ref. 82 and Figure 2A). 
LY6C–CD9–PDGFRβ+ cells represent APCs. These cells differen-
tiate spontaneously upon reaching confluence in culture, and are 
capable of forming an ectopic fat pad upon transplantation into lipo-
dystrophic mice. These cells bear close resemblance to the ASC1 
population defined by Burl et al. This subpopulation of PDGFRβ+ 
cells activates Pparg expression following the onset of HFD feeding, 
further suggesting that they are the subpopulation of PDGFRβ+ cells 
that contributes to adipocyte hyperplasia in this depot.

LY6C+PDGFRβ+ cells share a gene expression profile with Burl 
et al.’s ASC2 population. These cells are enriched in the expression 
of proinflammatory cytokines and collagens. As such, we refer to 
these cells as fibro-inflammatory progenitors (FIPs). FIPs express 
high levels of commonly used APC isolation markers, such as 
CD34 and SCA-1; however, they lack Pparg expression and do not 
readily undergo adipocyte differentiation in vitro or in vivo, even 
in the presence of strong adipogenic stimuli. Moreover, FIPs are 
also functionally anti-adipogenic and can inhibit differentiation of 
APCs in vitro through the production of unknown secreted factors. 
The presence of highly anti-adipogenic stromal cells within the 
total CD34+SCA-1+ population of gonadal WAT may explain the 
apparent lack of adipogenic capacity that these cultures possess, 
despite the presence of APCs (84).

HFD feeding induces collagen expression in FIPs. This sug-
gests that FIPs are fibrogenic progenitors, in accordance with 
earlier studies indicating that fibrogenic cells residing in mouse 
and human WAT could be identified by expression of CD9 and 
PDGFRα (85). FIPs also exert a functional proinflammatory phe-
notype in response to proinflammatory signals in vitro. FIPs acti-
vate mRNA levels of proinflammatory cytokines that are known 
to promote macrophage infiltration and activation (82). More-
over, FIPs proliferate following the onset of HFD feeding, raising 
the hypothesis that these cells can modulate local adipose tissue 
inflammation in obesity.

In vitro studies of FIPs highlight their potential to promote 
maladaptive adipose tissue remodeling; however, it is certain-
ly possible that FIPs also maintain adipose tissue health in lean 
animals. Recent independent studies from the Mathis and Artis 
groups reveal that cells bearing close resemblance to FIPs express 
IL-33, a key cytokine in maintaining an antiinflammatory state 
in WAT (79, 86). IL-33 regulates group 2 innate lymphoid cells 
and Tregs, which maintain eosinophils and promote an antiin-
flammatory phenotype in macrophages (87). Spallanzani et al. 
performed single-cell RNA sequencing of PDGFRα+SCA-1+ cells 
from gonadal WAT of adult mice (79). Functionally distinct popu-
lations, closely resembling APCs and FIPs, were identified, along 

with a population of mesothelial cells. IL-33 expression is largely 
enriched within FIPs and mesothelial cells. Importantly, delet-
ing Il33 using Pdgfra-Cre led to a sharp reduction in whole-tissue 
IL-33 expression and eosinophil numbers. These studies provide 
evidence that specific stromal subpopulations regulate normal 
immune cell homeostasis in adipose tissue. Additional studies 
of these cells are needed to determine their precise contribution 
to WAT inflammation and remodeling in various settings in vivo. 
Genetic lineage tracing of specific subpopulations is also needed 
to better define their lineage relationships and phenotypic plastici-
ty. Importantly, whether human WAT harbors cells analogous to 
FIPs remains unknown. Nevertheless, these studies highlight the 
vastly underappreciated functional heterogeneity of the adipose 
stromal compartment. Studies of murine gonadal WAT “adipo-
cyte progenitors” that consist of cells sorted only on the basis of 
expression of either PDGFRα, PDGFRβ, or CD34/SCA-1 need to 
account for this functional heterogeneity.

Stromal cell diversity within subcutaneous WAT depots. Schwalie 
et al. reported the first single-cell sequencing study of murine WAT 
(81). The authors used two independent single-cell sequencing 
approaches to explore the landscape of the murine inguinal WAT 
SVF, and characterized three stromal cell populations. Populations 1 
and 2 (termed P1 and P2) are adipogenic populations that appear to 
differ molecularly in their level of commitment to the adipocyte lin-
eage. P1 is enriched in expression of CD34 and SCA-1. P2 is enriched 
in Pparg expression and likely represents committed preadipocytes. 
Most notably, they defined a previously unrecognized population 
of cells, termed Aregs, that were refractory to adipogenic signals 
and instead were anti-adipogenic. These data provided the first evi-
dence of anti-adipogenic stromal cells and highlight a potentially 
important brake on adipogenesis in vivo. Cells bearing the markers 
of Aregs were also found in murine gonadal WAT; however, these 
cells appear to be distinct from anti-adipogenic FIPs. Importantly, 
Aregs bearing these same markers are present in human WAT. The 
importance of these cells in controlling adipose tissue hyperplasia 
under physiological conditions still needs to be evaluated. More-
over, it is of interest to determine whether such cells reside within 
other tissues (e.g., bone marrow or skeletal muscle) to regulate local 
adipocyte accumulation.

More recently, Merrick et al. reported their own single-cell 
sequencing analysis of the inguinal WAT SVF of 12-day-old (post-
natal day 12) mice (80). Their study identified three hierarchical 
APC populations (Figure 3A). One population, termed interstitial 
progenitor cells (IPCs), molecularly resembles inguinal WAT ASC2 
and P1 defined by Burl et al. and Schwalie et al., respectively. Func-
tionally, IPCs are highly proliferative and can differentiate into 
multiple mesenchymal lineages. The two additional populations 
are more committed to the adipocyte lineage. ICAM1+ cells repre-
sent committed preadipocytes and are enriched in Pparg expres-
sion. These cells molecularly resemble the adipogenic cells iden-
tified in other studies (inguinal WAT ASC1 and P2). Importantly, 
both IPCs and ICAM1+ cells exist in human WAT. The third popula-
tion of cells in mouse inguinal WAT, termed CD142+ preadipocytes, 
represent a unique adipogenic population. IPCs have the ability to 
give rise to both the CD142+ and ICAM1+ preadipocytes, in route 
to becoming adipocytes, suggesting a novel progenitor hierarchy in 
adipose tissue. Importantly, unlike committed preadipocytes that 
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reside in the perivascular region within WAT, the more primitive 
IPCs reside in an anatomically distinct region surrounding the adi-
pose tissue, referred to as the reticular interstitium. This defines 
a new anatomical niche for APCs and introduces opportunities to 
define local signals that control their activation.

Going forward, it will be essential to establish the relative 
importance of these distinct APC subpopulations under physio-
logical conditions. Prior studies indicate that very little de novo 
white adipogenesis occurs postnatally in inguinal WAT with age, 
or in response to HFD feeding (63). During development, inguinal 
adipogenesis begins during the late stages of fetal development. 
Most inguinal adipocytes are differentiated by postnatal day 10, 
with lipid accumulation being the mechanism of tissue expansion 
thereafter (63). Multiple studies now suggest that the properties 
of fetal inguinal APCs differ from those present in adulthood (88–
90). Genetic lineage tracing should help establish the hierarchical 
relationships of these cell populations during development and 
their relative contribution in adulthood. Given that the inguinal 
WAT depot is a site of beige adipogenesis, it will be of interest to 
determine which, if any, of these adipogenic populations serve as 
the precursors of metabolically active beige adipocytes.

New depot-specific markers for isolating APC subpopulations. 
Single-cell sequencing has not only shed considerable light on the 
cellular landscape of the adipose tissue stroma, but also has led to 
new strategies that can be used to isolate APC populations from 
different depots by FACS (Figure 2B and Figure 3B). Historically, 
unpurified adipose SVF cultures have served as a model system 
for studying adipogenesis in vitro (91). In most studies involving 
murine cells, inguinal WAT is the predominant source for primary 
cells. SVF cultures from this depot differentiate robustly and can 
be used to explore molecular pathways regulating adipogenesis or 
adipocyte function in vitro. The Merrick et al. and Schwalie et al. 
sorting strategies enable hierarchical subpopulations to be isolat-
ed from native inguinal WAT (Figure 3B). This may enable further 
dissection of the mechanisms governing preadipocyte commit-
ment. A considerable strength of the Merrick et al. sorting strategy 
is its adaptability to human WAT. Nevertheless, as noted above, 
the physiological context in which these individual cell popula-
tions contribute to adipogenesis remains unidentified. Generally, 
the APC populations in inguinal WAT are not activated to undergo 
adipocyte differentiation in vivo following the onset of HFD feed-
ing. Studying these APC subpopulations, along with Aregs, may 
shed light on this phenomenon.

It is widely appreciated in the field that primary SVF cells 
obtained from mouse gonadal WAT lack appreciable differenti-
ation capacity unless used in three-dimensional culture systems 
(31, 92). This represents somewhat of a paradox since gonadal 
APCs, but not inguinal APCs, are activated to undergo adipogene-
sis in vivo in association with HFD feeding. The isolation of PDG-
FRβ+LY6C–CD9– cells from intra-abdominal WAT yields highly 
adipogenic cells that can be used in vitro or in transplantation 
assays (Figure 3B). Importantly, lineage tracing and functional 
analysis support the notion that these cells represent a major APC 
population that contributes to adipogenesis in vivo.

Importantly, the heterogeneity of the adipose progenitor pool 
is, at least in some cases, depot specific and perhaps age depen-
dent. PDGFRβ+ APCs can be isolated from various intra-abdominal 

WAT depots of adult male and female mice on the basis of LY6C 
and CD9 expression; however, these markers are indiscriminate in 
the inguinal WAT depot (82). FIPs may exist in inguinal WAT but 
express a different cell surface expression profile. Inguinal IPCs are 
molecularly similar to gonadal WAT FIPs; however, the two popu-
lations appear functionally distinct. Unlike inguinal IPCs, FIPs are 
not highly adipogenic in vitro or in vivo and do not appear to give 
rise to APCs. These observations serve as a caution that similarities 
in global gene expression patterns may not necessarily imply sim-
ilarities in function, and that strategies to isolate cell populations 
from one depot are not necessarily transferable to other depots.

Concluding remarks
Is pathologic obesity a form of relative lipodystrophy? Studies of 
mouse and human adipose tissue provide strong evidence that 
the inability to expand subcutaneous WAT depots (versus vis-
ceral WAT depots) when faced with caloric excess is detrimental 
to metabolic health in the obese state. Moreover, the inability to 
recruit new adipocytes to support the demand for increased ener-
gy storage can lead to pathologic WAT remodeling. In both cases, 
the ensuing WAT dysfunction leads to systemic effects reminis-
cent of lipodystrophy; ectopic lipid deposition occurs and insulin 
resistance ensues. Much remains unclear regarding the genetic 
variance identified in recent GWAS; however, a link between insu-
lin resistance and genetic variance at genes potentially involved 
in adipocyte function and/or adipocyte differentiation suggests 
that a relative or absolute adipocyte deficiency may be a substan-
tial driver of insulin resistance. As such, it is tempting to think of 
pathologic obesity as a form of relative lipodystrophy.

Challenges and opportunities. Many critical questions regarding 
the regulation of adipogenesis remain unresolved. The exact sig-
nals associated with HFD feeding that initiate adipogenesis have 
not been identified. Whether APCs respond to dietary compo-
nents themselves or changes in hormone/cytokine levels remains 
unclear. Rydén and colleagues recently provided evidence that 
TGF-β locally influences precursor proliferation (93). Such signals 
may emanate from any number of cells within the adipose tissue. 
Perhaps it is equally important to identify signals that restrain adi-
pogenesis in vivo. Surprisingly, mouse inguinal APC populations 
do not readily undergo adipogenesis in response to HFD feeding, 
despite their robust differentiation potential following remov-
al from the tissue. Thus, the inguinal WAT microenvironment 
harbors strong inhibitory signals to suppress differentiation (61). 
Whether this is mediated by Aregs is still unclear. It is notable that 
transgenic PPARγ expression in PDGFRβ+ cells, combined with 
HFD feeding, is not sufficient to trigger adipocyte hyperplasia 
in the inguinal depot of male mice (65). This suggests that such 
inhibitory mechanisms may include those that target PPARγ at the 
protein level. Unraveling these inhibitory mechanisms may shed 
light on the molecular control of body fat distribution.

Identifying the mechanisms underlying progenitor subtype 
specification is also a challenge. It is not yet clear how and when 
the various progenitor populations described here emerge during 
development. The transcriptional mechanisms leading to Pparg 
activation in subcutaneous white APCs are at least somewhat dis-
tinct from those driving Pparg activation in visceral white APCs 
(90, 94, 95). Further complicating matters, molecular mecha-
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adipocytes are not yet developed. Moreover, nearly all engineered 
strains used in the field are generated on a C57BL/6 background. 
Efforts to explore adipose tissue remodeling across different strains 
may facilitate the identification of novel regulatory mechanisms.

The heterogeneity and plasticity of the adipose tissue lineage 
are undoubtedly more complex than previously imagined. Oppor-
tunities to selectively target the adipose lineage may emerge from 
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